
CuMF_SGD: Parallelized Stochastic Gradient Descent for Matrix
Factorization on GPUs

Xiaolong Xie∗
Center for Energy-efficient Computing and Applications,

EECS, Peking University, Beijing, China
xiexl_pku@pku.edu.cn

Wei Tan
IBM Thomas J. Watson Research Center

Yorktown Heights, NY, USA
wtan@us.ibm.com

Liana L. Fong
IBM Thomas J. Watson Research Center

Yorktown Heights, NY, USA
llfong@us.ibm.com

Yun Liang
Center for Energy-efficient Computing and Applications,

EECS, Peking University , Beijing, China
ericlyun@pku.edu.cn

ABSTRACT
Stochastic gradient descent (SGD) is widely used by many machine
learning algorithms. It is efficient for big data applications due to
its low algorithmic complexity. SGD is inherently serial and its
parallelization is not trivial. How to parallelize SGD on many-core
architectures (e.g. GPUs) for high efficiency is a big challenge.

In this paper, we present cuMF_SGD, a parallelized SGD solution
for matrix factorization on GPUs. We first design high-performance
GPU computation kernels that accelerate individual SGD updates by
exploitingmodel parallelism. We then design efficient schemes
that parallelize SGD updates by exploiting data parallelism. Fi-
nally, we scale cuMF_SGD to large data sets that cannot fit into one
GPU’s memory. Evaluations on three public data sets show that
cuMF_SGD outperforms existing solutions, including a 64-node
CPU system, by a large margin using only one GPU card.

CCS CONCEPTS
• Computing methodologies → Factor analysis;
•Computer systems organization→Heterogeneous (hybrid)
systems;
• Theory of computation → Massively parallel algorithms;

KEYWORDS
Matrix Factorization, GPGPU, Parallel Computing.

ACM Reference format:
Xiaolong Xie, Wei Tan, Liana L. Fong, and Yun Liang. 2017. CuMF_SGD:
Parallelized Stochastic Gradient Descent for Matrix Factorization on GPUs.
In Proceedings of ACM Symposium on High-Performance Parallel and Dis-
tributed Computing, Washington , DC, USA, June 26-30, 2017 (HPDC ’17),
14 pages.
https://doi.org/http://dx.doi.org/10.1145/3078597.3078602

∗Work done while the author was with IBM as an summer research intern.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HPDC ’17, June 26-30, 2017, Washington , DC, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4699-3/17/06. . . $$15.00
https://doi.org/http://dx.doi.org/10.1145/3078597.3078602

1 INTRODUCTION
Matrix Factorization (MF) is a popular algorithm that is widely used
in modern machine learning applications, including collaborative
filtering [12, 34], topic modeling [62], word embedding [43], and
tensor decomposition [33]. It also has a natural connection with
the embedding layers in deep neural network [43]. Without loss of
generality, we use collaborative filtering as the example. Figure 1
shows a m × n rating matrix R which is sparse and with N = 9
observed samples. The goal of matrix factorization is to obtain
two lower-rank feature matrices P (m × k) and Q (k × n) such that
R ≈ P ×Q . The feature vector dimension k is typically much smaller
thanm and n. Feature matrices P and Q can be used to predict the
unknown samples in R, or as the features of the corresponding
entities in subsequent machine learning tasks.

x

X
x

xx x

x

xx

x

1.2 0.8

1.4 0.9

1.5 1.0

1.2 0.8

1.5 1.2 1.0 0.8

1.7 0.6 1.1 0.4

Rating Matrix R

Observed samples

≈

Unknown samples

Feature P Feature Q

Matrix
factorization

x

m

n

m

k

k

n

4.5 2.0

3.54.0

2.05.0

3.5 4.0 1.0

Figure 1: Matrix factorization,m=4, n=4, k=2.

Due to its algorithmic simplicity, Stochastic Gradient Descent
(SGD) is often used in modern machine learning applications [17,
44]. Instead of calculating the gradient on the whole training set,
SGD randomly picks up one sample from the training set and up-
dates using the gradient on that particular sample. Such a simple
approach has been demonstrated efficient in e.g., deep learning
and matrix factorization [8, 65]. However, as SGD is inherently
serial, how to parallelize it to exploit parallel processors becomes a
major challenge [17]. Besides SGD, Coordinate Gradient Descent
(CGD) [60] and Alternate Least Square (ALS) [34] are also used to
solve MF problems. Previous works have demonstrated that CGD
is prone to reach local optima [15]. ALS is inherently parallel and
converges faster than SGD [51]. However, ALS is not efficient when
processing large data sets due to its high algorithmic complexity. In
this paper, we use SGD as the algorithm to solve MF and compare
with ALS-based solutions.

Parallel Methods and Algorithms HPDC'17, June 26–30, 2017, Washington, DC, USA

79

https://doi.org/http://dx.doi.org/10.1145/3078597.3078602
https://doi.org/http://dx.doi.org/10.1145/3078597.3078602

HPDC’17, June 2017, Washington , DC, USA X. Xie et al.

CPU-based SGD solutions forMF, including both sharedmemory-
based [16] and distributed system-based [63] have been studied.
In contrast, we propose to use GPUs to accelerate SGD-based
MF. Our insight is, SGD-based MF is memory bound. Previous
works [15, 63] spend effort to improve the cache efficiency of CPUs.
However, due to the limited cache capacity, shared memory-based
solutions face serious performance degradation when processing
large data sets. Distributed systems partition the data sets to fit into
CPU caches, however, they are limited by the slow network. There-
fore, we propose to use GPU to accelerate SGD-based MF as it pro-
vides large amount of computational resources [32], extreme high
off-chip memory bandwidth [28, 30], and energy efficiency [49, 50].

Recent effort has been spent to use GPUs to accelerate the SGD-
based MF. Kaleem et al. [31] evaluated different workload schedul-
ing policies that parallelize SGD on GPUs. Jin et al. [27] propose an
MF solution based on matrix blocking. Canny et al. [11] release BID-
Mach, a machine learning library that supports matrix factorization.
However, to the best of our knowledge, none of them outperforms
state-of-the-art CPU solutions. The main reason is, they simply
port CPU-based algorithms to GPUs and do not fully exploit GPU
architecture [59]. Unlike these efforts, our study is to fully explore
and exploit the power of GPUs.

We develop CuMF_SGD1, an SGD-based MF solution on GPUs,
with the goal to scale to large data sets and to achieve near-linear
scalability when increasing the level of parallelism. We first de-
sign high-performance GPU kernels to fully utilize the memory
bandwidth on GPUs for individual SGD updates. We then evaluate
the existing SGD parallelization policies, and design lightweight
scheduling policies specifically for GPUs to minimize the sched-
uling overhead. Finally, we design workload partition schemes to
accommodate large data sets and minimize the CPU-GPU commu-
nication overhead. We contribute to the state-of-the-art of machine
learning and high-performance computing in the following aspects:
• We characterize the SGD-basedMF problem and identify that
it is bound bymemory bandwidth.We propose an accelerated
solution, cuMF_SGD, by exploiting GPUs and their extremely
high off-chip memory bandwidth.
• We show how cuMF_SGD exploitsmodel parallelism through
high-performance GPU kernels, and data parallelism through
lightweight scheduling schemes. In this way, cuMF_SGD is
able to scale to large data sets that cannot fit into the device
memory.
• We evaluate cuMF_SGD on two modern GPU generations
with benchmark data sets. Evaluations illustrate that cuMF_SGD
achieves good performance on all data sets on both plat-
forms. Compared with previous works [16], cuMF_SGD
achieves 3.1X to 28.1X performance improvements. More-
over, cuMF_SGD outperforms a 64-node CPU cluster with
only one GPU card. CuMF_SGD is also able to scale to mul-
tiple GPUs and different generations of GPUs.

We organize the remainder of the paper as follows. Section 2
present the baseline SGD algorithm, GPU architectural details,
and workload characterization. Section 3 shows the overview of
cuMF_SGD. Section 4 presents the GPU kernel design, Section 5
shows the SGD scheduling algorithms, and Section 6 shows how
1http://github.com/cumf/cumf_sgd/

cuMF_SGD scales to large data sets. Section 7 presents the experi-
ment results and analysis, Section 8 discusses the related work and
Section 9 concludes this paper.

2 BACKGROUND
We first present the basics of SGD-based matrix factorization in
Section 2.1. Then Section 2.2 presents the details of experimental
setup and Section 2.3 characterizes the workload.

2.1 SGD-based Matrix Factorization
Given a sparsem × n matrix R, the goal of matrix factorization is
to train am × k dense feature matrix P and a k × n dense feature
matrix Q such that:

R ≈ P × Q (1)
We use ru,v to refer to the sample at theuth row and thevth column
of R. We use pu to represent the uth row of P and qv to represent
the vth column of Q . In a recommender system, ru,v indicates the
preference or rating of uth user onvth item, pu is used to represent
the preference of theuth user andqv is used to represent the feature
of the vth item. The training process of matrix factorization is to
minimize the root mean square error (RMSE) between the original
matrix and trained model:

N∑
ru,v ∈R

(ru,v − puqv)2 + λp | | pu | |2 +λq | | qv | |2 (2)

where λp and λq are regularization parameters to avoid overfit-
ting and N is the number of non-zero samples in matrix R. Such
a simple model and its variants are now widely used in recom-
mender systems [34], topic modeling [62], word embeddings [43],
and others.

To solve Eq.2, it is necessary to go through Rm×n . Consider
Rm×n may contain up to billions of samples, the process is time-
consuming. To address the problem, stochastic gradient descent
(SGD), is often employed in modern machine learning applica-
tions [17]. Instead of going through rating matrix Rm×n , SGD only
randomly picks one sample at each step and Eq.2 is reduced to:

(ru,v − puqv)2 + λp | | pu | |2 +λq | | qv | |2 (3)
Algorithm 1 shows a typical SGD-based matrix factorization

algorithm. The input of the algorithm includes the rating matrix
Rm×n , the feature dimension k (typically ranges from O(10) to
O(100)), the learning rate γ , and the regularization parameter λ.
In this paper, we use the same λ for both P and Q . The output is
the trained model (i.e., feature matrices P and Q). Lines 1-3 show
the data pre-processing, lines 5-12 show the SGD training process,
and lines 14-16 show the data post-processing. The SGD training
process is the most time-consuming part and not different with
previous work, and we focus on optimizing this part. The training
process is composed of two loops. Each iteration (also known as an
epoch) of the outer loop represent a full pass of the rating matrix.
The number of iterations of the outer loop is set by users. In each
step of the inner loop, one sample is randomly picked to decrease
Eq.3 (details shown in Line 5-12). The SGD training is finished
when the given number of iterations (Ite) is reached or the model
converges.

Parallel Methods and Algorithms HPDC'17, June 26–30, 2017, Washington, DC, USA

80

http://github.com/cumf/cumf_sgd/

CuMF_SGD: Parallelized Stochastic Gradient Descent for Matrix Factorization on GPUs HPDC’17, June 2017, Washington , DC, USA

The optimization work on matrix factorization contains two
streams: algorithm and system. The algorithmic stream tries to opti-
mize update schemes such as learning rate (γ) in gradient descent,
in order to reduce the number of epochs (iterations) needed
to converge [16]. The system stream tries to accelerate the com-
putation, in order to run each epoch faster [15, 51, 61, 63]. We
focus on the system stream and the proposed techniques can be
combined with other algorithmic optimizations.

Algorithm 1A Typical SGD-based Matrix Factorization Algorithm.
Input: Rm×n (N samples), k (feature dimension), γ (learning rate), λ

(regularization parameter);
1: ▷ Data pre-processing.
2: random_shuf f le(Rm×n);
3: Pm×k , Qk×n ← random(0, sqr t (1/(k ∗ scale_f actor));
4:
5: ▷ SGD training
6: for iteration ← 1 to I te do
7: for Randomly select ru,v from Rm×n do
8: error ← ru,v − pu × qv ;
9: pu ← pu + γ (error ∗ qTv − λ ∗ pu)
10: qv ← qv + γ (error ∗ pTu − λ ∗ qv)
11: end for
12: end for
13:
14: ▷ Data post-processing.
15: model_shuf f le(P, Q);
16: model_save(P, Q);
Output: ← P,Q

As we see in Algorithm 1, the SGD training process is serial. One
SGD update contains a dot product (Line 8) and a few vector opera-
tions (Line 9, 10) at length k . How to efficiently execute individual
SGD updates, i.e., exploit the model parallelism, becomes one major
design factor of matrix factorization. As one SGD update can not
saturate the resources on modern processors, how to parallelize the
SGD updates is also a challenge (data parallelism). Our proposed
cuMF_SGD exploits both model parallelism and data parallelism.

2.2 Experimental Setup
Platform. Table 1 shows the configurations of the platforms used
in this paper. The Maxwell platform is with Intel Xeon CPUs and
NVIDIA TITAN X GPUs. The TITAN X GPU is Maxwell architec-
ture [3] with CPUs and GPUs connected via PCIe 3.0. The Pascal
platform is equipped with IBM PowerNV8 CPUs and NVIDIA Pas-
cal P100 GPUs. The P100 GPU is Pascal architecture [5], newer
than Maxwell architecture. The CPUs and GPUs are connected
by NVLink that is much faster than PCIe. Overall, the Pascal plat-
form is more powerful than the Maxwell platform in terms of both
computational power and interconnection bandwidth.

Data sets. We use three public data sets: Netflix, Yahoo!Music,
and Hugewiki. Details of them are shown in Table 2. They are
also used in other matrix factorization systems [16, 38]. Netflix
and Yahoo!Music comes with a test set but Hugewiki does not. For
Hugewiki, we randomly sample and extract out 1% of the data as
the test set.

Table 1: Configuration of theMaxwell [3] and Pascal [5] Plat-
form.

Maxwell Platform
CPU 12-core Intel Xeon CPU E5-2670*2 (up to 48 threads), 512 GB memory.

GPU TITAN X GPU*4, per GPU: 24 SMs, 12 GB device memory, 360GB/s
memory bandwidth, per SM: 128 CUDA cores, 2K threads.

Inter-
connection PCIe 3.0, up to 16 GB/s.

Pascal Platform
CPU 2*10 PowerNV 8 processors with SMT 8 and NVLink, 512 GB memory.

GPU Pascal P100 GPU*4, per GPU: 56 SMs, 16 GB device memory, 780GB/s
memory bandwidth, per SM: 64 CUDA cores, 2K threads.

Inter-
connection NVLink, up to 80 GB/s.

Table 2: Details of workload data sets.
Dataset Netflix Yahoo!Music Hugewiki

m 480,190 1,000,990 50,082,604
n 17,771 624,961 39,781
k 128 128 128

T rain Set 99,072,112 252,800,275 3,069,817,980
T est Set 1,408,395 4,003,960 31,327,899

2.3 Workload Characterization
Before optimizing the SGD-based MF, we first characterize the
workload features. We start with analyzing the computation to
memory ratio. We adopt a metric, Flops/Byte , which is defined as
the ratio of floating point operations to memory access density
(byte) (Eq. 4). When Flops/Byte is extremely high (e.g. in matrix
multiplication), the application is compute bound, otherwise, the
application is memory bound.

Flops/Byte = #FloatinдPointOps
#MemoryOps(Byte) (4)

Eq. 5 shows how to compute the Flops/Byte metric for SGD-
based MF. Consider that, for k = 128 and sizeo f (ru,v) = 12 (2 in-
tegers and 1 float in COO format), the Flops/Byte is 0.43 ops/byte.
Given the fact that a modern CPU processor provides ∼600 GFLOPS
computational horsepower and ∼60 GB/s off-chip memory band-
width (600/60=10), SGD-based MF has low Flops/Byte ratio and is
bound by memory.

Flops/Byte =
6k +

∑loдk
i=1

k
2i

sizeo f (ru,v) + 4k ∗ sizeo f (f loat)
(5)

For shared memory based solutions, to address the memory
problem, cache efficiency has to be carefully optimized. Chin et
al. release LIBMF [15, 16], a CPU-based high-performance SGD
solution to MF. As reported in the original paper, they optimize
the cache efficiency at the expense of sacrificing randomness. We
evaluate LIBMF on our Maxwell platform and show the effective
memory bandwidth in Figure 2(a). On the smallest Netflix data
set, LIBMF achieves 194GB/s effective memory bandwidth. The
bandwidth is much higher than the theoretical memory bandwidth
due to cache effect. However, on the largest HugeWiki data set,
the effective memory bandwidth drops by 45%, to 106GB/s. The
main reason is that increased data size leads to decreased cache
efficiency, and thus degrades the performance. Hence, single-node
CPU solution is not scalable to large data sets.

Parallel Methods and Algorithms HPDC'17, June 26–30, 2017, Washington, DC, USA

81

HPDC’17, June 2017, Washington , DC, USA X. Xie et al.

 0

 50

 100

 150

 200

 250

 300

Netflix
Yahoo!Music

Hugewiki

G
B

/s

LIBMF

 0

 0.5

 1

 1.5

 2

1-node
16-node

32-node

NOMAD

Figure 2: (a) The effective memory bandwidth of LIBMF
drops when solving large data sets. (b) NOMAD achieves
lower memory efficiency when scaling to multiple nodes.

One solution to the cache performance degradation is to distrib-
ute the workload to multiple nodes. Yun et al. develop NOMAD, a
distributed SGD-based MF solution [63]. By distributing the data
to multiple nodes, the working set can fit into to L3 cache of CPUs.
Hence, the cache efficiency is improved. However, the overall per-
formance is bound by the slow network speed [47]. On the Netflix
data set, NOMAD only achieves ∼5.6X speedup when scaling from
1 node to 32, which is far from perfect scaling. Figure 2 (b) shows
the achieved memory efficiency of NOMAD on Netflix data with
different number of nodes. The memory efficiency is the ratio of ef-
fective memory bandwidth to total memory bandwidth of all nodes.
We observe that the efficiency of distributed solution is extremely
low.

In this paper, we propose to accelerate SGD-based MF on GPUs.
One main aspect is to maximize the usage of GPUs’ high off-chip
memory bandwidth. Compared with CPUs, GPUs do not rely on
the cache and are scalable to process large data sets. For example,
NVIDIA Maxwell architecture GPU TITAN X is equipped with up
to 360GB/s memory bandwidth, which is multiple times higher
than CPUs (<100 GB/s). New generation NVIDIA P100 GPUs pro-
vide even higher bandwidth (780 GB/s). Moreover, NVIDIA GPUs
introduce NVLink as new generation interconnect network be-
tween CPUs and GPUs. NVLink provides up to 80 GB/s memory
bandwidth. For data sets that can not fit into GPU’s memory, the
high-speed CPU to GPU bandwidth makes GPUs more efficient
than distributed systems.

3 OVERVIEW
In this section, we present the overview of cuMF_SGD, as shown in
Figure 3. Parallelizing SGD on GPUs is a not a trivial task. SGD is
inherently serial, which does not fit the flavor of GPUs [17]. Many
machine learning solutions [37] employs batch SGD on GPUs to
exploit model parallelism. They process a batch of, say, 16 to 256,
samples to saturate GPUs. Given that the each individual SGD
update in MF is lightweight, thousands of SGD updates are required
to saturate GPUs. However, increasing the size of each batch may
hurt convergence and in the end prolong the training time. Hence,
we carefully design cuMF_SGD to fully utilize the resources on
GPUs.

The design of cuMF_SGD is composed of two streams. The
first stream is to exploit the model parallelism. We design high-
performance GPU kernels to optimize the execution of each indi-
vidual SGD update. In this paper, we term a group of threads that

CuMF_SGD

Model Parallelism Data Parallelism

GPU Kernel
Design

SGD Scheduling
Algorithm

Large data set:
Workload Partition

Figure 3: Overview of cuMF_SGD.

work coordinately to perform one SGD update as a parallel worker.
On CPUs, a parallel worker is usually composed of one thread. On
GPUs, we set a parallel worker as one thread block to exploit the
SIMD features. We optimize the kernel using various GPU optimiza-
tion techniques, including warp shuffle, memory coalescing, and
on-chip caching. Details are shown in Section 4. The other stream
is to exploit the data parallelism. There are hundreds of parallel
workers (thread blocks) running on one GPU, SGD updates are
scheduled and executed in parallel. How to design efficient sched-
uling algorithm that incurs minimal scheduling overhead becomes
a key design factor. We design lightweight SGD scheduling algo-
rithms that are effective in terms of both system throughput and
convergence, with details discussed in Section 5. The GPU memory
capacity is limited (∼10GB per GPU). When processing large data
sets, the data set has to be partitioned to fit into the GPU’s memory.
The memory transfer between CPU and GPU happens frequently
to migrate the data. We design workload partitioning algorithm and
optimize the CPU-GPU memory transfer to maximize the system
performance. The algorithm is presented in Section 6.

4 GPU KERNEL DESIGN
In this section, we present how to design theGPU kernel of cuMF_SGD.
When designing the kernel, we assume that the SGD workloads
have been assigned to parallel workers. Hence, we only focus on
how to efficiently execute the SGD updates within each parallel
worker.

In MF, one SGD update consists of four steps: 1) read one sam-
ple (ru,v) from the rating matrix, 2) read two feature vectors (pu ,
qv), 3) compute prediction error(ru,v − puqv), and 4) update the
features. Except for the first step, other three steps are all vector
operations at length k . k is the feature dimension and typically
ranges from O(10) to O(100). On a CPU, a parallel worker can
be one or more threads of a process, where vector instructions
such as SSE and AVX can be used to accelerate the computation.
GPUs are SIMD architectures [48], where a thread block is a vector
group. Hence, in cuMF_SGD, we use a thread block as a parallel
worker. Figure 4 shows a code snippet of the computational part of
cuMF_SGD, where we use k = 64 as an example. We highlight the
major optimization techniques in Figure 4 and explain them in the
following.

Warp shuffle. Warp shuffle instructions [19] are used to com-
pute the dot product pu × qv and broadcast the result. Compared
with traditional shared memory system-based approaches, this
warp shuffle-based approach performs better because: (1) warp
shuffle instructions have extra hardware support, (2) register is
faster than shared memory, and (3) no thread synchronization is

Parallel Methods and Algorithms HPDC'17, June 26–30, 2017, Washington, DC, USA

82

CuMF_SGD: Parallelized Stochastic Gradient Descent for Matrix Factorization on GPUs HPDC’17, June 2017, Washington , DC, USA

On-chip

Cache

On-chip

Cache Memory

Coalescing

Memory

Coalescing

Half

precision

Half

precision

Warp shuffleWarp shuffle
ILPILP

Register

Reuse

Register

Reuse

Figure 4: The exemplify kernel code of cuMF_SGD, where k = 64. The used optimization techniques are highlighted.

involved. To exploit the warp shuffle feature, we fix the thread
blocks size as warp size(32).

On-chip cache. Since Fermi architecture, NVIDIA GPUs feature
on-chip L1 cache and allow programmers to control the cache
behavior of each memory instruction (cache or bypass). While
many GPU applications do not benefit from the cache due to cache
contention [36, 56, 57], some memory instructions may benefit
from the cache as the accessed data may be frequently reused in
the near future (temporal reuse) or by other threads (spatial reuse).
Following the model provided by [56], we observe that the memory
load of the rating matrix benefits from cache and use the intrinsic
instruction __ldg [2] to enable cache-assisted read.

Memory coalescing. On GPUs, when threads within one warp
access the data within one cache line, the access is coalesced to min-
imize the bandwidth consumption [29, 59]. This is called memory
coalescing. In cuMF_SGD, the read/write of P and Q are carefully
coalesced to ensure that consecutive threads access consecutive
memory addresses.

ILP. Modern GPUs support compiler-aided super scalar to ex-
ploit the instruction-level parallelism (ILP). In cuMF_SGD, when
k > 32, a thread is responsible for processing k/32 independent
scalars. Hence, with awareness of the low-level architecture in-
formation, we reorder the instructions to maximize the benefit of
ILP.

Register usage. The register file is an important resource on
GPUs. As the total number of registers on GPUs is fixed, if each
thread uses too many registers, the register consumption may be-
come the limitation to concurrency. In our case, the CUDA compiler
reports that allocating 33 registers for each thread is enough to fit
all active variables. The concurrency is only limited by the number
of thread blocks of GPUs [2, 55]. Hence, we allocate as many as
possible registers to each thread such that every reusable variable
is kept in the fastest register file.

Half-precision. As addressed before, SGD is memory bound.
Most of the memory bandwidth is spent on the read/write to the
feature matrices. Recently, GPU architectures support the storage of
half-precision (2 bytes vs. 4 bytes of single-precision) and fast trans-
formation between floating point and half-precision. In practice,
after parameter scaling, half-precision is precise enough to store the
feature matrices and does not incur accuracy loss. CuMF_SGD uses

half-precision to store feature matrices, which halves the memory
bandwidth need when accessing feature matrices.

5 WORKLOAD SCHEDULING ALGORITHM
The original SGD algorithm is serial, with samples in the rating
matrix picked up randomly and updated in sequence. To exploit the
data parallelism and execute SGD updates in parallel, a workload
scheduling algorithm that assigns tasks to parallel workers becomes
necessary. The parallelization of SGD updates for MF is based on the
observation that in Algorithm 1, one SGD update on sample ru,v
only updates the uth row of P (Pu) and vth row of Q(Qu). Consider
two samples, ru1,v1 and ru2,v2, they can be updated simultaneously
if

u1 , u2 && v1 , v2 (6)

We term them as independent updates. We term simultaneous de-
pendent updates as conflicts. To evaluate the efficiency of workload
scheduling algorithm, we define a metric, updates per second as the
performance indicator:

#Updates/s = #Iterations × N
Elapsed Time

(7)

where #Iterations , N , Elapsed Time are the number of itera-
tions, the number of non-zero samples in the input matrix R, and
the elapsed time in seconds, respectively. As we discussed before,
the SGD-based MF is memory bound. According to the roofline
model [54], the application is limited by the memory bandwidth.
Hence, the design goal of workload scheduling algorithm is to min-
imize the scheduling overhead and exhaust the memory bandwidth
on GPUs.

We start our scheduling algorithm design from examining exist-
ing solutions. We analyze and evaluate the workload scheduling
algorithm proposed in CPU-based LIBMF [15], as it is publicly avail-
able. Figure 5(a) shows the basics of scheduling algorithm used in
LIBMF. It evenly divides the rating matrix into a × a blocks and
uses s threads (s < a). It also uses a table to manage the matrix
blocks to comply to Eq. 6. When a thread is idle, it accesses the table
and finds an independent block. Then, the thread executes the SGD
updates in the block in serial. Overall, it requires atomic operations
to manage the table and O(a2) time complexity to search the table.

Parallel Methods and Algorithms HPDC'17, June 26–30, 2017, Washington, DC, USA

83

HPDC’17, June 2017, Washington , DC, USA X. Xie et al.

Global

scheduling

table

Global

scheduling

table

Locked area

Worker 1

…

Worker 2

Worker S
Rating Matrix

(a) Idea of LIBMF. (b) Scalability Study.

 0

 5x10
7

 1x10
8

 1.5x10
8

 2x10
8

 0 50 100 150 200 250 300

#
U

p
d

a
te

s/
s

#Parallel Workers

LIBMF
LIBMF-GPU

Figure 5: (a) LIBMF uses a centralized table to manage par-
allel workers. (b) LIBMF scales to only 30 CPU threads and
240 GPU thread blocks.

We evaluate LIBMF on the Maxwell platform using the Netflix
data set. Figure 5(b) shows the evaluation results that the perfor-
mance of LIBMF saturates around 30 concurrent workers (CPU
threads), which is consistent with the previous study [41].

As GPUs are more sensitive to synchronization overhead than
CPUs [9], we optimize the scheduling algorithm by reducing its time
complexity. In each scheduling step, we first search all a columns
and a rows to find the independent rows or columns. Then we
randomly choose one independent block that is in the indepen-
dent rows and columns. By doing so, the time complexity of the
scheduling algorithm is reduced toO(a). We combine the optimized
scheduling algorithm with our designed GPU kernel(Section 4).
However, as shown in Figure 5(b) (labled as LIBMF-GPU), it can
only scale to 240 thread blocks, much lower than the hardware limit
(768 thread blocks on Maxwell).

The reason why LIBMF cannot scale to many parallel workers is
that it uses a global scheduling table to manage all parallel workers.
At each time, only one parallel worker can access the table and it
is also time-consuming to find a free block to process. Therefore,
when the number of workers increases, the waiting time also in-
creases. As the number of workers grows, the waiting time becomes
dominating. This shows that cuMF_SGD can not simply re-use exist-
ing scheduling policies. To overcome the scheduling overhead, we
propose two GPU-specific scheduling schemes, batch-Hogwild! and
Wavefront-update. Batch-Hogwild! avoids matrix blocking-based
scheduling and improves the cache efficiency by process samples in
batch. Wavefront-update is still blocking-based, but only requires a
local look-up instead of the expensive global lookup as in LIBMF.

5.1 Batch-Hogwild!
We propose batch-Hogwild!, a variant of Hogwild! [44] with im-
proved cache efficiency. Hogwild! is efficient as its lock-free scheme
incurs negligible scheduling overhead. It is not efficient, however,
in terms of data locality [15]. In Hogwild!, each parallel worker
randomly selects one sample from the rating matrix at each step.
After each update, Hogwild! may not access the consecutive sam-
ples in the rating matrix and corresponding rows and columns in
the feature matrices for a long time interval, leading to low cache
efficiency. As shown in Section 4, we carefully align the memory
access of the feature matrices to achieve perfect memory coalescing
and the high memory bandwidth on GPUs, such that eliminating

accessing feature matrices as a performance bottleneck. To acceler-
ate the access to rating matrix, we exploit the spatial data locality
using L1 data cache. We let each parallel worker, instead of fetching
one sample randomly at a time, fetch f consecutive samples and
update them serially. The data locality is fully exploited when the
following constraint is met,

f ≫ ⌈CacheLineSize
sizeo f (ru,v)

⌉ (8)

Note that these samples are consecutive in their memory storage;
because we shuffle samples, they are still random in terms of their
coordinates in R. By doing so, the data locality is fully exploited.
Consider the L1 cache line size is 128 bytes and the size of each
sample is 12 bytes (one floating point and two integers), f ≫
⌈128/12⌉ is enough to exploit the locality. We evaluate different
values of f and find that they yield similar benefit. Therefore we
choose f = 256 without loss of generality.

Figure 6: Wavefront-update. Each parallel worker is as-
signed to a row and a randomized column update sequence.
For example, when Worker 3 completes Block 3 in Wave 1,
it releases Column 4 such that Worker 1 can start Block 5 in
Wave 2.

5.2 Wavefront-update
As previously discussed, existing scheduling schemes [15, 23] im-
pose a global synchronization, where all workers look up a global
table to find both row and column coordinates to update. This
is expensive and has been shown not scalable to the hundreds of
workers on GPUs. To overcome this, we propose wavefront-update,
a lightweight scheme that locks and looks up columns only.

In the exemplary Figure 6, we use four parallel workers to process
an R which is partitioned into 4× 8 blocks. Each worker is assigned
to a row in this 4 × 8 grid, and each generates a permutation of
{1, 2, 3, ..., 7, 8} as its column update sequence. By this, an epoch is
conducted in eight waves given this sequence. In each wave, one
worker update one block, and workers do not update blocks in
the same column. Assume Worker 1 has the sequence defined as
{2, 4, ...} and Worker 3 has sequence {4, 6, ...}. With this sequence,
Worker 1 updates Block 1 in wave 1 and Block 5 in wave 2. To
avoid conflicts, we propose a lightweight synchronization scheme
between waves using the column lock array. As shown in the figure,
we use an array to indicate the status of each column. Before a
worker moves to next wave, it checks the status of the next column
defined in its sequence. For example, afterWorker 1 finishes Block
1, it needs to check the status of column 4 and does not need to
care about the status of other columns. When Worker 3 finishes
Block 3 and releases column 4,Worker 1 is allowed to move to wave

Parallel Methods and Algorithms HPDC'17, June 26–30, 2017, Washington, DC, USA

84

CuMF_SGD: Parallelized Stochastic Gradient Descent for Matrix Factorization on GPUs HPDC’17, June 2017, Washington , DC, USA

2. There are two main benefits by doing so: firstly to reduce the
two-dimension look-up table in [15, 23] to a one-dimension array;
secondly to minimize the workload imbalance problem, as a worker
can start the next block earlier without waiting for all other workers
to finish.

 0

 1e+08

 2e+08

 3e+08

 0 200 400 600 800

#
U

p
d

a
te

s/
s

#Parallel Workers

LIBMF

(a) Performance

Wavefront-update
Batch-Hogwild!

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0 10 20 30 40 50

T
es

t
R

M
S

E

#Iterations

0.92

(b) Convergence Speed

Wavefront-update
Batch-Hogwild!

Figure 7: Performance Comparison of batch-Hogwild! and
wavefront-update on Netflix data set. Both schemes scale
much better than LIBMF.

5.3 Evaluation of scheduling schemes
We evaluate both scheduling schemes in terms of performance
and convergence speed using the Netflix data set on the Maxwell
platform. We use metric #Updates/s to quantify the performance.
Figure 7(a) shows the scalability of batch-Hogwild! and wavefront-
update with a different number of parallel workers (i.e., thread
blocks). When increasing the number of parallel workers, both
schemes achieve near-linear scalability. When the number of par-
allel workers hits the hardware limit of 768 on the Maxwell GPU,
both techniques achieve ∼0.27 billion updates per second, the rate
which is 2.5 times faster than LIBMF. Therefore, we conclude that
our proposed schemes can perfectly solve the scalability problem
of the scheduling policy and fully exploit the equipped hardware
resources on GPUs. We also evaluate the convergence speed of
both schemes. We use the root mean square root error on the stan-
dard test data set (Test RMSE) as the indication of convergence.
Figure 7(b) shows the decrease of Test RMSE as the number of it-
erations increases. Overall, batch-Hogwild! converges a little bit
faster than wavefront-update. The reason is that batch-Hogwild!
enforces more randomness in update sequence, as compared with
the block-based wavefront-update. Based on this observation, we
use batch-Hogwild! as the default scheme on one GPU experiments.

6 WORKLOAD PARTITION
In the previous discussions, we assume that the rating matrix and
featurematrices fully reside in GPU’s memory. However, the limited
GPUmemory capacity [45] prevents cuMF_SGD from solving large-
scale problems. For example, NVIDIA TITAN X GPU has 12 GB
device memory that can only store 1 billion samples (one sample
needs one float and two integers). Nowadays, real-world problems
may have 1011 samples [51]. Techniques such as Unified Virtual
Memory [2] allow GPU to access CPU’s memory but with high
overhead. Consider these factors, to solve large-scale MF problems
that can not fit into one GPU’s memory, we need to partition the
data sets and stage the partitions to GPUs in batches. Moreover, we
should overlap the data transfer with computation to alleviate the

delay caused by slow CPU-GPU memory transfer. Please note that
the partitions can be processed by one or multiple GPUs.

6.1 Workload Partitioning
Figure 8 shows our proposed multi-GPU solution for large data sets.
Themain idea is to partition the ratingmatrixR intomultiple blocks;
each block is small enough to fit into one GPU’s memory such that
independent blocks can be updated concurrently on different GPUs.
The multi-GPU solution works as follows,

(1) Divide the rating matrixR into i×j blocks. Meanwhile, divide
feature matrix p into i segments and feature matrix q into j
segments accordingly.

(2) When a GPU is idle, randomly select one matrix block from
those independent blocks and dispatch it to the GPU.

(3) Transfer the matrix block and corresponding feature sub-
matrices p and q to the GPU. Then update the matrix block
using the single GPU implementation discussed in Section 5.
After the update, transfer p and q back to CPU.

(4) Iterate from 2 until convergence or the given number of
iterations is reached.

We further explain the proposed scheme using the example
shown in Figure 8(a). In Step 1, we divide R into 4×4 blocks and use
two GPUs. In Step 2, we send block R2 to GPU 0 and R11 to GPU 1.
Again, consider the nature of MF, updating R2 only touches sub-
matrices p1 & q2 while updating R11 only touches p3 & q3. Hence,
GPU 0 only needs to store R2, p1, and q2 in its device memory while
GPU 1 only needs to store R11, p3, and q3. By doing so, the problem
is divided and conquered bymultiple GPUs. After deciding the block
scheduling order, cuMF_SGD transfers p1, q2, R2 to GPU 0 and p3,
q3, R11 to GPU 1. Then cuMF_SGD performs the computation on
two GPUs in parallel. The GPU-side computation follows the rules
we discussed in Section 5. After finishing the computation, the
updated p1, q2, p3, and q3 are transferred back to CPU memory.
Note that we don’t have to transfer R2 or R11 back to CPU memory
as they are read-only.

Scalability problem. We mentioned that LIBMF faces serious
scalability issue, as the scheduling overhead increases quickly with
the number of workers [41]. Our multiple-GPU scheduling scheme
has similar complexity with that of LIBMF. However, it does not
face the same scalability issue as we only need to schedule to a few
GPUs instead of hundreds of workers.

6.2 Optimizing Data Transfer
GPUs’ memory bandwidth are much higher than the CPU-GPU
memory transfer bandwidth. For example, NVIDIA TITAN X GPU
provides 360 GB/s device memory bandwidth while the CPU-GPU
memory bandwidth is only ∼16 GB/s (PCIe v3.0 16x). In the single-
GPU implementation, CPU-GPU memory transfer only happens at
the start and end ofMF, and therefore not dominant. However, when
the data set can not fit into the GPU memory, memory transfer
happens frequently and has a significant impact on the overall
performance.

Given the memory transfer overhead, we overlap the memory
transfer and computation when solving large problems, as shown
in Figure 8(b). Due to space limitation, we only plot one GPU. The

Parallel Methods and Algorithms HPDC'17, June 26–30, 2017, Washington, DC, USA

85

HPDC’17, June 2017, Washington , DC, USA X. Xie et al.

G
P
U
0

G
P
U
1

Rating Matrix R

Feature P

FeatureQ

p1

p2

p3

p4

q1 q2 q3 q4

R2

R11

CPU to GPU

Memory Transfer

Computation
GPU to CPU

Memory Transfer

p1 q2 R2

q2

p3 q3 R11

Computation

(a) Multi-GPU solution. (b) Optimized multi-GPU solution.

Rating Matrix R

Feature P

FeatureQ

p1

p2

p3

p4

q1 q2 q3 q4

R2

G
P
U
0 Computation

p1 q2 R2

R8

p1

q3p3

q4 R8p2 q2p1

Computation

q4p2

Memory/computation

overlapping

R1 R3 R4

R5 R6 R7 R8

R9 R10 R12

R13 R14 R15 R16

R1 R3 R4

R10R9 R11 R12

R14R13 R15 R16

R6R5 R7

Figure 8: (a) Multi-GPU solution of cuMF_SGD, where the rating matrix is partitioned and each partition can fit into a GPU’s
device memory. (b) Optimizing the multi-GPU solution by overlapping memory transfer with computation.

key idea is, at the block scheduling time, instead of randomly select-
ing one independent block for the GPU, the optimized technique
randomly selects multiple blocks at a time. Those blocks are
pipelined to overlap the memory transfer and computation. In that
case, we schedule two blocks to GPU 0, and overlap the memory
transfer of the second block (R8) with the computation of the first
block (R2). Note that the two blocks scheduled to one GPU do not
need to be independent as they are updated in serial; meanwhile,
blocks scheduled to different GPUs have to be independent of each
other to avoid conflicts. By doing so, we can minimize the over-
head of slow CPU-GPU memory transfer and improve the overall
performance.

Discussion. Allocating more blocks to one GPU would yield
more performance benefit as more memory/computation overlap-
ping can be achieved. However, the number of available blocks is
limited by how we divide the rating matrix R. Consider we divide
R to i × i and we have two GPUs running in parallel, the number
of blocks per GPU cannot be more than i/2. In practice, i is deter-
mined by the size of the rating matrix R and the available hardware
resources on the GPU. We will discuss it in Section 7.6.

6.3 Implementation Details
Multiple GPUs management. We implement it using multiple
CPU threads within one process. Within the process, there is one
host thread and multiple worker threads, where each GPU is bound
to one worker thread. The host thread manages the workload sched-
uling and informs worker threads of the scheduling decision. Each
worker thread then starts the data transfer and launches compute
kernels on a GPU.

Overlapping. Each worker thread will overlap the computa-
tion and CPU-GPU memory transfers. We use CUDA streams to
achieve this. A stream contains a list of GPU commands that are
executed in serial, and commands in different streams are executed
in parallel if hardware resources permit. Each worker thread uses
three streams that manage CPU-GPU memory transfer, GPU-CPU
memory transfer, and GPU kernel launch, respectively.

7 EXPERIMENTS
We implement cuMF_SGD using CUDA C (source code available at
http://github.com/cumf/cumf_sgd/), evaluate its performance on
public data sets, and demonstrate its advantage in performance

and cost. The following experiments are designed to answer the
following questions:

• Compared with state-of-the-art SGD-based MF solutions [11,
16, 63], is cuMF_SGD better and why? (Section 7.2)
• What is the implication of using different generations of
GPUs? (Section 7.3)
• Compared with the ALS-based GPU library cuMF_ALS that
we published earlier [51], what is the advantage of cuMF_SGD?
(Section 7.4)
• Parallelizing SGD is always tricky and may lead to converge
problems, how does cuMF_SGD perform with different par-
allelization parameters? (Section 7.5)
• Is there any limitation that may incur convergence problems
with matrix blocking-based algorithms? (Section 7.6)
• When scaling up to multiple GPUs, is cuMF_SGD still effi-
cient? (Section 7.7)

7.1 Machine Learning Parameters
As mentioned in the introduction and background, this paper fo-
cuses on system-level optimization, not algorithmic-level optimiza-
tion. Therefore, we do not spend much effort on machine learning
parameter tuning. Instead, we use the parameters adopted by earlier
works [15, 16, 51, 63]. For the learning rate, we adopt the learning
rate scheduling technique used by Yun et al. [63], where the learn-
ing rate γt at epoch t is monotonically reduced in the following
routine:

γt =
α

1 + β · t1.5
(9)

α is the given initial learning rate and β is another given param-
eter. The parameters used by cuMF_SGD are listed in Table 3.

Table 3: Machine learning parameters used for all three data
sets.

Dataset λ α β

Netflix 0.05 0.08 0.3
Yahoo!Music 1.0 0.08 0.2
Hugewiki 0.03 0.08 0.3

Parallel Methods and Algorithms HPDC'17, June 26–30, 2017, Washington, DC, USA

86

http://github.com/cumf/cumf_sgd/

CuMF_SGD: Parallelized Stochastic Gradient Descent for Matrix Factorization on GPUs HPDC’17, June 2017, Washington , DC, USA

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 0 5 10 15 20

T
es

t
R

M
S

E

Training Time(second)

Netflix

LIBMF
NOMAD

BIDMach-M
BIDMach-P

CuMF_SGD-M
CuMF_SGD-P

 21.5

 22

 22.5

 23

 23.5

 24

 24.5

 25

 25.5

 26

 0 10 20 30 40 50 60 70

T
es

t
R

M
S

E

Training Time(second)

Yahoo!Music

LIBMF
NOMAD

BIDMach-M
BIDMach-P

CuMF_SGD-M
CuMF_SGD-P

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0 100 200 300 400 500 600 700 800 900 1000

T
es

t
R

M
S

E

Training Time(second)

Hugewiki

LIBMF
NOMAD

CuMF_SGD-M
CuMF_SGD-P

Figure 9: Test RMSE over training time on three data sets. CuMF_SGD converges faster than all other approaches with only
one GPU card.

7.2 Comparison of SGD-based approaches
We only compare with MF-specific solutions as they represent
the performance upper bound of MF solutions. Machine learning
frameworks, such as TensorFlow [6], MXNet [14], also support
matrix factorization. Their goal is to provide a unified interface for
all machine learning applications. Hence, they are not neccessarily
efficient in terms of performance. We compare cuMF_SGD with the
following state-of-the-art approaches.

• LIBMF [15]. LIBMF is a representative matrix blocking-
based solution on shared-memory systems. Its main design
purpose is to balance the workload across CPU threads and
accelerate the memory access using caches. It also leverages
SSE instructions and a novel learning rate schedule to speed
up the convergence [16]. The Maxwell platform supports up
to 48 concurrent physical threads. We exhaustively evalu-
ate all possible numbers of threads (1∼48) on the Maxwell
platform and we choose to use 40 CPU threads as it yields
fastest convergence. LIBMF divides the rating matrix into
a × a blocks. We evaluate different values for a(40∼160) and
select the optimal value(100). We set its initial learning rate
as 0.1 as suggested in the original paper.
• NOMAD [63]. NOMAD is a representative distributed ma-
trix factorization solution. It uses a 64-node HPC cluster to
solve MF. It proposes a decentralized scheduling policy to
reduce the synchronization overhead and discusses how to
reduce the inter-node communication overhead. We cite the
best results presented in the original paper, i.e., using 32
nodes for Netflix and Yahoo!Music data sets and using all 64
nodes for Hugewiki data set on the HPC cluster. Each node
employs 4 CPU cores. That is, NOMAD launches 128 parallel
workers for Netflix and Yahoo!Music, 256 parallel workers
for Hugewiki.
• BIDMach. BIDMach [11] is a machine learning acceleration
library that supports SGD-based MF on GPU. We evaluate
BIDMach on both Maxwell and Pascal platforms using the
default GPU configurations. We name the results onMaxwell
as BIDMach-M and those on Pascal as BIDMach-P. We are
not able to successfully run BIDMach for Hugewiki due to
memory allocation error. Hugewiki has over 3B non-zero
samples. BIDMach requires∼62GBmemory space, exceeding
single GPU’s memory(12 GB on Maxwell, 16GB on Pascal).

• CuMF_SGD. We evaluate cuMF_SGD on both Maxwell and
Pascal platforms, with all three data sets. We name the re-
sults on Maxwell as cuMF_SGD-M and those on Pascal as
cuMF_SGD-P. We use one GPU in this subsection. The num-
ber of parallel workers (thread blocks) is set as the maximum
of the corresponding GPU architecture (768 on Maxwell plat-
form and 1792 on Pascal platform). We use half precision
to store feature matrices, however, Hugewiki still requires
∼49GB memory space, exceeding the GPU’s memory. We
divide it into 64 × 1 blocks and at each scheduling time,
we schedule 8 blocks to overlap memory transfer and com-
putation. Each block only occupies 0.77GB memory space.
CuMF_SGD needs to keep two blocks in the memory to over-
lap computation and memory transfer. Overall, cuMF_SGD
only occupies 1.54GB memory space in GPU’s memory.

Figure 9 shows the test RMSE w.r.t. the training time. Table 4
summarizes the training time required to converge to a reasonable
RMSE (0.92, 22.0, and 0.52 for Netflix, Yahoo!Music, and Hugewki,
respectively). Results show thatwith only one GPU, cuMF_SGD-
P and cuMF_SGD-M performmuch better (3.1X to 28.2X) on
all data sets compared than all existing works, including NO-
MAD on a 64-node HPC cluster. In the following, we analyze the
reasons.

Table 4: Training time speedup normalized to LIBMF.
Data set Netflix Yahoo!Music Hugewiki

LIBMF 23.0s 37.9s 3020.7s

NOMAD 9.6s(2.4X) 108.7s(0.35X) 459.1s(6.6X)

BIDMach-M 18.6s(1.24X) 48.6s(0.78X) -
BIDMach-P 15.0s(1.53X) 39.5s(0.96X) -

CuMF_SGD-M 7.5s(3.1X) 8.8s(4.3X) 442.3s(6.8X)

CuMF_SGD-P 3.3s(7.0X) 3.8s(10.0X) 107.0s(28.2X)

Compared with LIBMF. As shown in Figure 9 and Table 4,
cuMF_SGD outperforms LIBMF on all data sets, on both Maxwell
and Pascal. More precisely, cuMF_SGD-M is 3.1X - 6.8X as fast
as LIBMF and cuMF_SGD-P is 7.0X - 28.2X as fast. CuMF_SGD
outperforms LIBMF because it can do more updates per second,
as shown in Figure 10(a). We have already mentioned that matrix
factorization is memory bound, LIBMF is also aware of that and
strives to keep all frequently used data in the CPU cache. However,

Parallel Methods and Algorithms HPDC'17, June 26–30, 2017, Washington, DC, USA

87

HPDC’17, June 2017, Washington , DC, USA X. Xie et al.

the limited cache capacity on a single CPUmakes LIMBF suboptimal
in large data sets. As shown in Figure 10(b), LIBMF achieves an
effective memory bandwidth of 194 GB/s2 on the Netflix data set
(with 99M samples) – close to cuMF_SGD-M. However its achieved
bandwidth drops almost by half, to 106 GB/s on the larger Hugewiki
data set (with 3.1B samples) – while cuMF_SGD achieves similar
bandwidth in all data sets.

 0

 2e+08

 4e+08

 6e+08

 8e+08

Netflix
Yahoo!Music

Hugewiki

#
U

p
d

a
te

s/
s

LIBMF CuMF_SGD-M CuMF_SGD-P

 0

 200

 400

 600

Netflix
Yahoo!Music

Hugewiki

B
a
n

d
w

id
th

(G
B

/s
)

Figure 10: Achieved #Updates/s and memory bandwidth of
LIBMF, cuMF_SGD-M, and cuMF_SGD-P. The achievedmem-
ory bandwidth explains the advantage of cuMF_SGD.

Simply porting LIBMF toGPUs leads to resource under-utilization
due to the scalability problem of it scheduling policy (recall Figure 5).
In contrast, theworkload scheduling policy andmemory/computation
pattern of cuMF_SGD are delicately designed to fully exploit the
computation and memory resources on GPUs. Hence, as shown in
Figure 10 (b), cuMF_SGD achieves much higher bandwidth than
LIBMF. Moreover, cuMF_SGD uses half-precision (2 bytes for a float
number) to store feature matrices. As a result, it can perform twice
updates as LIBMF with the same bandwidth consumption.

Compared with NOMAD. As presented in [63], NOMAD uses
32 nodes forNetflix and Yahoo!Music and 64HPCnodes forHugewiki.
Despite the tremendous hardware resources, NOMAD is still outper-
formed by cuMF_SGD on all data sets. As observed in Section 2, MF
is a memory bound application and data communication happens
frequently between parallel workers. When NOMAD distributes
parallel workers to different nodes, the network bandwidth, which
is much lower than intra-node communication bandwidth, becomes
the bottleneck. Consequently, NOMAD achieves suboptimal scala-
bility when scaling from single node to multiple nodes, especially
for small data sets. For example, on Yahoo!Music, NOMAD performs
even worse than LIBMF that uses only one node.

NOMAD (on a 64-node HPC cluster) has similar performance
with cuMF_SGD-M on Hugewiki, while it is much slower than
cuMF_SGD-P. Obviously, cuMF_SGD is not only faster, using a
single GPU card, it is also more cost-efficient.

Table 5: Achieved #Updates/s of BIDMach and cuMF_SGD.
Data set Netflix Yahoo!Music Hugewiki
BIDMach-M 25.2M 21.6M -
BIDMach-P 29.6M 32.3M -

CuMF_SGD-M 267M 258M 256M

CuMF_SGD-P 613M 634M 710M

2The achieved memory bandwidth measures the data processed by the compute units per second,
and can be higher than the theoretical off-chip memory bandwidth thanks to the cache effect.

Compared with BIDMach. BIDMach implements SGD-based
MF on GPUs. Different from cuMF_SGD, BIDMach employs the
ADAGRAD [20] algorithm to fine tune the learning rate for faster
convergence. However, as shown in Figure 9 and Table 4, BIDMach
is still outperformed by cuMF_SGD. CuMF_SGD is designed to
execute the SGD updates efficiently (Section 4) with low scheduling
overhead (Section 5) and minimize the CPU-GPU transfer over-
head (Section 6). CuMF_SGD is able to fully exploit the hardware
resources on GPUs and achieves higher throughputs (Table 5) than
BIDMach. Besides, cuMF_SGD yields better cross-architecture scal-
ability than BIDMach as cuMF_SGD achieves more speedup when
porting from Maxwell to Pascal GPUs. In addition, cuMF_SGD can
also use ADAGRAD or other learning rate schedulers, for faster
convergence. We leave it as future work.

7.3 Implication of GPU Architectures
We have evaluated cuMF_SGD on the two current generations of
GPUs, Maxwell and Pascal. As we presented, cuMF_SGD performs
consistently well on both platforms. We believe that cuMF_SGD is
able to scale to future GPU architectures withminor tuning effort. In
this section, we explain the performance gap between Maxwell and
Pascal in three aspects: computation resources, off-chip memory
bandwidth, and CPU-GPU memory bandwidth.

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 0 200 400 600 800 1000 1200 1400 1600 1800

#
U

p
d

a
te

s/
s

#Parallel Workers

Maxwell Platform
Pascal Platform

 0

 100

 200

 300

 400

 500

 600

 700

 0 200 400 600 800 1000 1200 1400 1600 1800

G
B

/s

#Parallel Workers

Maxwell Platform
Pascal Platform

Figure 11: #Updates/s and achieved memory bandwidth
cuMF_SGD on Maxwell and Pascal platforms, using the Net-
flix data set. CuMF_SGD performs better on themore recent
Pascal platform.

Computation resources. We show the #Updates/s metric of
two platforms with different numbers of parallel workers using
Netflix in Figure 11(a). Results show that Pascal platform scales to
more parallel workers and achieves much higher #Updates/s than
Maxwell. This is because the Maxwell platform has 24 streaming
multiprocessors (SMs) within each GPU, with each SM allowing up
to 32 parallel workers (thread blocks). Hence, one Maxwell GPU
allows up to 768 parallel workers. Meanwhile, the Pascal GPU used
has 56 SMs and allows 32 thread blocks on each SM. Hence, a Pascal
GPU allows up to 1792 parallel workers, which is 2.3 times of that
of Maxwell GPU. Overall, a Pascal GPU is more powerful than a
Maxwell GPU in term of the amount of computation resources.

Off-chip memory bandwidth. As we discussed before, SGD is
memory bound. Optimized for throughput, GPUs are able to overlap
memory access and computation by fast context switch among con-
current threads [2]. When there are enough threads concurrently
running on GPUs, long memory latencies can be hidden, which is
exactly what happens with cuMF_SGD. In this scenario, memory
bandwidth, instead of memory latency, becomes the limitation of

Parallel Methods and Algorithms HPDC'17, June 26–30, 2017, Washington, DC, USA

88

CuMF_SGD: Parallelized Stochastic Gradient Descent for Matrix Factorization on GPUs HPDC’17, June 2017, Washington , DC, USA

 0.91

 0.92

 0.93

 0.94

 0.95

 0 10 20 30 40 50

T
es

t
R

M
S

E

Training Time(second)

Netflix

CuMF_ALS-1

CuMF_ALS-4

CuMF_SGD

 21.5

 22

 22.5

 23

 23.5

 24

 24.5

 25

 25.5

 26

 0 10 20 30 40 50 60 70

T
es

t
R

M
S

E

Training Time(second)

Yahoo!Music

CuMF_ALS-1

CuMF_ALS-4

CuMF_SGD

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0 100 200 300 400 500 600 700 800 900 1000

T
es

t
R

M
S

E

Training Time(second)

Hugewiki

CuMF_ALS-4

CuMF_SGD

Figure 12: CuMF_SGDvs. CuMF_ALS.With oneGPU, cuMF_SGD converges∼4X faster than cuMF_ALS-1 (oneGPU) and similar
to cuMF_ALS-4 (four GPUs).

the performance. Pascal platforms provide twice asmuch theoretical
peak off-chip memory bandwidth (780 GB/s per GPU) as Maxwell
platforms(360 GB/s per GPU). Figure 11(b) shows the achieved
memory bandwidth on two platforms with different number of
parallel workers. On Maxwell and Pascal, cuMF_SGD achieves up
to 266 GB/s and 567 GB/s memory bandwidth, respectively.

CPU-GPUmemory bandwidth. Netflix and Yahoo!Music data
sets are small enough to fit into the GPU device memory. For
Hugewiki, memory transfer occurs multiple times as the data cannot
fit into GPU device memory and the overhead is non-negligible. In
Section 6.2, we propose to overlap data transfer with computation.
Despite of this optimization, the CPU-GPU memory bandwidth
still has a noticeable impact on the overall performance as the per-
fect overlapping cannot be achieved. On the Maxwell platform,
the memory transfer between CPU and GPU is via PCIe v3.0 16x
with 16 GB/s bandwidth (we observe that on average, the achieved
bandwidth is 5.5 GB/s). The very recent Pascal platform is with
NVLink [4] that can provide 80 GB/s in theory (we observe an
average 29.1 GB/s CPU-GPU memory transfer bandwidth, which
is 5.3X as that on Maxwell). This also explains why cuMF_SGD
achieves much more speedup on Hugewiki using Pascal platform
(28.2X) than that on Maxwell platform (6.8X).

7.4 Comparison with cuMF_ALS
Our earlier work CuMF_ALS [51] represents the state-of-art ALS-
based matrix factorization solution on GPUs. We use one GPU
for cuMF_SGD, and one and four GPUs for cuMF_ALS. Figure 12
compares their performance on three data sets on Maxwell. We
observe that cuMF_SGD, with one GPU, is faster than cuMF_ALS-1
and achieves similar performance with cuMF_ALS-4.

It is expected that cuMF_SGD is faster than cuMF_ALS, for the
following reason. Each epoch of SGD needs memory access of
O(N ∗ k) and computation of O(N ∗ k). Each epoch of ALS needs
memory access ofO(N ∗k) and computation ofO(N ∗k2+(m+n)∗k3).
Thus, ALS’s epochs run slower due to its much more intensive
computation. Although ALS needs fewer epochs to coverage, as a
whole it converges slower.

Despite the fact that cuMF_ALS is slower than cuMF_SGD, both
solutions are maintained at https://github.com/cuMF/ because they
serve different purposes: SGD converges faster and is easy to do
incremental update, while ALS is easy to parallelize and is able to
deal with non-sparse rating matrices [34].

7.5 Convergence analysis of cuMF_SGD
The original SGD algorithm is serial. To speed it up, we discuss
how to parallelize it on one GPU in Section 5 and on multiple GPUs
in Section 6.1. It is well-known that SGD parallelization may have
subtle implications on convergence [15, 63]. In this Section, we
provide convergence analysis of cuMF_SGD.

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

T
es

t
R

M
S

E

#Iterations

HugeWiki

s=768,i=64,j=1
s=768,i=64,j=2
s=768,i=64,j=4

Figure 13: Convergence speed of cuMF_SGD on Hugewiki
with different parallelization parameters.

Section 5.1 proposes the batch-Hogwild! scheme to schedule the
workload and cuMF_SGD adopts it to exploit the data parallelism.
As a vectorized version of Hogwild!, batch-Hogwild! inherits the
limitation of Hogwild!. Given a rating matrix ofm×n and s parallel
workers, convergence is ensured only when the following condition
is satisfied [44]:

s ≪min(m,n)
For multiple GPUs, Section 6 proposes to first divide the rating
matrix R into i × j blocks and process one block on one GPU in
parallel if possible. In this case, the above condition needs to change
to:

s ≪min(⌊m/i⌋, ⌊n/j⌋)
To evaluate the convergence speed of cuMF_SGD and find out

the potential convergence problem with it, we conduct the follow-
ing experiments.

We first fix i and j for all three datasets and vary s . Netflix and
Yahoo!Music data sets are small enough to fit into one GPU’s mem-
ory, we fix i = 1 and j = 1. We fix i = 64 and j = 1 for Hugewiki.
On both Maxwell and Pascal platforms, we enumerate all possible
values of s([1, 768] on Maxwell, [1, 1792] on Pascal) and collect
the performance metrics. We observe that the #Updates/s varies

Parallel Methods and Algorithms HPDC'17, June 26–30, 2017, Washington, DC, USA

89

https://github.com/cuMF/

HPDC’17, June 2017, Washington , DC, USA X. Xie et al.

with s as we discussed in Section 7.3. As a result, Test RMSE w.r.t.
training time varies with s . At the mean-time, we observe that Test
RMSE w.r.t. #Iterations does not change. Therefore, for the used
data sets, the convergence speed of cuMF_SGD does not decrease
with parallelism increasing within one GPU.

We conduct another experiment to find out the convergence lim-
itation in cuMF_SGD. Among the three data sets, Hugewiki is the
largest one and intuitively, cuMF_SGD should gain more speedup
through employing multiple GPUs. However, the n of Hugewiki
is only 40 thousand, preventing cuMF_SGD from further increas-
ing the parallelism beyond one GPU. When we try to partition
the Huдewiki data set into more blocks (increase i and j), conver-
gence is not ensured. We show an empirical study on Hugewiki
in Figure 13. Hugewiki has min(m,n) = 40k and we fix s = 768;
convergence is achieved when j ≤ 2 (40k/20/768 ≈ 2), and fails
when j = 4. The result shows that, to ensure the converge, we can
not infinitely increase the parallelism and the following regulation
has to be complied,

s < 1/20 ∗min(⌊m/i⌋, ⌊n/j⌋)
We believe this is a limitation for all Hogwild!-style solutions.

7.6 Convergence analysis of matrix blocking
Matrix blocking is used to parallelize SGD-based MF by many ap-
plications, e.g., LIBMF. CuMF_SGD uses matrix blocking to tackle
with workload partitioning. The purpose of matrix blocking is to
avoid conflicts between parallel workers. However, we observe that
matrix blocking can have a negative impact on convergence. We
use LIBMF as a case study. Figure 14 illustrates the convergence
speed of LIBMF on Netflix data set with different parameters. In this
study, we fix the number of parallel workers s = 40; without loss
of generality, we divide R into a × a blocks and vary the value of a.
Figure 14 shows that when a is less than or close to s , convergence
speed is much slower or even cannot be achieved. We have similar
observations on other data sets and using cuMF_SGD. We briefly
explain the reason with a simple example shown in Figure 15.

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 10 20 30 40 50 60 70 80 90 100

T
e
s
t

R
M

S
E

Time(second)

s=40, a=20
s=40, a=30
s=40, a=40
s=40, a=50

s=40, a=100

Figure 14: Convergence speed of LIBMF on Netflix. We fix
#parallel-workers s = 40 and vary value a to partition to a×a
blocks.

In Figure 15, we divide the rating matrix into 2×2 blocks and use
2 parallel workers. In theory, 4 blocks can have 4 × 3 × 2 × 1 = 24
possible update orders. We also show all update orders in Figure 15.
However, only orders 1∼8 out of the total 24 orders are feasible so as
to avoid update conflicts. For example, when Block 1 is issued to one
worker, only Block 4 can be issued to another worker. Hence, Blocks

2 and 3 cannot be updated between 1 and 4, which precludes order
9∼12. This demonstrated that when s ≥ a, all independent blocks
have to be updated concurrently to make all workers busy, which
enforces certain update order constraints and hurts the randomness.
As a consequence, convergence speed can deteriorate. In practice,
when cuMF_SGD uses two GPUs, R should at least be divided into
4 × 4 blocks.

Rating Matrix R

Worker 1
1 2

3 4
Worker 2

Order 1: 1 2 34

Order 2: 1 234

Order 3: 1 2

3

4

Order 4: 1 2

3

4

Order 5: 12 3 4

Order 6: 12 3 4

Order 7: 123 4

Order 8: 123 4

Order 9: 1 2 3 4

Order 10: 1 2 34

Order 11: 1 23 4

Order 12: 1 23 4

Order 13: 12 34

Order 14: 12 34

Order 15: 12 34

Order 16: 12 3 4

Order 17:

1

23 4

Order 18:

1

23 4

Order 19:

1

23 4

Order 20:

1

23 4

Order 21: 12 34

Order 22: 12 34

Order 23: 1 234

Order 24: 1234

Figure 15: A simple example to demonstrate the limitation
of matrix blocking. The rating matrix is divided into 2 × 2
blocks and updated using two parallel workers.

7.7 Scale up to multiple GPUs
System wise, cuMF_SGD is designed to scale to multiple GPUs.
However, algorithmic wise, the scaling is restricted by factors such
as problem dimension and number of parallel workers, as discussed
earlier in Section 7.5 and Section 7.6. Among the three data sets
used in this paper, Netflix and Hugewiki have very small n(20k
and 40k , receptively), preventing cuMF_SGD from solving them
on multiple GPUs. In comparison, Yahoo!Music can be solved on
multiple GPUs as the dimension of it R is 1M × 625k . We divide
its R into 8 × 8 blocks and run it with two Pascal GPUs. Figure 16
shows the convergence speed. With 2 Pascal GPUs, cuMF_SGD
takes 2.5s to converge to RMSE 22, which is 1.5X as fast as 1 Pascal
GPU (3.8s). The reason behind this sub-linear scalability is that the
multi-GPU cuMF_SGD needs to spend time on CPU-GPU memory
transfer so as to synchronize two GPUs.

 22

 23

 24

 25

 26

 27

 28

 0 2.5 5 7.5 10 12.5 15

T
e
s
t

R
M

S
E

Time(second)

Pascal GPU*1
Pascal GPU*2

Figure 16: Convergence of cuMF_SGD on Yahoo!Music: two
Pascal GPUs is 1.5X as fast as one.

8 RELATEDWORK
Algorithms. SGD has been widely used to solve matrix fac-

torization [34]. Serial SGD can be parallelized to improve perfor-
mance [8, 67]. ALS is naturally easy to parallelize and it can also
be used in dense matrix factorization [33]. Coordinate descent is
another algorithm to solve matrix factorization [26, 61]. It updates

Parallel Methods and Algorithms HPDC'17, June 26–30, 2017, Washington, DC, USA

90

CuMF_SGD: Parallelized Stochastic Gradient Descent for Matrix Factorization on GPUs HPDC’17, June 2017, Washington , DC, USA

the feature matrix along one coordinate direction in each step. Our
earlier work [51] focuses on ALS algorithm.

Parallel SGD solutions have been discussed in multi-core [15,
16, 42], multi-node [52, 63], MapReduce [23, 35] and parameter-
servers [46] settings. Existing works are mostly inspired by Hog-
wild! [44] that allows lock-free update, use matrix-blocking parti-
tioning to avoid conflicts, or use a combination of them. LIBMF [15,
16] is a representative shared-memory system-based solution. Eval-
uations have shown that it outperforms all previous single-node
approaches. Although it has been optimized for cache efficiency,
it is still not efficient at processing large-scale data sets. Moreover,
the high complexity of its scheduling policy makes it infeasible
to scale to many cores. NOMAD [63] partitions the data on HPC
clusters to improve the cache performance. At the meantime, it pro-
poses to minimize the communication overhead. Compared with
LIBMF, it has similar performance on one machine and is able to
scale to 64 nodes. However, none of the above solutions use GPU
as accelerators.

Parallelization is also used in coordinate descent [61]. Compared
with SGD, coordinate descent has lower overhead and runs faster
at the first few epochs of training. However, due to the algorithmic
limitation, coordinate descent is prone to reach local optima [15]
in the later epochs of training. Compared with CGD and SGD,
ALS is inherently easy to parallel, ALS-based parallel solutions are
widely discussed [1, 22, 39, 40, 66]. Our earlier work, cuMF_ALS [51]
focuses on optimizing ALS to matrix factorization on GPUs. As
ALS algorithm has more compute intensive epochs, it runs slower
than cuMF_SGD.

GPU solutions. The emerging of CUDA and OpenCL program-
ming models makes GPUs popular as accelerators [21, 24]. Ap-
plications, including storage system [7], graph processing [25],
hash table [53], neural network [18, 58], linear algebra [13], have
enjoyed the tremendous computational horsepower equipped on
GPUs. Prior to our work, [10] applies Restricted Boltzmann Ma-
chines on GPUs to solve MF. [64] implements both SGD and ALS on
GPU to solve MF. [27] proposes matrix blocking-based MF solution
on GPUs and [31] evaluates the workload scheduling overhead for
SGD on GPUs. BIDMach [11] supports SGD-based MF and uses
GPUs as accelerators. To the best of our knowledge, cuMF_SGD out-
performs all existing solutions because we optimize both memory
access and workload scheduling.

9 CONCLUSION
Matrix factorization is widely used in recommender systems and
other applications. SGD-based MF is limited by memory bandwidth
that single and multi-CPU systems cannot effectively provision.
We propose a GPU-based solution, by observing that GPUs offer
abundant memory bandwidth and fast intra-node connection. We
design workload partitioning and scheduling schemes to dispatch
tasks inside a GPU and across GPUs, without impacting the ran-
domness required by SGD. We also develop highly-optimized GPU
kernels for individual SGD updates. With only one Maxwell or
Pascal GPU, cuMF_SGD runs 3.1X-28.2X as fast compared with
state-of-art CPU solutions on 1-64 CPU nodes. Evaluations also
show that cuMF_SGD scales well on multiple GPUs for large data

sets. In future, we plan to extend cuMF_SGD to multiple nodes and
investigate how to deal with incremental training.

REFERENCES
[1] Recommending items to more than a billion people, 2015.

https://code.facebook.com/posts/861999383875667/
recommending-items-to-more-than-a-billion-people/.

[2] NVIDIA CUDA programming guide., 2016.
http://docs.nvidia.com/cuda/cuda-c-programming-guide.

[3] NVIDIA Maxwell Architecture .
https://developer.nvidia.com/maxwell-compute-architecture, 2016.

[4] NVIDIA NVLink, 2016.
http://www.nvidia.com/object/nvlink.html.

[5] NVIDIA Pascal Architecture, 2016.
http://www.geforce.com/hardware/10series/architecture.

[6] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning.
In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). Savannah, Georgia, USA, 2016.

[7] S. Al-Kiswany, A. Gharaibeh, and M. Ripeanu. GPUs as storage system accel-
erators. IEEE Transactions on Parallel and Distributed Systems, 24(8):1556–1566,
2013.

[8] L. Bottou. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[9] M. Butler, K. Sajjapongse, and M. Becchi. Improving application concurrency
on GPUs by managing implicit and explicit synchronizations. In Parallel and
Distributed Systems (ICPADS), 2015 IEEE 21st International Conference on, pages
535–544. IEEE, 2015.

[10] X. Cai, Z. Xu, G. Lai, C. Wu, and X. Lin. GPU-accelerated restricted boltzmann
machine for collaborative filtering. In International Conference on Algorithms and
Architectures for Parallel Processing. Springer, 2012.

[11] J. Canny andH. Zhao. Bidmach: Large-scale learningwith zeromemory allocation.
In BigLearning, NIPS Workshop, 2013.

[12] S. Chang, Y. Zhang, J. Tang, D. Yin, Y. Chang, M. A. Hasegawa-Johnson, and T. S.
Huang. Streaming recommender systems. In Proceedings of the 26th International
Conference on World Wide Web, WWW ’17, 2017.

[13] J. Chen, L. Tan, P. Wu, D. Tao, H. Li, X. Liang, S. Li, R. Ge, L. Bhuyan, and Z. Chen.
GreenLA: green linear algebra software for GPU-accelerated heterogeneous
computing. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, page 57. IEEE Press, 2016.

[14] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang,
and Z. Zhang. Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.

[15] W.-S. Chin, Y. Zhuang, Y.-C. Juan, and C.-J. Lin. A fast parallel stochastic gradient
method for matrix factorization in shared memory systems. ACM Transactions
on Intelligent Systems and Technology (TIST), 2015.

[16] W.-S. Chin, Y. Zhuang, Y.-C. Juan, and C.-J. Lin. A learning-rate schedule for
stochastic gradient methods to matrix factorization. In Pacific-Asia Conference
on Knowledge Discovery and Data Mining. Springer, 2015.

[17] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker,
K. Yang, Q. V. Le, et al. Large scale distributed deep networks. In Advances in
neural information processing systems, pages 1223–1231, 2012.

[18] B. Del Monte and R. Prodan. A scalable GPU-enabled framework for training
deep neural networks. In Green High Performance Computing (ICGHPC), 2016
2nd International Conference on, pages 1–8. IEEE, 2016.

[19] C. del Mundo and W.-c. Feng. Enabling efficient intra-warp communication
for Fourier transforms in a many-core architecture. In Supercomputing, 2013.
Proceedings of the 2013 ACM/IEEE International Conference on, 2013.

[20] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research,
12(Jul):2121–2159, 2011.

[21] J. Fang, A. L. Varbanescu, and H. Sips. A comprehensive performance comparison
of CUDA and OpenCL. In 2011 International Conference on Parallel Processing,
pages 216–225. IEEE, 2011.

[22] M. Gates, H. Anzt, J. Kurzak, and J. Dongarra. Accelerating collaborative filter-
ing using concepts from high performance computing. In Big Data, 2015 IEEE
International Conference on, 2015.

[23] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix factoriza-
tion with distributed stochastic gradient descent. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,
2011.

[24] A. Goswami, J. Young, K. Schwan, N. Farooqui, A. Gavrilovska, M. Wolf, and
G. Eisenhauer. GPUShare: Fair-sharing middleware for GPU clouds. In Parallel
and Distributed Processing Symposium Workshops, 2016 IEEE International, pages
1769–1776. IEEE, 2016.

Parallel Methods and Algorithms HPDC'17, June 26–30, 2017, Washington, DC, USA

91

https://code.facebook.com/posts/861999383875667/recommending-items-to-more-than-a-billion-people/
https://code.facebook.com/posts/861999383875667/recommending-items-to-more-than-a-billion-people/
http://docs.nvidia.com/cuda/cuda-c-programming-guide
https://developer.nvidia.com/maxwell-compute-architecture
http://www.nvidia.com/object/nvlink.html
http://www.geforce.com/hardware/10series/architecture

HPDC’17, June 2017, Washington , DC, USA X. Xie et al.

[25] S. Heldens, A. L. Varbanescu, and A. Iosup. Dynamic load balancing for high-
performance graph processing on hybrid CPU-GPU platforms. In Proceedings of
the Sixth Workshop on Irregular Applications: Architectures and Algorithms, pages
62–65. IEEE Press, 2016.

[26] C.-J. Hsieh and I. S. Dhillon. Fast coordinate descent methods with variable
selection for non-negative matrix factorization. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,
2011.

[27] J. Jin, S. Lai, S. Hu, J. Lin, and X. Lin. GPUSGD: A GPU-accelerated stochastic gra-
dient descent algorithm for matrix factorization. Concurrency and Computation:
Practice and Experience, 2015.

[28] A. Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K. Mishra, M. T. Kandemir,
O. Mutlu, R. Iyer, and C. R. Das. OWL: cooperative thread array aware schedul-
ing techniques for improving GPGPU performance. In ACM SIGPLAN Notices,
volume 48, pages 395–406. ACM, 2013.

[29] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin, N. Chatterjee, S. W. Keckler,
M. T. Kandemir, and C. R. Das. Anatomy of GPU memory system for multi-
application execution. In Proceedings of the 2015 International Symposium on
Memory Systems, pages 223–234. ACM, 2015.

[30] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R.
Das. Orchestrated scheduling and prefetching for GPGPUs. In ACM SIGARCH
Computer Architecture News, volume 41, pages 332–343. ACM, 2013.

[31] R. Kaleem, S. Pai, and K. Pingali. Stochastic gradient descent on GPUs. In
Proceedings of the 8th Workshop on General Purpose Processing using GPUs, pages
81–89. ACM, 2015.

[32] D. B. Kirk and W. H. Wen-mei. Programming massively parallel processors: a
hands-on approach. Newnes, 2012.

[33] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM
review, 51(3):455–500, 2009.

[34] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 2009.

[35] B. Li, S. Tata, and Y. Sismanis. Sparkler: supporting large-scale matrix factoriza-
tion. In Proceedings of the 16th International Conference on Extending Database
Technology. ACM, 2013.

[36] C. Li, S. L. Song, H. Dai, A. Sidelnik, S. K. S. Hari, and H. Zhou. Locality-driven
dynamic GPU cache bypassing. In Proceedings of the 29th ACM on International
Conference on Supercomputing, pages 67–77. ACM, 2015.

[37] M. Li, T. Zhang, Y. Chen, and A. J. Smola. Efficient mini-batch training for
stochastic optimization. In SIGKDD, pages 661–670. ACM, 2014.

[38] Z. Liu, Y.-X. Wang, and A. Smola. Fast differentially private matrix factorization.
In Proceedings of the 9th ACM Conference on Recommender Systems, RecSys’15,
2015.

[39] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein.
Distributed GraphLab: a framework for machine learning and data mining in the
cloud. Proceedings of the VLDB Endowment, 2012.

[40] X. Meng, J. Bradley, B. Yuvaz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman,
D. Tsai, M. Amde, S. Owen, et al. Mllib: Machine learning in apache spark. JMLR,
2016.

[41] Y. Nishioka and K. Taura. Scalable task-parallel SGD on matrix factorization
in multicore architectures. In Proceedings of the 2015 IEEE International Parallel
and Distributed Processing Symposium Workshop, IPDPSW ’15, pages 1178–1184,
Washington, DC, USA, 2015. IEEE Computer Society.

[42] J. Oh, W.-S. Han, H. Yu, and X. Jiang. Fast and robust parallel SGD matrix
factorization. In Proceedings of the 21st ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2015.

[43] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word
representation. In EMNLP, 2014.

[44] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to paral-
lelizing stochastic gradient descent. In Advances in Neural Information Processing
Systems, pages 693–701, 2011.

[45] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-m. W.
Hwu. Optimization principles and application performance evaluation of a
multithreaded GPU using CUDA. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’08, 2008.

[46] S. Schelter, V. Satuluri, and R. Zadeh. Factorbird-a parameter server approach to
distributed matrix factorization. arXiv preprint arXiv:1411.0602, 2014.

[47] G. M. Shipman, T. S. Woodall, R. L. Graham, A. B. Maccabe, and P. G. Bridges.
Infiniband scalability in Open MPI. In Proceedings 20th IEEE International Parallel
and Distributed Processing Symposium, pages 10–pp. IEEE, 2006.

[48] D. Song and S. Chen. Exploiting SIMD for complex numerical predicates. In
2016 IEEE 32nd International Conference on Data Engineering Workshops (ICDEW),
2016.

[49] S. Song and K.W. Cameron. System-level power-performance efficiencymodeling
for emergent GPU architectures. In PACT, pages 473–474, 2012.

[50] J. Tan, S. L. Song, K. Yan, X. Fu, A. Marquez, and D. Kerbyson. Combating
the reliability challenge of GPU register file at low supply voltage. In Parallel
Architecture and Compilation Techniques (PACT), 2016 International Conference
on, pages 3–15. IEEE, 2016.

[51] W. Tan, L. Cao, and L. Fong. Faster and Cheaper: Parallelizing large-scale matrix
factorization on GPUs. In Proceedings of the 25th ACM International Symposium
on High-Performance Parallel and Distributed Computing, HPDC ’16, 2016.

[52] C. Teflioudi, F. Makari, and R. Gemulla. Distributed matrix completion. In IEEE
12th International Conference on Data Mining. IEEE, 2012.

[53] A. Todd, H. Truong, J. Deters, J. Long, G. Conant, and M. Becchi. Parallel gene up-
stream comparison via multi-level hash tables on GPU. In 22nd IEEE International
Conference on Parallel and Distributed Systems (ICPADS), 2016.

[54] S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful visual perfor-
mance model for multicore architectures. Communications of the ACM, 52(4):65–
76, 2009.

[55] X. Xie, Y. Liang, X. Li, Y. Wu, G. Sun, T. Wang, and D. Fan. Enabling coordi-
nated register allocation and thread-level parallelism optimization for GPUs. In
Proceedings of the 48th International Symposium on Microarchitecture, MICRO-48.

[56] X. Xie, Y. Liang, G. Sun, and D. Chen. An efficient compiler framework for cache
bypassing on GPUs. In IEEE/ACM International Conference on Computer-Aided
Design, 2013.

[57] X. Xie, Y. Liang, Y. Wang, G. Sun, and T. Wang. Coordinated static and dynamic
cache bypassing for GPUs. In International Symposium on High Performance
Computer Architecture, HPCA’15, pages 76–88, 2015.

[58] F. Yan, O. Ruwase, Y. He, and E. Smirni. SERF: efficient scheduling for fast
deep neural network serving via judicious parallelism. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, page 26. IEEE Press, 2016.

[59] Y. Yang, P. Xiang, J. Kong, and H. Zhou. A GPGPU compiler for memory op-
timization and parallelism management. In 2010 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’10, pages 86–97, 2010.

[60] H.-F. Yu, C.-J. Hsieh, S. Si, and I. Dhillon. Scalable coordinate descent approaches
to parallel matrix factorization for recommender systems. In 2012 IEEE 12th
International Conference on Data Mining. IEEE, 2012.

[61] H.-F. Yu, C.-J. Hsieh, S. Si, and I. Dhillon. Scalable coordinate descent approaches
to parallel matrix factorization for recommender systems. In 2012 IEEE 12th
International Conference on Data Mining. IEEE, 2012.

[62] H.-F. Yu, C.-J. Hsieh, H. Yun, S. Vishwanathan, and I. S. Dhillon. A scalable
asynchronous distributed algorithm for topic modeling. In Proceedings of the
24th International Conference on WWW, pages 1340–1350. ACM, 2015.

[63] H. Yun, H.-F. Yu, C.-J. Hsieh, S. V. N. Vishwanathan, and I. Dhillon. NOMAD: Non-
locking, stochastic multi-machine algorithm for asynchronous and decentralized
matrix completion. Proc. VLDB Endow., 2014.

[64] D. Zastrau and S. Edelkamp. Stochastic gradient descent with GPGPU. In Annual
Conference on Artificial Intelligence. Springer, 2012.

[65] T. Zhang. Solving large scale linear prediction problems using stochastic gradient
descent algorithms. In Proceedings of the twenty-first international conference on
Machine learning, page 116. ACM, 2004.

[66] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collabo-
rative filtering for the Netflix prize. In International Conference on Algorithmic
Applications in Management. Springer, 2008.

[67] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola. Parallelized stochastic gradient
descent. In NIPS, 2010.

Parallel Methods and Algorithms HPDC'17, June 26–30, 2017, Washington, DC, USA

92

	Abstract
	1 Introduction
	2 Background
	2.1 SGD-based Matrix Factorization
	2.2 Experimental Setup
	2.3 Workload Characterization

	3 Overview
	4 GPU Kernel Design
	5 Workload Scheduling Algorithm
	5.1 Batch-Hogwild!
	5.2 Wavefront-update
	5.3 Evaluation of scheduling schemes

	6 Workload Partition
	6.1 Workload Partitioning
	6.2 Optimizing Data Transfer
	6.3 Implementation Details

	7 Experiments
	7.1 Machine Learning Parameters
	7.2 Comparison of SGD-based approaches
	7.3 Implication of GPU Architectures
	7.4 Comparison with cuMF_ALS
	7.5 Convergence analysis of cuMF_SGD
	7.6 Convergence analysis of matrix blocking
	7.7 Scale up to multiple GPUs

	8 Related Work
	9 Conclusion
	References

