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Abstract. Graph neural networks (GNNs) have attracted increasing
interests in recent years. Due to the poor data locality and huge data
movement during GNN inference, it is challenging to employ GNN to pro-
cess large-scale graphs. Fortunately, processing-in-memory (PIM) archi-
tecture has been widely investigated as a promising approach to address
the “Memory Wall”. In this work, we propose a PIM architecture to
accelerate GNN inference. We develop an optimized dataflow to leverage
the inherent parallelism of GNNs. Targeting the dataflow, we further
propose a hierarchical NoC to perform concurrent data transmission.
Experimental results show that our design can outperform prior works
significantly.

1 Introduction

As the volume of non-Euclidean data [32] keeps growing, graph neural networks
(GNNs) have attracted great attention because of their capability to express
complex relationships and inter-dependency between objects. Inspired by the
success of convolutional neural networks (CNNs) in computer vision domain,
spatial-based GNNs have advanced rapidly in recent years. Most GNNs are com-
posed of several “convolutional” layers, as those in CNNs [11,19].

The “convolution” operation in GNN can be roughly divided into two
phases [30]. Aggregation Phase aggregates nodes’ information from their
multi-hop neighbours by pointer-chasing operations. This phase incurs inten-
sive random memory accesses. Handling Phase feeds the aggregated features
into a neural network to generate new features. Both computation and aggre-
gation are regular in this phase. Having totally different processing patterns,
the two phases consume considerable yet distinct resources. Thus, each of them
may become the bottleneck of the whole system. We can tell that GNN pro-
cessing encounters similar challenges as those in the graph processing and CNN
inference, which have been well studied separately.

Recently, researchers propose to accelerateGNNprocessing by optimizing both
software framework [20] and hardware architecture [30]. Ma et al. [20] developed
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a programming framework for GNN processing by extending conventional edge-
centric processing framework. Yan et al. [30] employs a hybrid architecture to han-
dle the two phases separately. However, the size of graph datasets for GNNs keeps
increasing in many applications, such as, social networks and e-commerce trans-
actions [11,22,28]. As a result, the requirements for large capacity and high band-
width of the memory subsystem are further raised.

To address this challenge, the processing in memory (PIM) architecture has
been considered as a promising solution. It can greatly alleviate the overheads
of data movement by offloading computation tasks to the storage. PIM architec-
tures have been extensively explored for both DNN models and graph processing
applications [8,12,24,27]. However, it is inefficient to directly employ prior works
for GNNs. For example, PRIME [8] proposes a comprehensive design of process-
ing elements for NN processing on ReRAM. But its processing dataflow is not
suitable for GNNs, and the bus-based communication among PEs may cause sig-
nificant performance loss during the random sampling in the aggregation phase.
Customized for graph processing, GraphR [27] addresses the random access prob-
lem in aggregation phase by employing edge-center processing model. However,
the architecture for a conventional graph task lacks the support for efficient
tensor processing.

Taking both aggregation phase and handling phase into consideration, we
propose a PIM architecture equipped with a carefully designed NoC, called
GNN-PIM. Our architecture employs SAGA [20] as the programming model
and provides efficient PIM implementation. In GNN-PIM, we first leverage the
computing capability of PIM architecture to support operations in handling
phase. Then, we design a hierarchical interconnection network for efficient data
movement in the aggregation phase. To the best of our knowledge, this is the
first PIM accelerator proposed for GNNs. The contributions of this work are
summarized as follows:

– By exploiting the inherent parallelism of GNNs, we propose a PIM architec-
ture called GNN-PIM to accelerate the inference.

– We propose an optimized dataflow to map GNN inference efficiently on GNN-
PIM, which is compatible with SAGA programming model.

– To facilitate the dataflow, we develop a hierarchical NoC providing high-
bandwidth for data transmission.

The rest of this paper is organized as follows. In Sect. 2, we briefly review
the computation of GNN inference with SAGA model. In addition, the basics of
PIM architecture are introduced. In Sect. 4, we propose the GNN-PIM architec-
ture and describe the execution dataflow on it. The hierarchical interconnection
network of GNN-PIM is then presented in Sect. 3. Section 6 provides evaluation
to demonstrate the efficiency of GNN-PIM, and Sect. 7 concludes this paper.

2 Background

In this section, we first introduce the operations of GNN inference and a ded-
icated programming model called SAGA. Then, we present basics about PIM
designs.
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2.1 GNN Inference and SAGA

GNNs are emerging neural networks that operate directly on graphs with non-
Euclidean data. The idea of GNNs roots in CNNs and graph embedding [32].
Inheriting the ideas of parameter sharing from CNN and recursive execution from
RNN, GNN convolution with kernel size one could be formulated as follows:

ht
v = f(ht−1

v′∈N(v), h
t−1
v , Ie)

where N(v) is the neighbourhood of v, ht
v is the feature of vertex v in iteration

t, and Ie are the labels of edges that are connected with v. To process the
operations involved in GNN inference, vertices need to fetch features from their
neighboring vertices. Since the neighbours of nodes are relevant to the topology
of graph, random memory access occurs frequently. Such random memory access
pattern can cause significant bandwidth waste and performance degradation.

Algorithm 1. GGCN in SAGA
input: p = [W l

H , W l
C , W l

e], vertexl

output: vertexl+1

1: edgel = Scatter(vertexl)
2: acc = ApplyEdge(edgel, p)
3: function ApplyEdge(edgel, p)
4: η = sigmoid(p.W l

H ⊗ edgel.src + p.W l
C ⊗ edgel.dst)

5: return η � edgel.src
6: end function
7: accum = Gather(acc)
8: vertexl+1 = ApplyVertex(vertexl, accum, p)
9: function ApplyVertex(vertexl, accum, p)

10: return ReLU(p.W l ⊗ accum);
11: end function

To regulate the processing of GNN inference, Neugraph [20] proposes a pro-
gramming model called SAGA. SAGA converts a primitive program to the edge-
centric dataflow and alleviates random memory access. In SAGA, a GNN is
decomposed and converted into ApplyEdge and ApplyVertex to handle edges
and vertices, respectively. Combined with Scatter and Gather for data transmis-
sion, the processing of GNN inference is illustrated in Algorithm1.

ApplyEdge takes parameters of the network (p) and scattered features (edge)
as input, and generates the partially accumulated features (acc) which is further
reduced by Gather. The inputs of ApplyVertex consist of accum, vertex data
tensor (vertex ), and p. ApplyVertex outputs new vertex features through a neural
network, usually an MLP. Scatter and Gather perform data broadcasting before
ApplyEdge and data gathering before ApplyVertex, respectively.
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2.2 PIM Basis

PIM architecture breaks the “Memory Wall” by moving computation to where
the data are stored. Thus, it is friendly for memory-intensive applications such as
graph processing and deep neural networks. Recently, various PIM architectures
have been proposed. Basically, these approaches can be categorized according to
the computation unit.

For the first type, the computation unit is still based on the traditional logic,
which is integrated close to or inside the memory array [6,7,10,25]. This is
also known as near-data-processing (NDP). For the second type, the computing
unit is just built using the memory cell. Prior works have demonstrated that
both traditional SRAM and DRAM technologies [1,17,23] and emerging memory
technologies, such as ReRAM [24,29,31], MRAM [3–5], and PCM [18], can be
leveraged for PIM designs.

Recently, many works [2,8,12,21,24,26,27] have revealed the potential ben-
efits of using PIM architectures for both DNN and graph computing applica-
tions. However, these accelerators either lack the ability to handle graph-like
data transmission pattern during GNN inference, or are unable to process NN
computation efficiently. As a result, we propose the GNN-PIM architecture to
simultaneously address the two drawbacks of prior works.

3 GNN-PIM Architecture

In this section, we introduce GNN-PIM’s hierarchical architecture. The top hier-
archy is Node Cluster, composed of a number of Nodes. Each node owns
several memory chunks and a set of processing elements (PEs).

3.1 Node

Node is the unit for performing computation on the sub-graphs. They are funda-
mental modules to build the whole architecture. As shown in Fig. 1, the micro-
architecture of nodes includes several memory chunks and a processing core.
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Fig. 1. Overall architecture of GNN-PIM
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A node can be configured as either an E-Node or a V-Node, depending on the
type of data stored in the memory chunk that they are working on. During GNN
inference, E-Nodes are assigned with computation on edges, i.e. ApplyEdge. V-
Nodes handle remaining tasks, consisting of Scatter, Gather and ApplyVertex.
To simplify hardware design and provide more flexibility for mapping strategy,
E-Node and V-Node share the same architecture and just differ in control logic
which could be configured according to graph status.

We equip each V-Node with a processing core, weight memory for the storage
of neural weights of ApplyVertex, along with temporary vertex memory and
stationary vertex memory to store source vertex chunks and destination vertex
chunks, respectively. An E-Node also consists of a processing core, a weight
memory, as well as an input memory for storing input features of the layer that
they are assigned to.

Matrix-Vector (MV) multiplication is the key operation of a processing core.
It is used to process the most computing intensive functions in the phases of
ApplyEdge and ApplyVertex. The computing architecture for MV operations
have been extensively studied in prior works. Note that several non-MV functions
are also needed, which are implemented with dedicated logic.

3.2 Node Cluster

Multiple Nodes can be grouped into a Node Cluster connected by NoC. The
node cluster is composed of several nodes connected by a interconnection net-
work. Some nodes are configured to be V-Nodes and the others are E-Nodes
according to the sub-graph topology. In this way, more edges exist in the sub-
graph, more nodes are configured to be E-Nodes. Since we employ a homogeneous
design for the underlying hardware, all the nodes can be configured arbitrarily.
As a result, GNN-PIM is able to configure nodes to balance the workloads accord-
ing to the graph topology. Nodes in GNN-PIM work more like Multi-Processors
System-on-Chip (MPSoC), transmitting data via the network-on-chip (NoC).
In order to design an efficient NoC, we first need to understand the execution
dataflow, which is introduced in the next section.

4 Execution Dataflow

We design an optimized dataflow that can map SAGA to GNN-PIM in a pipelin-
ing style. It is based on the phase sequence of Scatter, ApplyEdge, Gather, and
ApplyVertex.

4.1 Mapping Strategy

As shown in Fig. 2, the whole graph is divided into multiple sub-graphs by divid-
ing vertices into multiple chunks. Edges, which take the vertices in the chunk
as destination, are also contained in the sub-graph. The set of edges in the sub-
graph could be further divided by their source vertices. We put the edges with
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Fig. 2. Edge and vertex chunks partitioning and mapping strategy

source vertices in the same sub-graph into a block, named as edge chunk. And we
assign a cluster of our architecture with a sub-graph, which contains a column
of edge chunks for processing ApplyEdge on, together with the vertex chunk for
handling ApplyVertex phase. In a cluster, we let an E-Node process a layer of
neural network of ApplyEdge, and V-Nodes are responsible for handling Scatter,
Gather and ApplyVertex.

As for most of natural graphs obey the power-law, the edges in each chunk
may be diverse significantly, resulting in imbalanced workload for clusters. To
handle this situation, we employ the Index Mapping Interval-Block Partition
(IMIB) algorithm introduced in [9]. IMIB firstly removes the blank vertices,
then hashes the vertices into different chunks using the modulo function. The
time complexity of this algorithm is O(m), where m denotes the size of edges.

4.2 Setup and Terminology

ApplyEdge is the most time-consuming state, which is normally composed of
multiple layers of neural networks. To simplify discussion, we assign the compu-
tation task of each layer to an individual E-node. In the example of Fig. 2, the
ApplyEdge phase employs a three-layer MLP. Thus, we have three E-nodes in a
cluster for each layer computation.

Terminologies

– Eij denotes the edge chunk located at the i-th row and the j-th column, and
Vi means the i-th vertex chunk.

– Li denotes the i-th E-Node, which handles the computation of i-th layer
ApplyEdge.

– S(Eij) denotes the output features of Scatter, which take Vi and Vj as input
and process the operations related to Eij .

– Lt(Eij) denotes the output features of t-th layer on the edge chunk Eij .
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4.3 Dataflow Description

We divide the whole execution flow into multiple rounds. A round can be further
divided into two sub-rounds. During the computation sub-round, input features
and neural weights stored in their local buffer are fed into processing arrays
to do the computation. During each communication sub-round, nodes forward
their output features, and clusters exchange vertex chunks stored in temporary
memories with each other in a circular manner, as shown in Fig. 3.

Fig. 3. Edge chunks being processed in each round

Initially, the V-Node in the cluster loads the i-th vertex chunk and copies
it into both the stationary vertex memory and temporary vertex memory. In
the following paragraphs, we will introduce the details in Round 0, Round 1 to
illustrate how the dataflow works.

Fig. 4. GNN-PIM dataflow during Round 0
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The dataflow during Round 0 is shown in Fig. 4. During the computation
sub-round, clusters load edge chunks in the diagnose of the adjacent matrix of
the graph, as shown in Fig. 3. Then V-Nodes feed data in edge and vertex chunks
into processing cores, respectively. During the communication sub-round, the V-
Node in cluster 0 forwards its output features S(E00) to the edge node. Cluster
0 transmits its vertex chunk V0 to its neighbor cluster 2. At the same time, it
receives the vertex chunk V1 from cluster 1.

Fig. 5. GNN-PIM dataflow during Round 1

The dataflow during Round 1 is illustrated in Fig. 5. During the computation
sub-round, node clusters shift the edge chunks they works on, loading new edge
chunks from edge chunk memory, as Fig. 3 shows. Noted that the vertex chunks
stored in stationary vertex memory and temporary vertex memory are exactly
the destination vertices and source vertices of the new edge chunk respectively.
E-node L0 starts its computation in this round. During the communication sub-
round, both V-Nodes and E-Nodes forward their outputs to their following nodes
in the pipeline. At the same time, each cluster also forwards its vertex chunk
accordingly.

In the subsequent rounds, GNN-PIM repeats this process until clusters
receive the same data as the one in their stationary memory, which indicates
that ApplyEdge and Gather finish. After that, V-Nodes continue to perform
ApplyVertex on the aggregated data to generate new features. The ApplyVertex
phase is not shown due to page limitation.

5 Interconnection Hierarchy

As reported by Ji et al. [12], data transmission may consume considerable time,
even a number of times longer than computation does. For GNN inference pro-
cessing, the transmission is much more complex by combining all the 4 different
phases in SAGA. According to previous work [16], it is inefficient to employ
basic interconnection topology such as bus or mesh for handling GNN’s trans-
mission patterns. As a result, we develop a 2-layer hierarchical interconnection
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network for handling not only local communication efficiently in the cluster but
also global communication between clusters with low power and area overhead.

a) b)

Fig. 6. Network hierarchy

Inter-cluster Interconnection Networks: We use the Octagon topology [15]
for the global network, as shown in Fig. 6(a). Each block on the octagon is a node
cluster. The O(n) ring topology is cost effective, and can fit data movement pat-
tern of the node cluster architecture well. The Octagon topology is constructed
based on a ring network. It guarantees that there exist at most two hops of
a transaction between two arbitrary routers in the same ring. As for cross-ring
transaction, the maximum number of hops increases to 2n, where n is the number
of pass-by rings. Furthermore, the low complexity of global wiring demonstrates
the great scalability of GNN-PIM’s networks.

Noted that the main cost of Scatter is to move data between clusters. To
illustrate the superiority of our dataflow on this topology, we use the total hops
in global network as the metric since traversing through global wires consumes
much more time and energy than local ones. There are 8 clusters in total and
they are connected by a single Octagon Ring. Without considering deadlock or
non-optimal routing, the minimal global hops of preparing data for an E-Node is
1× 3

7 +2× 4
7 = 1.57 on average. And the number decreases to 1 by employing the

optimized dataflow, as each transaction is only between two adjacent clusters.
Furthermore, most nodes keep busy and no spatial broadcast is needed, which
eliminates the bandwidth demand of global interconnection network. The storage
overheads consist of the vertex of the graph and one edge chunk per cluster.
These overheads can be ignored, compared with holding the whole edge data.

Intra-cluster Interconnection Networks: The topology employed to con-
nect nodes in the same group is illustrated in Fig. 6(b), and each router is in
charge of the data transmission related to a node. In this example, n routers are
connected via the local network. Each router is connected to other logn routers,
i.e. each router has the radix of logn. Since each number with h = logn bits
can change to another number with the same bit in h steps by inverting single
bit per step, each transaction goes through at most logn hops from source to
destination.
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6 Evaluation

In this section, we first present the detailed evaluation setup. It is worth noticing
that GNN-PIM is applicable for various memory technologies, and we choose
ReRAM to prototype GNN-PIM in this work. Then we perform comparison
between GNN-PIM and prior works in performance. We also present compre-
hensive analysis on power consumptions of GNN-PIM.

6.1 Benchmark

We use the datasets mentioned in Neugraph [20] to evaluate GNN-PIM’s perfor-
mance and power consumptions. The vertex number, edge number, feature size,
and model size of these real-world graphs are summarized in Table 1.

Table 1. Summary of real-world graphs

Dataset Vertex Edge Feature Storage

pubmed 19.7K 108.4K 500 500 KB

blog 10.3K 668.0K 128 2.6 MB

redditsmall 58.2K 1.4M 300 5.8 MB

redditfull 2.4M 705.9M 300 2883 MB

enwiki 3.6M 276.1M 300 1118 MB

amazon 8.6M 231.6M 96 960 MB

6.2 Methodology

Baseline: We employ a state-of-the-art design, PRIME [8], as our baseline. We
adapt the size of PRIME circuits and scale the power and performance reported
in that paper for a fair comparison. For simplicity, we treat its interconnection
topology as a bus.

GNN-PIM Configuration: We set the overall size of ReRAM to 16 GB,
and it is divided into 8 clusters with 2 GB each. There are 32 nodes in each
cluster, connected by local networks. We statically assign 4 of them as V-
Nodes while the other 28 nodes are N-Nodes. For processing elements, we adapt
the same configurations used in PRIME [8]. Resolution of ADC and DAC is
5 bits and 2 bits, respectively. The power and area of the circuit are mod-
eled based on ISAAC [24]. The HRS/LRS resistances are 25 MΩ/50 KΩ, and
read/write voltages are 0.7 V/2 V. The latency and energy cost of read/write are
29.31 ns/50.88 ns and 1.08 pJ/3.91 nJ, respectively. The on-chip network design
adapts Booksim [13] to simulate the latency, and employ the model proposed
in ORION [14] to simulate power consumption and area overhead of the NoC.
Both global network and local network work on 1 GHz. 4 nodes share a physical
router with 1 global channel and 7 local channels. To fully utilize the bandwidth
of local networks, we place V-Nodes of a cluster in different physical routers.
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6.3 Performance Results

The time consumption normalized to PRIME is illustrated in Fig. 7. The per-
formance of PRIME is obtained by applying the dataflow generated by SAGA
framework directly on its circuits. PRIME’s primitive architecture leads to inten-
sive competition and conflicts while using bus for data communication. As a
result, the majority of PEs stay idle waiting for the data.

Therefore, the performance improvement of GNN-PIM comes from two folds.
On one hand, hierarchy interconnection as well as optimized dataflow cooperate
to reduce data transmission latency. On the other hand, parallel broadcast mech-
anism delivers data to multiple processing elements simultaneously, enabling
more PEs working in parallel.

Fig. 7. Speedup over mapping GNNs directly on PRIME

Figure 8 illustrates the breakdown of power consumption, in which we choose
GGCN as the benchmark. The power consumption of NoC could be heavy when

Fig. 8. Breakdown of power consumption
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the graph is sparse or configured with short feature vectors. There are consid-
erable redundant data transmission brought by edge-center programming model
when the graph has high sparsity. Meanwhile, the feature size F will influence
the computation with the factor of F 2 for matrix-vector multiplications, while
for communication the factor is just F .

7 Conclusions

In this paper, we propose GNN-PIM, a PIM architecture for processing GNN
inference. GNN-PIM employs a PIM-based hierarchical architecture with high
throughput and efficiency. Besides, we perform customized optimizations on the
dataflow, and propose a hierarchical NoC design to fully utilize the improvements
brought by the optimized dataflow. Experimental results show that GNN-PIM
achieves up to 52x speedup compared with prior designs.
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