IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 12, DECEMBER 2019

2271

Data-Flow Graph Mapping Optimization for CGRA
With Deep Reinforcement Learning

Dajiang Liu ", Shouyi Yin
Leibo Liu~, Member, IEEE, Shaojun

Abstract—Coarse-grained reconfigurable architectures
(CGRAs) have drawn increasing attention due to their flexibility
and energy efficiency. Data flow graphs (DFGs) are often
mapped onto CGRAs for acceleration. The problem of DFG
mapping is challenging due to the diverse structures from DFGs
and constrained hardware from CGRAs. Consequently, it is
difficult to find a valid and high quality solution simultane-
ously. Inspired from the great progress in deep reinforcement
learning (RL) for AI problems, we consider building methods
that learn to map DFGs onto spatially programmed CGRAs
directly from experiences. We propose RLMap, a solution that
formulates DFG mapping on CGRA as an agent in RL, which
unifies placement, routing and processing element insertion by
interchange actions of the agent. Experimental results show that
RLMap performs comparably to state-of-the-art heuristics in
mapping quality, adapts to different architecture, and converges
quickly.

Index Terms—Coarse-grained reconfigurable architecture
(CGRA), data flow graph (DFG), mapping, reinforcement
learning (RL).

I. INTRODUCTION

UNTIME-RECONFIGURABLE architectures that

enable near ASIC performance without or with a
little sacrificing programmability are urgently required for
computation-intensive algorithms. Software defined hardware
(SDH) [1] is a promising technique to achieve this goal,
resulting in the ability to run computation-intensive algo-
rithms at very low cost, and consequently, enables pervasive
use of high energy-efficient solutions for a wide range of

Manuscript received April 28, 2018; revised August 7, 2018; accepted
September 13, 2018. Date of publication October 25, 2018; date of cur-
rent version November 20, 2019. This work was supported in part by the
National Natural Science Foundation of China under Grant 61804017, in part
by the Fundamental Research Funds for the Central Universities under Grant
2018CDXYJSJ0026, in part by the National Natural Science Foundation of
China under Grant 61702059, in part by the National Key Research and
Development Program of China under Grant 2017YFB1402400, and in part
by the Frontier and Application Foundation Research Program of CQ CSTC
under Grant cstc2017jcyjAX0340. This paper was recommended by Associate
Editor W. Zhang. (Corresponding author: Dajiang Liu.)

D. Liu, J. Shang, Y. Feng, and S. Zhou are with the College of
Computer Science, Chongqing University, Chongqing 400044, China (e-mail:
liudj@cqu.edu.cn).

S. Yin, L. Liu, and S. Wei are with the Institute of Microelectronics,
Tsinghua University, Beijing 100084, China.

G. Luo is with the Center for Energy-Efficient Computing and Applications,
Peking University, Beijing 10871, China.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2878183

, Member, IEEE,

Guojie Luo, Member, IEEE, Jiaxing Shang
Wei, Yong Feng, and Shangbo Zhou

applications. Many works [2], [3] achieve high performance
on data throughput on field-programmable gate array (FPGA).
With higher energy-efficiency than FPGA, coarse-grained
reconfigurable architectures (CGRAs) [4]-[7] becomes a
typical representative of SDH. The process element array
(PEA) in CGRA can be dynamically reconfigured to adapt to
the change of applications.

According to the execution manner, the mapping algorithms
mainly fall into two board categories: 1) spatial mapping and
2) temporal mapping. In spatial mapping [8]-[11], the func-
tionality of PEA would not be changed once it is configured.
So, spatial mapping needs less configuration context, therefore,
it has advantages of more power efficiency. In temporal map-
ping [12], [13], the functionality of PEA changes with time
and modulo scheduling is commonly used to reduce initia-
tion interval. However, the performance of temporal mapping
would drop off precipitously when the configuration cost could
not be hidden in that target CGRA. In this paper, we mainly
address the problem of spatial mapping on CGRA.

Data-flow graph (DFG), as the kernel of computation-
intensive applications, is the key for compiling of CGRA. In
the compiling flow, computation-intensive parts are first parti-
tioned from applications [14], [15]. Then, these computation-
intensive parts are transformed into DFGs. Finally, these DFGs
are optimized and mapped onto the PEA of CGRA. As DFGs
are the kernels of various of application, DFG mapping is
a research spot in CGRA [13], [16], [17]. The DFG map-
ping is usually performed in three steps [13]: 1) scheduling;
2) placement; and 3) routing. Scheduling assigns the opera-
tion of DFG to control steps. Placement assigns operations of
DFG to PEs and routing assigns edges of DFG to hardware
routes among PEs. As PEA often has sparse hardware con-
nections among PEs, placement, and routing are often closely
coupled for effective mapping. In addition to the direct con-
nections among PEs, routing PE (RPE) insertion is often used
to increase the routability of mapping.

In order to improve the mapping efficiency, several mapping
methods have been previously proposed: SPKM approach [8],
pattern-based approach [9], [10], and DFGNet approach [11].
In SPKM approach, column-wise scattering, RPE insertion
and row-wise scattering are iteratively adopted to minimize
the number of utilized rows under valid mapping. In both
column-wise scattering and row-wise scattering steps, inte-
ger linear programming (ILP) is used to find the optimal
solution. In this approach, node placement and RPE inser-
tion are separated in three iterative steps, and it tends to find

0278-0070 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1591-0635
https://orcid.org/0000-0003-2309-572X
https://orcid.org/0000-0002-3152-1760
https://orcid.org/0000-0001-7548-4116
https://orcid.org/0000-0001-5057-8431

2272

Observation: Mapping state

Action: PE Interchange

Reward: validity and quality

Fig. 1. Overview of RL-based DFG mapping on CGRA.

suboptimal solution as the solution is searched in a separated
optimization space. In pattern-based approach, a cluster-by-
cluster mapping is accelerated by placing patterns, and then
anytime algorithms are used to find the optimal mapping solu-
tion. In the patterns for node clusters, placement, and RPE
insertion are previously elaborated. Although it achieves much
better speedup, the scalability is limited as it highly depends
on a pattern database. Also, the placement and RPE inser-
tion in patterns are not flexible. In DFGNet approach, a DFG
is first preprocessed (including routing node insertion) and
then mapped onto PEA in node-by-node manner guided by
a convolution neural network trained by supervised learning.
This method is rather fast and produce high-quality solutions.
However, as samples need to be previously labeled in super-
vised learning, it becomes difficult for mapping on larger
CGRA:s.

We take a step back to understand some reasons for why
DFG mapping problems on CGRA are challenging.

1) The compiling process is complex and often impossible
to be modeled accurately. In mapping process, we not
only need to consider the validation of placement and
routing, but also need to consider the quality improve-
ment. In particular, the problem of valid mapping is an
NP-complete problem, and it is hardly to judge whether
an intermediate state is good or bad until the last step.

2) As the diversity of application and the reconfigurability
of hardware, the optimization space of mapping tends to
be too large to be enumerated. To address this problem,
previous approaches divide mapping into small and sep-
arate problems, which in turn loose the opportunity to
find a solution closer to the optimum.

In this paper, we attempt to provide a viable alternative to
human-generated heuristics for DFG mapping on CGRA using
machine learning. Recent success of applying machine learn-
ing to other challenging decision-making domains suggests
that this idea may not be too far-fetched. Especially, rein-
forcement learning (RL) has become an active area in machine
learning research. RL trains an agent that learns to make better
decisions directly from experience interacting with the envi-
ronment. The agent can learn from scratch by a reward that it
receives representing how well it is doing on a task. RL has
a long history, but recently it is combined with deep learn-
ing, called deep RL (DRL). DRL can create artificial agents
to achieve human-level performance across many challenging
domains, such as playing video games [18], [19], computer
go [20], [21], etc.

Revisiting the above challenges, we believe RL approaches
are very suitable for DFG mappings on CGRA. First, similar
decisions are often made in similar graphs or subgraphs, which

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 12, DECEMBER 2019

generates an abundance of training data for RL algorithms.
Second, the PEA in CGRA usually keeps regular (e.g., 2-D
arrays) and small (e.g., 4 x4 to 8 x 8) for the reason of area and
power. Therefore, the state space and action space can be well
represented using RL. Third, RL can model complex systems
and decision-making policies as deep neural networks (DNN)
analogous to the models used for game-playing agents. As the
DNN has generalization ability, unseen raw can also be well
handled toward good results. Finally, it is possible to train for
objectives that are hard-to-optimize directly because they lack
precise models if there exist reward signals that correlate with
the objective.

In this paper we propose DRL-based approach to spa-
tially map a DFG onto CGRA more efficiently. As shown in
Fig. 1, the approach takes into account information of envi-
ronment (mapping state) by performing series of experiments
(PE interchange action mentioned below) to understand which
operations of DFG should be placed on which PE of PEA,
which edges of DFG should be routed by which connections
of PEA and how to arrange the placement and routing so that
the a valid and high-quality mapping can be obtained. Our
contributions are summarized as follows.

1) We formulate DFG mapping problem as an agent of
algorithm in RL, which can learn DFG mapping from
scratch.

2) We define agent actions as neighbor PE interchanges,
combing placement, routing and RPE insertion in a
closely coupled way. It results in a large space that is
prone to find a solution closer to the optimal one.

3) We propose a reward signal that properly reflects how
well an action is doing for the mapping task. This well
designed reward can not only accelerate the training to
convergence, but also help the agent to get valid and
high-quality mapping.

The remainder of this paper is organized as follows:
Section II gives background of CGRA mapping and RL. Then,
Section III states the proposed method and Section IV shows
the experimental results. Finally, we conclude in Section V.

II. BACKGROUND AND RELATED WORKS

In this section, we provide a brief introduction to the
required background in CGRA, DFG mapping, and DRL.
Then, we present related works in recent years.

A. Target Architecture

As shown in Fig. 2(a), a CGRA is typically constituted of
a host controller and a 2-D PEA, where the host controller
is responsible for running the operation system and irregular
programs, and the PEA executes computation-intensive work-
loads. The processing element (PE), usually comprising one
or more arithmetic logic units (ALUs), can perform arith-
metic operations and communicate with each other using a
spatial interconnection. The output register in a PE could be
bypassed for routing value not crossing clock edge, as the
red line show in Fig. 2(a). Fig. 2(b) and (c) illustrated two
cases of using RPE. If data communicated between PEs must

LIU et al.: DFG MAPPING OPTIMIZATION FOR CGRA WITH DEEP RL

| Data memory |
I]
| -
C Z
o o
S||E : : :
| -
Q c
; Sifel | ! !
2| | 5| (Bd-Ee-EE-
I > - - =7
eT0)
S | | :
C 1 1 1
(@]
5| |Ea-a-e-E

(b)

Fig. 2. (a) General CGRA architecture.
(c) Unregistered routing.

(b) Registered routing.

(a) (b) (©)

Fig. 3. PE interconnection styles. (a) 4-way routing. (b) 4-way-1-hop routing.
(c) 8-way routing.

be stored in registers at each hop, operation b must be exe-
cuted three cycles after operation a. On the other hand, if
registers are bypassed during data routing, b can be executed
immediately after a. After placement and routing, the output
registers of PEs could be trivially selected for bypass according
to dependence latency.

The connections between PEs are usually sparse [22]
for power and area consideration, and therefore only
neighbor or near neighbor PEs are connected. Fig. 3
depicts three commonly used interconnection styles, includ-
ing 4-way interconnection (i.e., mesh routing), 4-way-1-
hop interconnection (i.e., mesh plus routing), and 8-way
interconnection.

B. DFG Mapping on CGRA

Given a DFG and a PEA, the DFG mapping on CGRA
problem is to find a valid and optimal mapping from the DFG
D = (V,E) to the PEA graph C = (P,L), where V, E, P,
and L represent the set of operations in DFG, the dependen-
cies among operations, the set of PEs and the interconnections
among PEs, respectively. The application mapping is a func-
tion ¢ : D — C, which in turn implies two functions,
¢y : V. — Pand ¢g : E — S. The natation S is the path
set, i.e., the combination of interconnections (L) among PEs
and the size of § is 21,

2273

Definition 1 (Routing PE): Given p;, ¢q; be the PEs in
C, l; = (pi,qi) be the connection between p; and ¢;, and
(lo, l1, ..., 1) € § (n < |L|) be the connection path of
e = (u,v). The RPE set of e is defined as R, = {¢q|VI] =
W, qQ),q %= ¢ov(v) A g # ¢y(u)}. Then, the RPE set of the
whole mapping is defined as R = |,z Re.

Definition 2 (Valid Mapping): Given a DFG D = (V,E)
and PEA C = (P, L), a valid mapping is defined as flows.

1) Yu € V, Ip € P such that ¢y (u) = p.

2) Yu,v € V, if u # v, then Ip,q € P A p # q such that

¢vu) =g, pv(v) = q.

3) VueV,p(v) ¢ R.

4) Ve = (u,v), if u # v then Apg(e) = (lo, Iy, ..., I,) € S

such that ¢y (1) = po, ¢v(v) = gn and g; = pjy1.

5) Vei,ex € E, if e1 # e then R,, ﬂRQ = 0.

In definition 2, the conditions 1)-3) state that each operation
in D has a target PE and each PE can hold only one operation
node or routing node, i.e., no operation conflict is permitted
in the valid mapping. The conditions 4) and 5) state that each
edge in D has a connection path in C and the connection paths
for different edges should not share RPEs.

C. Reinforcement Learning

In RL, an agent improves its behavior by interacting with an
environment, as shown in Fig. 1. At each time step #, the agent
observes one state s;, and is required to choose an action a,
on the state. Following the action, the state of the environment
transfers to a new state s, and the agent receives a reward r;.
The state transition process is assumed to be a Markov deci-
sion process, i.e., the state transition probabilities and rewards
depend only on the state of the environment s, and the action
taken by the agent a;.

The goal of the agent is to select actions in a way that
maximizing future rewards by interacting with the environ-
ment. The future reward is assumed to be discounted by a
factor of y per time-step, and the future discounted return
at time ¢ is defined as R, = Y.o_, y"~'ry, where T is the
time-step at which the task terminates. The optimal action-
value function Q*(s,a) is also defined as the maximum
expected return achievable by following any strategy, after
seeing some sequence s and then taking some action a,
Q*(s, a) = max, E[R;|s; = s, a; = a,], where 7 is a policy
mapping states to actions. The policy can be discrete values
over actions or probability distributions over actions.

The solve of policy m falls into two categories: 1) value-
based method and 2) policy-based method. The value-based
method first calculates the action-value function, then deduces
the policy using simple strategies like e-greedy. This method
needs less training data and is suitable for task of small action
space. The policy-based method directly parameterizes the pol-
icy and it is fit for task of continuous or large action space. In
this paper, we formulate action as neighbor PE interchange
(see sections below) and the action space is rather small.
Therefore, value-based method is adopted in this paper.

The optimal action-value function obeys an important iden-
tity known as the Bellman equation basing on the following
intuition: if the optimal value Q*(s’, a’) of the state s" at the

2274

next time-step was known for all possible actions «/, then
the optimal strategy is to select the action ¢’ maximizing the
expected value of r + yQ*(s', @)

0%(s,a) = Eg~[r + y max Q*(s/, d') s, a] (1)

where ¢ indicates the environment in RL. Specifically, as
shown in Fig. 1, ¢ means the target PEA in a CGRA. The basic
idea behind value-based RL algorithm is to estimate action-
value function by Bellman equation update, Q;y1(s,a) =
E[r + max, Q;(s’, a’)|s, al. As iteration i increases to infin-
ity, the value of iteration algorithm converge to the optimal
action-value function. In task of large state-action space, the
basic approach becomes impractical. Instead, it is common to
use a function approximator to estimate the action-value func-
tion, Q(s, a; 0) ~ Q*(s, a). Recently, Q-network [18], a deep
neural network function approximator with weights 6, shows
great success in video games and computer go. The deep
Q-network (DQN) can be trained by minimizing a sequence
of loss functions L;(6;) that changes at each iteration i

Li(0) = Es.a~p[(vi — O(s, a; 6)))] 2

where y; = Eg.[r + y maxy Q(s', d’; 0;—1]s, a] is the target
for iteration i and p(s,a) is a probability distribution over
sequences s and actions a. The parameters from the previous
iteration 6, are held fixed when optimizing the loss function
L;(6;). Instead of preparing fixed targets in supervised learning,
the targets here depend on the network weights. Therefore,
there are two neural network are involved in DQN, target
network and evaluation network. The target network is respon-
sible for providing targets and the other one is responsible
for improving the weights at every iteration. Periodically, the
weights in evaluation network are cloned to the target network.
Base on the loss function, the weights can be updated by
performing gradient descent using gradient as follows:

Vo,Li(6) = Es g pis~e [i — Q(s, a; 61)) Ve, 0(s, a; 6)].
3)

It is difficult to compute the full expectations in the above
gradient. Expediently, it is often to optimize the loss function
by stochastic gradient descent. If the weights are updated after
every time-step, the expectations are replaced by single sam-
ples from the behavior distribution p and the environment &,
respectively.

D. Related Works

In recent years, the problem of DFG mapping has been
well discussed in the literature. Most existing approaches falls
into one or several categories, including IL) approach, simu-
lated annealing (SA) approach, partitioning approach, analytic
approach, and machine learning approach.

ILP approach usually formulates the mapping problem
into clear representation in mathematics and it is possible
to find the optimal solution. Due to high time complexity,
ILP approach [23], [24] is suitable for problem of moderate
size. Therefore, it is frequently used to solve a subproblem in
mapping algorithms.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 12, DECEMBER 2019

SA approach is widely used to solve complex prob-
lems due to its generality and accessibility. It is not only
applied to CGRAs [25], [26], but also widely applied to
FPGAs [27]-[29]. SA-based approach can achieve good map-
ping solutions but are often inefficient for large problems.

Partitioning approach has strong scalability and is efficient
to even large problems, such as SPKM [8], NTUPlace [30],
KernelPartition [31], etc. The basic idea of partitioning is
divide and conquer. These algorithms perform very fast.
However, the mapping result may be suboptimal due to the
separated searching space.

Analytical —approach can achieve good quality
results [32], [33] for its efficiency and scalability. Analytical
approaches first generate an optimized mapping allowing
placement overlapping. Then, overlapping elements are
separated iteratively. Consequently, it can be very fast even
for large problems. However, the solution quality can suffer
due to the local nature of final adjustments.

Machine learning approaches are fast and efficient as
they exploit previous experiences, including pattern-based
approach and supervised learning-based approach. Pattern-
based method [10] uses patterns to index into a dictionary
that provides suggestions for good spatial arrangements of
nodes onto relatively homogeneous hardware. The scalabil-
ity is poor and has no generality as the pattern dictionary is
static. DFGNet [11] method trains a neural network to pro-
vide suggestions for good mapping by supervised learning. It
is only suitable for very small CGRAs as data labeling for
supervised learning becomes impossible for large CGRAsS.

As SPKM combines the advantages of several approaches
above and focuses on spatial mapping on CGRA, we use
SPKM as the basis for comparison.

III. METHOD

In this section, we present our method for DFG map-
ping on CGRA using RL. We formulate the problem in
Section III-A and describe how to represent it as an RL task
in Section III-B. Then, we introduce how to train the learn-
ing algorithm and how to use the trained agent in real DFG
mapping in Section III-C.

A. Objective and Problem

The objective of spatial mapping should balance power,
area, and performance. The exact value is difficult and time
consuming to compute. Similarly, we define the same cost
function as that in [10] for three reasons: 1) we address the
same problem of DFG spatial mapping; 2) RPEs are consid-
ered in both work; and 3) specific factors are obtained from
power simulations run on an ASIC process using the third-
part simulation tools. The specifical form of objective is as
follows:

Np p

JOEDY

i=1 \j=
+ (400 X Nyop) 4)

Iij | 4 (2000 x Nop) + (800 x Npg)
1

LIU et al.: DFG MAPPING OPTIMIZATION FOR CGRA WITH DEEP RL

-2801021010 1501010010 150102101028010- 2101015010 6010 1501021010
28010210101501010010 6010 10010150102101028010 210101501010010 3010 1001015010 21010
210101501010010 6010 3010 6010 100101501021010 210101501010010 6010 10 6010 100101501021010
1501010010 6010 3010 O 3010 6010 1001015010 1501010010 6010 3010 O 3010 6010 1001015010
10010 6010 3010 O C 0 3010 6010 10010 6010 3010 10 0 C 0 10 3010 6010

1501010010 6010 3010 O 3010 6010 1001015010 1501010010 6010 3010 O 3010 6010 1001015010
210101501010010 6010 3010 6010 100101501021010 210101501010010 6010 10 6010 100101501021010

28010210101501010010 6010 100101501021010 28010 210101501010010 3010 100101501021010
88090 2201021010 15010 10010 1501021010 280106080 2101015010 6010 1501021010,
(a) (b)

Fig. 4. Connection cost for (a) mesh RPEA and (b) mesh-plus RPEA.

where n,,, n,, Nop, Npe, and Nyop indicate the number of nodes,
number of parents of a node, the number of ALUs performing
an operation, the number of PEs used as RPE, and the num-
ber of empty PEs. Parameter Npop is determined by counting
the number of empty PEs in the smallest rectangular area that
contains the PEs that have already been assigned operations.
A larger area solution may have more empty ALUs and more
ALUs used as passgates. If all else is equal, this solution will
thus incur a greater cost than a more compact solution. The
cost factors, 2000, 800, and 400, used in (4) were obtained
based on power simulations run on a 90-nm ASIC process
from Synopsys using the Synopsys PrimeTime-PX tool in
work [10]. These cost factors are relevant in a relative sense. If
better cost factors or cost factors in different ASIC processes
are available to replace (4), it can be substituted trivially.

The interconnection cost of edges in DFGs falls into two
categories: 1) edges IZ?I supported by the architecture and
2) edges I}f}" not supported by the architecture.

For edges supported by the architecture, the interconnection
cost can be obtained by Synopsys PrimeTime-PX tools
in the target process. For example, as shown in Fig. 4,
the interconnection costs between neighbor PEs for mesh
and mesh-plus routing architecture are almost Os [“0”s in
Fig. 4(a) and (b)] for both architectures and the interconnection
cost between near neighbor PEs is 10 [“10”s in Fig. 4(b)] for
mesh-plus routing architecture in 90 nm ASIC process.

For edges that are not supported by the architecture,
interconnect cost is a heuristic cost and there are two basic
rules to determine their interconnection cost.

1) The cost value of the unsupported interconnection
should be larger than any other cost factors, such as
the cost factors for operation PE, RPE, and empty PE,
in (4). The reason is that legal routing is a precondi-
tion for DFG mapping on CGRA and it should have the
higher weight as compared to the mapping quality.

2) The cost for long distance edge should have higher cost
than that for short distance edge, where the distance indi-
cates the Manhattan distance between the PEs of the
source operation and target operations.

As the work in [10], the heuristic interconnection cost not
supported by the architecture is as follows:

I =500 x d;,;* + 500 x d;j + 10 (5)

where d; ; is the manhattan distance between the mapped PE of
operation i and operation j. As shown in Fig. 4(a) and (b), the
diagonal interconnection has manhattan distance of 2, and the

2275

e’@

B

Fig. 5. Necessary RPEs needed. (a) 3-node circle needs 1 RPE on mesh
PEA. (b) 5-node circle needs 1 RPE on mesh PEA. (c) 3-node circle needs 1
RPE on mesh-plus PEA. (d) 5-node circle needs 0 RPE on mesh-plus PEA.

interconnection cost is 3010, which is greater than the cost fac-
tor (2000) of operation PE. The longest interconnection, shown
in Fig. 4, has manhattan distance of 8, and the interconnection
cost is 36010, which is greater than the cost factor of other
shorter interconnections.

In order to determine the terminal condition for RL, we
also attempt to find the lower bound of objective function
(Op) in (4). To get the lower bound of objective function, we
assume that only necessary RPEs are inserted, the minimal
rectangular mapping area is available and all edges are validly
routed. The number of necessary RPEs (N;g) is highly related
to both the number of circles with odd number of operations
in the DFG and the routing style of the target architecture.
For mesh RPEA, at least one RPE is needed for a circle
with odd number of operations. As shown in Fig. 5(a) and
(b), the 3-operation circle and the 5-operation circle are both
inserted with a RPE to get a valid mapping. For mesh-plus
RPEA, at least one RPE is needed for 3-operation circle and
it is not necessary to insert a PE for circles with the num-
ber operation greater than 3. As shown in Fig. 5(c), a RPE
is inserted for the 3-operation circle to get a valid mapping.
In Fig. 5(d), no RPE is inserted for the 5-operation circle as
there is a 1-hop interconnection to deliver the long edge from
operation d to e.

When N;,‘g necessary RPEs are inserted, the total number
of nodes occupying PEs can be obtained, Npoge = Nop +
N;g. Then, we can get the area of the minimal rectangular
Smin(Nnode) that can cover the Npode nodes on the target PEA
without consideration the specific placements of these nodes.
Next, the number of empty PE can be easily calculated by
Nnop = Smin(Nnode) — Nnode. Finally, the lower bound of the
objective function can be presented as follows:

O = 2000 x Nop + 800 x N;g + 400 X Npgp. (6)

In (6), the item 2000 x Ngp, is a constant for different
solutions as the number of operations in a DFG is invariant.
Compared to (4), the item of interconnection cost is neglected
here as we assume that all edges are validly mapped. We also
note that, in (6), the items 800 x Ng‘g and 400 x Ny are theo-
retical value. If we directly used it as a condition of terminal
mapping state, it may never be satisfied. Therefore, we add a

2276

Fig. 6. Formulation steps of our approach.

relaxation factor (f) to (6) and it becomes
o = 2000 X Nop + B(800 x N +400 x Noop) (7)

where f is greater than 1 and is determined empirically. In the
experiments, we find the training process can converge quickly
when S is set to 1.1. With the value of relaxed lower bound
of objective function, we define the valid mapping states as
terminal states once their objective function values get less
than Oj.

Based on the objective function in (4) and the valid mapping
definition in Section II, the problem of our approach can be
represented as follows.

Problem 1: GivenaDFG D = (V,E) andaPEA P = (P, L),
find a mapping ¢ : D — P to minimize cost O subject to ¢ is
a valid mapping.

In the problem defined above, it is assumed that the number
of operation in D should be less than or equal to the number of
PE in P. If the larger DFGs appear, they can be prepartitioned
using algorithms like the work in [31].

B. RL Formulation

As show in Fig. 6, the RL formulation of DFG mapping on
CGRA involves four important aspects: 1) state representation
extracting topologies of DFG and CGRA; 2) action represen-
tation unifying placement, routing, and RPE insertion in a
closely coupled manner; 3) reward function design to present
how well an action is doing on mapping validity and qual-
ity; and 4) network architecture to evaluate action strategy. In
this section, the first three steps are elaborated. The network
architecture will be studied in the experimental parts.

State Representation: We represent the mapping state (i.e.,
the placement and routing result) as distinct images (see Fig. 7
for illustration). The image in Fig. 7(c) shows a mapping state
from DFG D [Fig. 7(a)] to a 4 x 4 PEA [Fig. 7(b)]. In the
mapping, shown in Fig 7(b), ont only are the eight operations
in the DFG placed, but also a routing node, d’, is inserted
and placed on PE 5. We use a W2 x H? image to represent
the mapping state, where W and H indicate the width and
height of the PEA. For simplify, the unfilled cells in the image

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 12, DECEMBER 2019

€12C13C14Cys

(©

Fig. 7. Example of state representation. (a) DFG D. (b) Mapping state of
D. (c) State representation of the mapping. (d) Cell representation of block
b3. (e) Cell representation of block bs.

shown in 7(c) are all zeros. The image cannot only present the
operation’s placement (¢y), but also present the edge’s routing
path (¢F), including the RPE inserted. The image is divided
into W x H blocks and each block is further divided into
W x H cells. Each block indicates the mapping situation of
the corresponding PE as follows: 1) the cell j of block i (i = j)
indicates the types of PE, O for operation PE and 1 for RPE
and 2) the cell j of block i (i # j) indicate the dependence
of operation on PE i, O for no edge between operations on
PE i and PE j, 1 for an edge from the operation on PE i to
the operation on PE j and 2 for an edge from the operation
on PE j to the operation on PE i. If all the cells of block
i are zeros, the PE i is not mapped with any operation. For
example, block b3 in Fig. 7(d), co = 2 indicates that there
is a dependence from operation f on PE 2 to operation ¢ on
PE 3, and ¢; = 1 indicates that there is a dependence from
operation ¢ on PE 3 to operation e on PE 7. Fig. 7(e) gives
a another example on block bs, where cs = 1 indicates PE
5 is a RPE transferring data from operation a on PE 1 to
operation d PE 6.

With the state representation above, the mapping informa-
tion for a DFG on a specific PEA can be extracted completely.
In such state representation, as each PE can only hold one
operation, operation conflicts can be naturally avoided satis-
fying condition 2) in definition 2. Also, PE interchange action
(see below) further guarantees one PE can hold less or equal to
1 operation (including routing node) if the initial mapping state

LIU et al.: DFG MAPPING OPTIMIZATION FOR CGRA WITH DEEP RL

2277

(a) ()

Fig. 8.
node. (d) Interchange on an operation and an empty PE.

has no operation conflict. Similar to the images for mapping
states, the PEA graph C = (P, L) can also be represented by
a such image. Consequently, mapping validation can be eas-
ily checked by perform AND operation on state image and
PEA image. Moreover, this state representation can be easily
extended to heterogeneous PEA by improve the encoding of
type cell (¢ in b;, i =).

Action Representation: At each time step, the mapping algo-
rithm will change the placements of operations or routing
nodes. It would require a large action space of size N x W x H
at each time step, where N is the number of operation in the
input DFG. Considering the maximum of N is W x H, the
action space is up to (W x H)2. In addition, operation con-
flict may occur if more than one operations are mapped on a
PE. In order to keep the action space small and avoid opera-
tion conflict, we define action as interchange of operations on
neighbor PEs (see Fig. 8 for illustration) as follows.

Definition 3: Given u,v € V be the operations in D =
(V,E), p,qg € P be the PEs in PEA C = (P,L), p =
$vw) A g = ¢y(v), and D(p,q) = 1, action ¥ (p,q) is
defined as a new placement pair (p = ¢v(v),q = ¢y (u))
that interchanges the position of operation u and v.

In definition 3, D is the manhattan distance (distance
between two points in a grid based on a strictly horizon-
tal and/or vertical path). The condition D(p,q) = 1 greatly
reduce the action space without loss of completeness. The
completeness of action ¥ can be represented as follows.

Theorem 1: Let C = (P,L) be the PEA, D = (V,E)
be the DFG and ¢ be the neighbor PE interchange action.
Yu,v € D, if p = ¢y(u) A g = ¢y(E), 3 a series of action
(U1, Y2, ..., ¥n) such that p = ¢y (v) A g = by (u).

Proof: As Vp,q € P, there is a series of PEs
(P1,p25---»pn) such that D(p,p1) = 1,D(p1,p2) =
1,....,D(py,q) = 1. We first construct an action
sequence (Y (p,pl), ¥ (p1,p2), ..., ¥(pu,q)) that making
q = ¢y(m),pn = ¢y(v). Then we construct an action
sequence (Y (Pn, Pn—1), - --» ¥ (p1, p)) that making p = ¢y (v).
Consequently, the operations on p and g are interchanged. M

According to the operations mapped on neighbor PEs,
interchange action is further classified into three cases.

1) Interchange neighbor PEs with an operation and its rout-

ing node includes two subactions: a) swapping the target

(d)

Action space of state update. (a) Interchanges on neighbor PEs. (b) Interchange on two operations. (c) Interchange on an operation and its routing

PEs of the operation and its routing node and b) merg-
ing the route node to the operation and the target PE
of the routing node becomes a empty PE. As shown in
Fig. 8(c), operation a and its routing node a’ swapped
in the first case in subaction 1, and routing node a’ is
merged into operation a in subaction 2.

2) Interchange neighbor PEs with only 1 operation on one
of them includes three subactions: a) move the operation
to the empty PE; b) add a routing node on the empty PE
for one sink of the operation; and c¢) add a routing node
on the empty PE for the other sink of the operation.
In cases 2) and 3), if there is only one sink for the
operation, then just add a routing node on the empty
PE for the only one operation. As shown in Fig. 8(d),
operation a is moved to blue empty PE in subaction 1, a
routing node is added to the blue sink on the blue empty
PE in subaction 2, and a routing node is added to red
sink on the blue empty PE in subaction 3.

3) Other cases: the positions of the two operations are
swapped. Accordingly, the edges of operations follow
the new positions. As show in Fig. 8(b), the target PE
of operation a and b is swapped.

From the discuss above, we note that there are at most
three subactions in an interchange, and in most cases, there
is only one subaction in an interchange. Therefore, we do not
increase the action space for subactions and the size of the
whole action space is 2WH-W-H. If more than one subac-
tions occur in an interchange, these subactions are selected
with equal probabilities. It can cover all the basic operations
of DFG mapping, placement, routing, and RPE insertion, and
these basic operations could be closely coupled, which offers
more opportunities to find a solution closer to the optimal one.

Rewards: We need a proper reward signal to guide the agent
toward good solutions for our objective, minimizing the cost
O while keeping mapping valid. Based on the cost function
in (4), the step reward is represented as follows:

R(s, a) = O(s) — O(s) (8)
where s indicates the new state by taking action a on state s.

With the reward deduced from mapping objective, the agent
could receive intensive and correct signals indicating how well

2278

i ?
Intermediate|state” Torminal state?

1-¢ &
Input layer
a
Hidden layer

s State] transition
i+
Output layer JlZ=.

Input layer

Update

Hidden layer

Output layer

Loss layer

[e]
[Delayed aber)

Fig. 9. Data generation and training flow of our approach.

the agent is doing at every time-step. Therefore, the agent can
learn how to map DFGs efficiently and optically.

C. Data Generation and Training

We present the action-value of RL as a neural network
(called Q-network) which takes a mapping state image
described above as input and outputs the approximate action-
value of all possible actions. As shown in Fig. 9, the running
flow of our approach involves data generation and train-
ing. In order to make learning more efficient, target network
freezing [18] is used in the flow. Therefore, there are two
QO-network, named target network and evaluation network, in
the data generation phase, and training phase, respectively.
These two networks have the same structure and work as
follows.

In the data generation phase: 1) we first generate initial
state s; by random DFG mapping on PEA; 2) then, e-greedy
policy is used to select an action a; for the state, i.e., with
the probability of € selecting a random action and with the
probability of 1—e selecting a predicted action by the target
network. € decreases with time-step from 1.0 and becomes
fixed when reaching to 0.05; 3) next, the reward r, and new
state 5,41 are generated by executing the selected action a; on
the initial state s;; 4) we store the transition (s, ar, '+, St41)
into a replay memory. In step 3), if the new state is a terminal
state, we go back to step 1). Otherwise, we send the new state
to the target network in step 2). Repeat the above steps over
and over again, we generate millions of transition samples and
update the samples in the replay memory in a first-in-first-out
way. The random generated DFG in step 1) should satisfy four
conditions: 1) the number of operations in the state involved
DFG is from 4 to W x H; 2) there is no operation conflict
in the mapping state; 3) the number of input edges of each
operation (i.e., in-degree) in the DFG is less than or equal to 2;
and 4) the sum of in-degree and out-degree (i.e., the number
of output edges of an operation) is less than or equal to the
number of connections of the target PE.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 12, DECEMBER 2019

Algorithm 1 Training Algorithm With Memory Replay
Input:

1: Initialize replay memory D to capacity N

2: Initialize the neural network with random weights

3: for episode = 1, M do

4: Initialize state sy with random generation

5 for =1, T do

6: With probability € select a random action a;
otherwise select a; = arg max,Q0* (s, a; 0)

7: Execute action a; in PEA emulator and observe reward ry
and image s,y

8: Store transition (s, ar, 7, S44-1) in D

9: Sample random minibatch of transitions (sj, aj, 1j, sj+1)
from D

10: Set yj = rj for if s;| is terminal state,
otherwise set y; = rj + y max, Q(st ,d'; 0)

11: Perform a gradient descent step on (y; — O(sj, aj; 6))? as
Equation (3)

12: Update Q = Q every K steps

13: end for

14: end for

In the training phase: 1) we first sample a mini-batch
(s, aj, rj, sj+1) if the replay memory is large enough; 2) Then,
the state s;41 is sent to the target network to find the maximal
action value Q' = maxgs O(sj11, aaf; 0); 3) Next, the delayed
label is generated using equation y; = rj + Q'; 4) Meanwhile,
state s; and a; are sent to the evaluation network to obtain the
reference value Q= of a; on s;; and 5) Then, by calculating
the gradient in (3) from y; and Qx, the weights of the eval-
uation network in update at each iteration. As target network
freezing [18] technique is used for more efficient learning,
the weights of evaluation are periodically cloned to the target
network at every K steps. The details of training are presented
in Algorithm 1.

After training, the DFG mapping becomes intuitive and sim-
ple. By using the trained network on e-greedy policy, with €
fixed to 0.05, the mapping state is updated step by step and
gradually becomes valid and optimized.

IV. EXPERIMENT RESULTS

To demonstrate the effectiveness of the proposed mapping
approach, RLMap, we conduct a series of experiments, includ-
ing experiments of get more valid mappings, experiments of
getting high-quality mapping, experiments of learning con-
vergence, a case study, experiments of scalability to different
architectures, and experiments of compilation time.

A. Setup

Benchmarks: In testing phase, we conducted experiments
on 16 DFG kernels from benchmark MiBench, Spec2006 and
PolyBench with 4-58 operations most widely used by aca-
demic researchers for CGRA mapping. The number of oper-
ations and edges for each of the DFG kernel are summarized
in Table I in the order of operation number.

Target Architectures: We consider CGRAs with different
PEA sizes and different routing styles to fully evaluate our
proposed approach. The PEA size differs from 4 x 4 to 8 x 8§,
which covers most CGRAs in the literature. The routing style

LIU et al.: DFG MAPPING OPTIMIZATION FOR CGRA WITH DEEP RL

TABLE I
STATISTICS OF THE BENCHMARK DFGSs

[DFGs [#OPs | #EDGEs || DFGs | #OPs | #EDGEs |
beyl 4 5 calvir 16 8
adi 6 8 jquant2 18 17
filter 6 4 mshift 20 22
wrf 5 5 vsolve 21 20

seidel-2d 9 9 fdtd-apml 21 22
pppm 12 9 clincs 29 32
places 13 12 ftt 40 32
wayinit 17 16 jfdctflt 58 44

2109 E=E RLMap

So8 = DFGNet

€ I Pattern

%0-6’ B SPKM

“E 0.4

8

0.2

2

o
o

10 20 30 40 50 60
Number of operators in DFGs

Fig. 10. Map more DFGs on 8x8 mesh-routed CGRA.

varies from mesh (routing with four neighbor PE connected)
to mesh plus (routing with four neighbor PEs and four one-
hop PEs connected), which cover the routing manners of most
CGRAs in the literature.

Neural Network Architecture: We built the RLMap proto-
type described in using a neural network with an input layer,
a hidden layer and an output layer. The size of input layer and
output layer is W? x H? and 2 x W x H-W-H, as described in
Section III-B. Empirically, in our mapping problem, we use
a full connected layer as the hidden layer as it captures more
details from mapping state than others. The number of neu-
rons in the hidden layer also varies for CGRAs with different
PEA size (see discussions below).

Baselines: In testing phase, all the experiments were per-
formed on the same Linux workstation with an Intel Xeon
2.4 GHz CPU and 64 GB memory. Since SPKM [8], pattern-
based mapping [10] and DFNet [11] are typical and excellent
approaches for CGRA spatial mapping, we compared the
quality of our placement results with the three approaches.
For SPKM and DFGNet, the cost function of the approach
is modified to the objective in (4). For pattern-based map-
ping approach (we use “pattern” below for simplify), we use
the patterns and arrangements listed in [10, Fig. 10] as the
dictionary.

B. Map More Applications

Mapping validation is a basic condition of the mapping
problem. It becomes more difficult when the available routing
resources get sparser, such as mesh-routed PEA. In order to
demonstrate the ability of getting valid mapping, we try to map
100 randomly generated DFGs onto an 8 x 8§ mesh-routed PEA
using different approaches. As some of the DFGs can not be
validly mapped originally, we terminate the mapping process
after 2 h. Fig. 10 plots how many DFGs can be validly mapped

2279

by each approach. The horizontal axis in Fig. 10 represents
the number of nodes that each DFG contains, and vertical axis
represents the number of valid mappings out of 100 DFGs.
From Fig. 10, we note that it is more difficult to find a valid
mapping when the number of nodes in each DFG increases.
When the number of node is less than 10, all the four mapping
method perform well and they almost find the same number
of valid mappings. When the number of node is 15, DFGNet
performs worse as it only supports DFGs with nodes up to 16.
When the number of node is more than 50 (approximate the
size of PEA), pattern-based method and SPKM method can
hardly find a valid mapping, while our proposed method can
still find several valid mappings. On average, our proposed
approach can obtain 21.7x and 34.3x more valid mappings
than pattern-based method and SPKM method. As the trained
Q-network in our method can predict good mapping manner,
our proposed approach can find more valid mappings within
the same period of time.

C. Get High-Quality Mappings

The reward designed in (8) can not only make the agent get
valid mapping, but also can make agent get low cost mapping.
Table II presents the detailed costs of different approaches on
the benchmark described in Table I targeting to an 8 x 8 mesh
routed PEA, where DFGNet is not included as it only supports
small DFGs. In Table II, Nop, Npg, Nnop, and Npop indicate
the number of operators, the number of RPEs, the number
of empty PEs in the smallest rectangular and the number of
1-hop connections, respectively. Our approach, RLMap, can
get 16 valid mappings while other two approaches can only
get 14 valid mappings out of 16. For kernels filter, pppm, and
calvir, the three approaches almost obtain the same cost, as the
structures of these kernels are relative simple. Consequently,
all approaches can find the optimal solutions. It is noteworthy
that our approach can still find valid mappings for compli-
cated kernels clincs and jfdctlt while other approaches all fails.
The kernel clincs has 29 operations, 32 edges, and 6 cycles
and some of the edges are heavily entangled. Therefore, It is
quite difficult to find the optimal, even a valid solution, for
this kernel. However, RLMap can still find a solution with 3
RPEs and 7 1-hop connections with the help of Q-network
prediction. As for kernel jfdctlt, the number of operations is
58, which is quite close to the size of § x 8 PEA. Consequently,
it is also difficult to find a valid mapping for it. With the effi-
cient action-value prediction from Q-network, our approach
still finds a solution with 2 RPE and 2 1-hop connections. On
average, our approach can get 5.66% and 2.91% less costs as
compared to SPKM and pattern-based approaches.

D. Training and Convergence

The training time is highly related to the convergence behav-
ior of the Q-network. In RL of this paper, we randomly
generate initial mapping states for various DFGs. Then, we
select actions by e-greedy policy, generate state transitions,
and store these transitions in a replay memory with the max-
imal size equaling to 5.0e5. When the number of transitions

2280

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 12, DECEMBER 2019

TABLE 1T
COMPARISONS OF MAPPING COST WITH SPKM AND PATTERN-BASED APPROACHES

DFGs Nop Npg Nnop Nhop Cost
All SPKM [Pattern | RLMap | SPKM [Pattern [RLMap [SPKM [Pattern | RLMap | SPKM [Pattern [RLMap
bycl 4 3 3 3 2 1 1 1 1 1 1.12e4 1.08e4 1.08e4
adi 6 3 4 4 3 2 2 1 0 0 1.56e4 | 1.60e4 1.60e4
filter 6 0 0 0 0 0 0 0 0 0 1.20e4 | 1.20e4 1.20e4
wrf 5 0 0 0 1 0 0 1 1 1 1.04e4 1.00e4 1.00e4
seidel-2d 9 1 1 0 2 2 3 1 1 1 1.96e4 | 1.96e4 1.92e4
pppm 12 0 0 0 0 0 0 0 0 0 2.40e4 | 2.40e4 2.40e4
places 13 0 0 0 1 2 2 1 0 1 2.64e4 | 2.68e4 2.68e4
wayinit 17 0 0 0 3 1 1 1 3 1 3.52e4 | 3.44e4 3.44e4
calvir 16 0 0 0 0 0 0 0 0 0 3.20e4 | 3.20e4 3.20e4
jquant2 18 0 0 0 2 3 9 2 3 2 3.96e4 | 3.72¢4 3.68e4
mshift 20 1 1 1 15 12 2 4 3 2 4.68¢4 | 4.56e4 4.16e4
vsolve 21 0 0 0 7 7 3 0 0 0 4.48e4 | 4.48e4 4.32e4
ftt 40 0 0 0 24 8 0 16 8 1 8.98e4 | 8.33¢4 8.00e4
fdtd-apml 21 5 3 1 12 10 2 6 4 3 5.09¢e4 | 4.84e4 4.36e4
clincs 29 - - 3 - - 6 - - 7 - - 6.29¢4
jfdctt 58 - - 2 - - 4 - - 2 - - 1.19e5
[Normalized | 1.00 | 144 | 133 [100 | 439 | 267 | 100 | 262 | 18 [100 [106 [103 | 1 |
le-3 le-3
zz —— learning rate || 0.8 —— loss D D
154 061 —
. 0.4 .
1.0 :
]
0.5 0.21
— e —]
0.0 02 04 0.6 0.81637 0.0 02 04 0.6 0.81e7 O O
(a) (b)
le4 lel
0.75+ 41 —— number of episodes
0.50 3] Fig. 12. Case study on kernel fdtd-apml. (a) Initial placement. (b) Mapping
0.251 result at time-step 2E6. (c) Mapping result at time-step 8E6.
0.001 2]
~0.251 —— average reward 1
-0.50 i - ,g - i - i i i gains when getting into convergence. As shown in Fig. 11,
00 02 04 06 08 = 00 02 04 06 08 — the number of episodes per epoch can demonstrate the effec-
(©) (d) tiveness of our approach directly. As the maximal time-steps
per episode (7)) is set to 10000 and the epoch size (np)
Fig. 11. Learning curves in training. (a) Learning rate. (b) Average loss per

epoch. (c) Average reward per epoch. (d) Average number of episodes per
epoch.

in replay memory is beyond 1.0e5, a batch of transitions of
size 32 are sampled and training is started.

In RL, however, accurately evaluating the progress of an
agent during training can be challenging. Since the evaluation
metric of RL, as suggested by [18], is the total reward the
agent collects in an episode or game averaged over a number
of games, we usually periodically compute it during train-
ing. During training, we track the learning performance by
recording the learning rate, average loss per epoch, average
episode reward per epoch and average number of episodes
(n4e) per epoch. The epoch size (np) is set to 50 000. Fig. 11
shows the learning curves for 6 x 6 PEA during training with
relaxation factor 8 = 1.1, including learning rate curve, loss
curve, average reward curve over epochs and average number
of episodes over epochs. As shown in Fig. 11(a), the learning
rate is decayed exponentially from 2.5¢ — 3 to 2.5¢ — 3. The
loss, as depicted in Fig. 11(b), decreases with the time-step and
gets close to 5.0e — 5 at time-step 8.0e6. The average episode
reward increase with time-step and become convergence at
time-step 3.8¢6, which indicates our approach can always get

is 50000, the lower bound of nge is (nep/nm) = 5. When
the time-step is less than 2.0e6, ng. is kept to 5 because the
Q-network 1is still stupid and can hardly get a valid mapping.
When time-step is larger than 2.0e6 and less than 5.0e6, n,,
becomes larger on average as the Q-network becomes smart to
handle the mapping. When the time-step is larger than 5.0e6,
nge becomes even larger on average as the training becomes
convergent. We note that the variance of n,, is very large even
though the Q-network gets convergent. This is because that the
initial mapping state is randomly generated and some of them
may cannot be validly mapped originally. When it happens,
nge 1 also relative small.

E. Case Study

To show the gain from our approach, we take the map-
ping of kernel fdtd-apml on a 6 x 6 mesh plus PEA for case
study. As shown in Fig. 12, kernel fdtd-apml has 21 opera-
tions in total. First, an initial placement is given, shown in
Fig. 12(a), including three invalidly routed edge (see the red
arrows). When the time-step of training reaches to 2e6, the
QO-network is still stupid and random actions are often taken
in e-greedy policy. Consequently, more invalidly routed edges
and more trivial RPE are generated, as shown in Fig. 12(b).

LIU et al.: DFG MAPPING OPTIMIZATION FOR CGRA WITH DEEP RL

TABLE III
NEURAL ARCHITECTURE FOR DIFFERENT PEA SIZE

| PEA size | Input Layer | Hidden Layer | Output Layer |

4x4 16 x 16 256 24

6 x 6 36 x 36 512 60

8 x 8 64 x 64 1024 112

1.5
° mesh+ 4x4
2 1.0{ — mesh+6x6
v —— mesh+ 8x8
3 05
k)
& 00
[
2-05
9]
Z-1.0
0.0 0.2 0.4 0.6 0.8 1.0
Time steps e
Fig. 13. Training curves of agents for different PEA size.

TABLE IV
TRAINING TIME FOR DIFFERENT PEA SI1ZE

[PEAsize [Ax4[6x6] Sx8 |
| time(hours) | 5.05 | 23.34 | 133.23 |

When the time-step of training reaches to 8¢6, the Q-network
becomes smart and less exploration is conducted in e-greedy
algorithm. Therefore, the better solution is generated by the
Q-network from the initial state within 10000 time-steps.

F. Scalability to Different Architectures

Our approach is applicable to different PEA size by simply
modifying the layer size of the neural network. Table III gives
the specific layer size set for PEA size of 4 x4, 6x6, and 8 x 8.
The sizes of input layer and output layer are strictly determined
by the state representation and action representation described
in Section III. The number of neurons in hidden layer is set
256, 512, and 1024 for 4 x4, 6 x 6, and 8 x8 PEAs, empirically.
With the Q-network set above, the training curves tracking the
agent’s average episode reward are demonstrated in Fig. 13.
From the training curves, the agent of larger PEA size spends
more iterations to get into convergence as the data space and
neural architecture size are much larger. The training time-
step to get into convergence for 4 x 4, 6 x 6, and 8 x 8 PEAs
are about 5e5, 2¢6, and 7¢6. The time costs of training for
three PEAs are also quite different. As shown in Table IV, it
spends 5.05, 23.34, and 133.23 h to make the neural networks
for 4 x 4, 6 x 6, and 8 x 8 PEAs be convergent, respectively.
The training time seems to be exponential to the PEA size
and it becomes impractical for very large PEAs. However, the
PEA size in real CGRA is usually designed to be small in
consideration of power and area. Therefore, our approach is
still applicable for most CGRAs.

G. Compilation Time

Although the training time of RLMap is tediously long for
larger PEA, the compiling time is acceptable. As shown in
Fig. 14, the compilation time of the kernels in Table I of

2281

avg
jfdctflt
clincs
fdtd-apml
ftt
vsolve
mshift
jquant2
calvir
wayinit
places
pppm
seidel-2d
wrf
filter
adi

3 SPKM
3 Pattern
= RLMap

bycl

1071

10° 10! 102 103

Fig. 14. Compilation time of different approaches.

different approaches targeting to 8 x 8 mesh-routed PEA is
presented, where the x-axis indicates the compilation time
(seconds). All the approaches terminated after 2 h. SPKM
and pattern-based approaches find solutions for 14 kernels and
our approach finds solutions for all the 16 kernels. We note
that our approach performs worse than other approaches on
small kernels. That is because there are millions of opera-
tions in the forward prediction process of Q-network at each
time-step. As for small kernels, the time-step reduced by our
approach is not obvious. Thus, the compilation time, the prod-
uct of time-step and latency of each step, is still very long for
small kernels. As for large kernels, our approach reduces the
time-steps greatly. Consequently, the compilation time of our
approach also keeps moderate. On average, our approach gets
compilation time comparable to that of SPKM.

V. CONCLUSION

Traditional CGRA mapping algorithms optimize placement,
routing and PE insertion, respectively, and iteratively search
global optimized solution among the three steps. This paper
has proposed an efficient yet high-quality CGRA mapping
approach. It is a novel academic method unifying placement,
routing, and PE insertion in a deep RL framework for CGRA
mapping. In the Q-network for state-action evaluation, state,
action, reward, and network architecture are well designed to
guide training to improve routability while reducing mapping
cost. Consequently, the proposed approach can perform DFG
mappings with high quality. The experimental results have
shown that our approach has established the successful use
of deep RL for high-quality and practical CGRA mapping.

2282

[1

—

[3]

[4]

[5]

[7

—

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 12, DECEMBER 2019

REFERENCES

Electronics Resurgence Initiative: DARPA
Mircosyst. Technol. Office, 2017.

X. Wei et al., “Automated systolic array architecture synthesis for high
throughput CNN inference on FPGAS,” in Proc. 54th Annu. Design
Autom. Conf., 2017, p. 29.

X. Wei, Y. Liang, T. Wang, S. Lu, and J. Cong, “Throughput
optimization for streaming applications on CPU-FPGA heterogeneous
systems,” in Proc. 22nd Asia South Pac. Design Autom. Conf. (ASP-
DAC), 2017, pp. 488-493.

B. Mei, S. Vernalde, H. De Man, and R. Lauwereins, “ADRES: An
architecture with tightly coupled VLIW processor and coarse-grained
reconfigurable matrix,” in Proc. Int. Conf. Field Program. Logic Appl.,
2003, pp. 61-70.

V. Govindaraju et al., “DySER: Unifying functionality and parallelism
specialization for energy-efficient computing,” IEEE Micro, vol. 32,
no. 5, pp. 38-51, Sep./Oct. 2012.

V. Govindaraju, C. Ho, and K. Sankaralingam, “Dynamically specialized
datapaths for energy efficient computing,” in Proc. I[EEE 17th Int. Symp.
High Perform. Comput. Archit., 2011, pp. 503-514.

L. Liu et al., “An energy-efficient coarse-grained reconfigurable process-
ing unit for multiple-standard video decoding,” IEEE Trans. Multimedia,
vol. 17, no. 10, pp. 1706-1720, Oct. 2015.

J. W. Yoon et al., “SPKM: A novel graph drawing based algorithm for
application mapping onto coarse-grained reconfigurable architectures,”
in Proc. Asia South Pac. Design Autom. Conf., 2008, pp. 776-782.

G. Mehta et al., “UNTANGLED: A game environment for discovery
of creative mapping strategies,” ACM Trans. Reconfig. Technol. Syst.,
vol. 6, no. 3, p. 13, 2013.

G. Mehta, K. K. Patel, N. Parde, and N. S. Pollard, “Data-driven map-
ping using local patterns,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 32, no. 11, pp. 1668-1681, Nov. 2013.

S. Yin, D. Liu, L. Sun, L. Liu, and S. Wei, “DFGNet: Mapping dataflow
graph onto CGRA by a deep learning approach,” in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), May 2017, pp. 1-4.

B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“Exploiting loop-level parallelism on coarse-grained reconfigurable
architectures using modulo scheduling,” IEE Proc. Comput. Digit.
Techn., vol. 150, no. 5, pp. 255-261, 2003.

M. Hamzeh, A. Shrivastava, and S. Vrudhula, “EPIMap: Using epimor-
phism to map applications on CGRAs,” in Proc. 49th Annu. Design
Autom. Conf., 2012, pp. 1284-1291.

D. Liu, S. Yin, L. Liu, and S. Wei, “Polyhedral model based mapping
optimization of loop nests for CGRAs,” in Proc. 50th Annu. Design
Autom. Conf., 2013, pp. 1-8.

D. Liu, S. Yin, Y. Peng, L. Liu, and S. Wei, “Optimizing spatial map-
ping of nested loop for coarse-grained reconfigurable architectures,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 11,
pp. 2581-2594, Nov. 2015.

H. Park et al., “Edge-centric modulo scheduling for coarse-grained
reconfigurable architectures,” in Proc. 17th Int. Conf. Parallel Archit.
Compilation Techn., 2008, pp. 166-176.

M. Hamzeh, A. Shrivastava, and S. Vrudhula, “REGIMAP: Register-
aware application mapping on coarse-grained reconfigurable architec-
tures (CGRAS),” in Proc. 50th Annu. Design Autom. Conf., 2013,
p. 18.

V. Mnih et al., “Playing Atari with deep reinforcement learning,” arXiv
preprint arXiv:1312.5602, 2013.

V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, pp. 484-489, Jan. 2016.

D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, p. 354, 2017.

F. Bouwens, M. Berekovic, B. De Sutter, and G. Gaydadjiev,
“Architecture enhancements for the ADRES coarse-grained recon-
figurable array,” in High Performance Embedded Architectures and
Compilers. Heidelberg, Germany: Springer, 2008, pp. 66-81.

G. Lee, S. Lee, K. Choi, and N. Dutt, “Routing-aware application
mapping considering Steiner points for coarse-grained reconfigurable
architecture,” in Proc. Int. Symp. Appl. Reconfig. Comput., 2010,
pp. 231-243.

J. W. Yoon, A. Shrivastava, S. Park, M. Ahn, and Y. Paek, “A graph
drawing based spatial mapping algorithm for coarse-grained reconfig-
urable architectures,” IEEE Trans. Very Large Scale Integr. (VSI) Syst.,
vol. 17, no. 11, pp. 1565-1578, Nov. 2009.

Page 3 Investments,

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

S. Friedman et al., “SPR: An architecture-adaptive CGRA mapping
tool,” in Proc. ACM/SIGDA Int. Symp. Field Program. Gate Arrays,
2009, pp. 191-200.

C. Ebeling, D. C. Cronquist, and P. Franklin, “RaPiD—Reconfigurable
pipelined datapath,” in Proc. Int. Workshop Field Program. Logic Appl.,
1996, pp. 126-135.

V. Betz and J. Rose, “VPR: A new packing, placement and routing tool
for FPGA research,” in Proc. Int. Workshop Field Program. Logic Appl.,
1997, pp. 213-222.

T. Taghavi, X. Yang, and B.-K. Choi, “Dragon2005: Large-scale
mixed-size placement tool,” in Proc. Int. Symp. Phys. Design, 2005,
pp. 245-247.

C. Sechen and A. Sangiovanni-Vincentelli, “The timberwolf placement
and routing package,” IEEE J. Solid-State Circuits, vol. SSC-20, no. 2,
pp. 510-522, Apr. 1985.

T.-C. Chen, T.-C. Hsu, Z.-W. Jiang, and Y.-W. Chang, “NTUplace: A
ratio partitioning based placement algorithm for large-scale mixed-size
designs,” in Proc. Int. Symp. Phys. Design, 2005, pp. 236-238.

G. Ansaloni, K. Tanimura, L. Pozzi, and N. Dutt, “Integrated kernel
partitioning and scheduling for coarse-grained reconfigurable arrays,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 31, no. 12,
pp. 1803-1816, Dec. 2012.

S.-Y. Chen and Y.-W. Chang, “Routing-architecture-aware analytical
placement for heterogeneous FPGAs,” in Proc. 52nd ACM/EDAC/IEEE
Design Autom. Conf. (DAC), 2015, pp. 1-6.

T. Luo and D. Z. Pan, “DPlace2.0: A stable and efficient analytical
placement based on diffusion,” in Proc. Asia South Pac. Design Autom.
Conf., 2008, pp. 346-351.

Dajiang Liu received the B.S. degree from
the School of Microelectronics and Solid-State
Electronics, University of Electronic Science and
Technology of China, Chengdu, China, in 2009
and the Ph.D. degree from the Institute of
Microelectronics, Tsinghua University, Beijing,
China, in 2015.

From 2015 to 2017, he was a Research Associate
with Tsinghua University. He is currently a Lecturer
with the College of Computer Science, Chongqing
University, Chongqging, China. His research interests

include reconfigurable computing and deep reinforcement learning.

Shouyi Yin (M’09) received the B.S., M.S.,
and Ph.D. degrees in electronic engineering from
Tsinghua University, Beijing, China, in 2000, 2002,
and 2005, respectively.

He was a Research Associate with Imperial
College London, London, U.K. He is currently
an Associate Professor with the Institute of
Microelectronics, Tsinghua University. His research
interests include reconfigurable computing, mobile
computing, and SoC design.

Guojie Luo (M’12) received the B.S. degree in
computer science from Peking University, Beijing,
China, in 2005 and the M.S. and Ph.D. degrees in
computer science from the University of California
at Los Angeles, Los Angeles, CA, USA, in 2008 and
2011, respectively.

He is currently an Associate Professor with the
School of EECS, Peking University. His research
interests include electronic design automation, het-
erogeneous computing with FPGAs and emerging
devices, and medical imaging analytics.

Dr. Luo was a recipient of the 2013 ACM SIGDA Outstanding Ph.D.
Dissertation Award in Electronic Design Automation and the 10-year
Retrospective Most Influential Paper Award with ASPDAC 2017.

LIU et al.: DFG MAPPING OPTIMIZATION FOR CGRA WITH DEEP RL

Jiaxing Shang was born in Guiyang, China, in
1987. He received the B.S. and Ph.D. degrees in
control science and engineering from Tsinghua
University, Beijing, China, in 2010 and 2016,
respectively.

He is currently a Lecturer with the College
of Computer Science, Chongqing University,
Chongqing, China, where he has been a
Post-Doctoral Researcher of computer science
and technology since 2016. He has published about
20 high quality journal and conference articles,
including Knowledge-Based Systems, WASA, ICONIP, SNA-KDD, and
Physica A. His research interests include social networks analysis, data
mining, artificial intelligence, and recommender systems.

Leibo Liu (M’10) received the B.S. degree in
electronic engineering from Tsinghua University,
Beijing, China, in 1999 and the Ph.D. degree
from the Institute of Microelectronics, Tsinghua
University in 2004.

He currently serves as an Associate Professor
with the Institute of Microelectronics, Tsinghua
University. His research interests include reconfig-
urable computing, mobile computing, and very large
scale integration DSP.

Shaojun Wei was born in Beijing, China, in 1958.
He received the Ph.D. degree from the Faculté
Polytechnique de Mons, Mons, Belguim, in 1991.

He became a Professor with the Institute
of Microelectronics, Tsinghua University, Beijing,
China, in 1995. His research interests include very
large scale integration SoC design, EDA methodol-
ogy, and communication ASIC design.

Dr. Wei is a Senior Member of the Chinese
Institute of Electronics.

2283

Yong Feng was born in Chongqing, China, in
1977. He received the B.S. degree in computer
applied technology, the M.S. degree in computer
systems organization, and the Ph.D. degree in
computer software and theory from Chongqing
University, Chongging, China, in 1999, 2003, and
2006, respectively.

From 2007 to 2010, he was a Post-Doctoral
Researcher with Control Science and Engineering
Center, Chongqing University, where he is currently
a Professor with the College of Computer Science.
He has published over 50 academic papers and two monographs.

Shangbo Zhou was born in Guangxi, China. He
received the B.S. degree in mathematics from
Guangxi National College, Nanning, China, in 1985,
the M.S. degree in mathematics from Sichuan
University, Chengdu, China, in 1991, and the Ph.D.
degree in circuit and system from the University
of Electronic Science and Technology of China,
Chengdu.

From 1991 to 2000, he was with the Chongqing
Aerospace Electrical and Mechanical Technology
Design Research Institute, Chongqing University,
where he has been with the College of Computer Science since 2003,
and is currently a Professor. His research interests include artificial neu-
ral networks, physical engineering simulation, visual object tracking, and
nonlinear dynamical system. He has published over 100 journal and confer-
ence papers, including Physical Review E, Neurocomputing, Chaos, Pattern
Recognition, and Multimedia Tools and Applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

