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Abstract
The importance of vital sign detection is self-evident in the mobile health domain. Recent work has shown that one can use 
RF or WiFi signals for respiration and heartbeat detection in a non-contact manner and thus improve its usability compared 
to the wearable-based solution. However, the existing approaches either require an ultra-wideband radio which is not com-
mercially available or do not perform well in practical working environments. The millimeter-wave (mmWave) radio is a 
promising solution for fine-grained heartbeat and respiration sensing applications because of its directionality and sensitivity. 
However, we find traditional mmWave algorithms suffer from background noise in practical scenes. In this article, we address 
this issue by designing a robust algorithm for heart rate detection based on time-domain and frequency-domain information. 
We implement a phase-modulated system on the software-defined radio platform and evaluate the algorithm performance. 
Also, we evaluate the impact of several practical factors, such as detecting distance, aiming point, depression angle, human 
orientation and beam width on the proposed heart rate algorithm. Finally, we explore the feasibility of mmWave on vital 
sign detection with strong background interference and in scenes of real life where the antennas are hanging on the ceiling. 
The results show that the mean estimation error of respiration and heartbeats are 0.487 Bpm and 2.386 bpm.

Keywords  Wireless sensing · Vital signs · Millimeter-wave · Mobile health

1  Introduction

Respiratory rate (RR) and heart rate (HR) are two of the 
most important vital signs that indicate the severity of a 
patient’s condition. Traditional approaches use dedicated 
sensors to measure vital signs in clinical research. For exam-
ple, Holter monitors are used for ambulatory monitoring 
during the recovery period after cardiac surgeries (Zimet-
baum and Josephson 1999), and conventional non-invasive 
monitoring of respiratory rate is performed by impedance 
pneumography (Grenvik et al. 1972) and inductive plethys-
mography. These systems meet the clinical requirement in 
terms of high accuracy, but they are invasive and cumber-
some which obstructs them from daily use.

As the market of mobile health (mHealth) technology is 
rapidly evolving, researchers begin to pay attention to new 
mobile technologies potentially available for health care 
systems. Quite a few research has shown the great potential 
and benefits of introducing vital sign detection into peo-
ple’s daily life, such as physical health tracking, sleep quality 
monitoring (Bianchi et al. 2010), mental stress assessment 
(Sun et al. 2010) and so on. However, towards building a 
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practical system for daily vital sign monitoring, we face 
different challenges compare to the traditional approach: 
the system should be easy to use, non-invasive, and should 
support mobility. Recently advances in smartphones and 
wearable sensors have enabled daily vital sign monitoring, 
such as smart bracelets for monitoring heart rate and chest 
belts for monitoring respiratory rate. Apparently, these wear-
able devices are inconvenient for users who have sensitive 
or fragile skins, for example, users like children, elders, 
patients critically burned, etc.

As such, a good non-contact vital sign monitoring sys-
tem is in desire. Previous work has shown it is possible to 
achieve non-contact vital sign detection based on RF signal 
(Adib et al. 2015). The authors use a customized FMCW 
(Frequency Modulated Carrier Waves) radio, sweeping from 
5.46 to 7.25 GHz, to separate vital signs from different users 
in a multi-user scene. Meanwhile, considering the cost of 
the radio platform, many researchers take advantage of the 
off-the-shelf WiFi-enabled devices to detect human’s vital 
signs (Ravichandran et al. 2015; Abdelnasser et al. 2015; 
Wang et al. 2016; Liu et al. 2015; Wang et al. 2017a, b; 
Zeng et al. 2018; Zeng et al. 2019). However, WiFi sig-
nal has some inherent limitations. When detecting multiple 
humans at the same time, the received signal can be reflected 
from multiple people because of the commonly used omni-
directional antenna. To estimate respiratory rate of multiple 
persons, complex signal processing methods, such as tensor 
decomposition (Wang et al. 2017b) and root-MUSIC (Wang 
et al. 2017a), should be employed to handle the reflected sig-
nal. This makes it difficult to estimate heart rate of multiple 
persons from the tiny motion of heartbeats according to the 
reflected signal.

As one of the critical technologies of the upcoming fifth-
generation wireless systems, millimeter-wave (mmWave) 
technology provides a unique and promising solution to 
overcome many sensing challenges in vital sign detection. 
The biggest advantages are its significantly larger bandwidth 
and higher spatial resolution. Combined with the availability 
of a phased array antenna, mmWave can use a narrow beam 
to detect a single user at one time, switch the beam direc-
tion in nanoseconds and eventually monitor the vital signs 
of multiple users in parallel. MmVital (Yang et al. 2016) 
uses the received signal strength (RSS) of the 60 GHz signal 
to locate human body in a room. What’s more, they study 
the vital sign detection of multiple users concurrently and 
evaluate their system in multi-user scenes. However, RSS is 
insensitive to the minute chest movements caused by respi-
ration and especially the more minute heartbeat according 
to our feasibility study in Sect. 5.3. Therefore, the experi-
mental setup of their work is not practical enough, and for 
HR detection they assume that the antennas are on the same 
height as user’s chest and the HR detecting distance is lim-
ited to 3 meters.

In this paper, we propose a robust vital sign detection 
system, called MiVital, using millimeter-wave (mmWave) 
radios within a larger distance range in more practical 
environments. MiVital is a phase modulated system on the 
software-defined radio platform for monitoring respiratory 
rate and heart rate. The advantages of using mmWave with 
phase modulation are its higher spatial resolution compared 
to WiFi signal because of its short wavelength and its ability 
to separate multiple users with the availability of a phased 
array antenna.

Our system first measures the phase delay of a reflected 
mmWave signal caused by the slight distance changes along 
the signal path. Such small changes are introduced by the 
chest moving back and forth during the respiration and 
heartbeat activities. The estimation of RR is easy because 
the body displacement caused by respiratory holds the domi-
nant position in the change of phase delay. To further esti-
mate user’s HR, there are two traditional methods termed 
by us as the time-domain information based HR detec-
tion (TiHR) and the frequency-domain information based 
HR detection (FiHR). Both of them have their advantages 
and perform well when the user is close to the antennas 
in the previous simple scene. However, when the detecting 
distance gets larger and antennas hang on the ceiling, the 
accuracy rates of both the existing algorithms will decrease 
seriously. FiHR suffers from its global instability that the 
signal in the frequency domain may have a misleading peak, 
while TiHR suffers from its local sensitivity that the signal 
in the time domain may be disturbed by breathing harmonics 
and user’s unconscious jitters. To improve the robustness of 
HR detection, we develop a Time-domain and Frequency-
domain Information Based HR Detection algorithm combin-
ing both the advantages of TiHR and FiHR. Specifically, 
we take advantage of TiHR’s global stability by calculat-
ing a reference HR value according to the acceleration of 
phase delay in the time domain, and then use the reference 
value to avoid selecting the wrong peak in the frequency 
domain. After selecting a reliable frequency peak, we apply 
the HR estimation methods in FiHR to make use of its local 
insensitivity.

Besides, we further study the accuracy of heart rate esti-
mation versus the environmental factors such as detecting 
distance, aiming position, depression angle, human orienta-
tion and beam width. Finally, we evaluate the performance 
of our system with strong background interference and in 
practical scenes of imitating a ceiling-mounted access point. 
The results show that the mean estimation errors of RR and 
HR are 0.487 Bpm and 2.386 bpm in the working range, 
which is comparable with the state-of-the-art results, and 
our system can work at a larger range up to 7 meters with 
the 34 dBi antennas.

In summary, our contributions are: 
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1.	 We design a time-domain and frequency-domain infor-
mation based heart rate estimation algorithm to improve 
its robustness to background noise in comparison with 
two existing algorithms using the mmWave radio.

2.	 We implement and evaluate our designed vital sign 
detection system on the 60 GHz software-defined radio 
platform, and our experimental results show we can 
achieve 0.487 Bpm and 2.386 bpm estimation error of 
respiratory rate and heart rate, respectively.

3.	 We study the impact of detecting distance, aiming posi-
tion, depression angle, human orientation and beam 
width on the performance of our system based on the 
estimation results and further evaluate vital sign detec-
tion with strong background interference and in the daily 
working environment through an access point mounted 
on the ceiling or on the wall.

2 � Related work

2.1 � Contact‑based vital sign detection

Quite a few research has been done using the contact-based 
approach. We categorize these systems into several groups 
based on the sensor modality: systems using force sensors 
(Bruser et al. 2011; Chung et al. 2007), velocity sensors (Jia 
et al. 2016, 2017), accelerometers (Bonde et al. 2018; Phan 
et al. 2008), pressure sensors (Rosales et al. 2012; Anttonen 
et al. 2005; Kortelainen et al. 2012),capacitive proximity 
sensors (Griffiths et al. 2014), optical sensors (Šprager and 
Zazula 2013), etc. Even though many systems have been 
proposed, few are easy to use, non-invasive, and location-
independent all at the same time. For example, some systems 
detect the heartbeats but require some specially designed 
hardware sandwiched between the bed frame and mattress 
(Rosales et al. 2012); some systems require a user to lean 
his/her back against the backrest of a chair in order to get 
accurate respiration detection (Griffiths et al. 2014); some 
systems only work for some fixed locations (Bruser et al. 
2011; Kortelainen et al. 2012); some system can only detect 
one type of vital signs (either respiratory rate or heart rate) 
but not both (Jia et al. 2016; Bonde et al. 2018); most of the 
systems require direct contact with either the sensor or some 
kind of medium (chair, bed, etc.) which limit users’ mobil-
ity; also, most of the systems fail to handle multiple users.

2.2 � Non‑contact vital sign detection

Adib et al. (2015) used FMCW radio sweeping from 5.46 
GHz to 7.25 GHz to separate multiple quasi-static users into 

different buckets. But their system uses customized hardware 
and is not suitable for promotion to daily usage. Recently, 
researchers are interested in using WiFi signal of 2.4/5 GHz 
(Ravichandran et al. 2015; Abdelnasser et al. 2015; Wang 
et al. 2016; Liu et al. 2015; Zeng et al. 2018; Wang et al. 
2017a, b; Zeng et al. 2019). Authors in Ravichandran et al. 
(2015) and Abdelnasser et al. (2015) use the RSS of WiFi 
signal to detect vital signs and can only estimate the respira-
tory rate, while authors in Liu et al. (2015) use channel state 
information (CSI) of WiFi to estimate the respiratory rate 
and heart rate at the same time. And authors in Wang et al. 
(2016), Zeng et al. (2018) introduce the Fresnel zone model 
for respiratory rate detection using WiFi. But with the inher-
ent limitation of WiFi signal, it’s difficult for their work to 
distinguish users with similar vital signs. The work of Wang 
et al. (2017a, 2017b) exploits WiFi CSI phase difference 
between two receiver antennas to extract respiration rate and 
heart rate. Apart from the RF signal, researchers also suc-
ceed in measuring heart rate based on videos (Li et al. 2014). 
They take advantage of cameras to capture the skin color 
change caused by the cardiac pulse. However, the detection 
region needs to be illuminated throughout the entire moni-
toring duration, which is obtrusive. Further, the vital sign is 
so useful that many researchers succeed in accomplishing 
some interesting work. Authors in Zhao et al. (2016) use 
features of the heartbeat to recognize user’s emotion. And 
authors in Lin et al. (2017) develop an authentication system 
based on the features of the heartbeat. The usage of motors 
also allows researchers to monitor sleepers with body turns 
and estimate their breathing volume (Nguyen et al. 2016).

2.3 � MmWave sensing and networking

The mmWave shows great potential in non-contact sens-
ing because of its short wavelength. Using mmWave radios, 
researchers have achieved sub-centimeter scale object locali-
zation/tracking (Wei and Zhang 2015), temperature sens-
ing using low-cost cholesteryl tags by thermal scattering 
effect (Chen et al. 2020), material recognition based on the 
reflection signals in both static and mobile cases (Chenshu 
et al. 2020) and non-intrusive micrometer-level vibration 
measurement (Jiang et al. 2020). Using commodity 60 GHz 
phased array antennas, mmWave technologies are able to 
sense more complex motion. Authors in Wu et al. (2020) 
achieve high spatial resolution multi-person localization/
tracking passively and authors in Santhalingam et al. (2020) 
achieve American sign language gesture recognition with 
87% average accuracy. In the aspect of vital signs monitor-
ing, the authors in Jason Kao and Lin (2013) and Chuang 
et al. (2012) have discussed vital sign detection using 60 
GHz mmWave. But their work focuses on the theoretical 
foundation and assumes there is only one user in the close 
distance. In recent, authors in Yang et al. (2016) focused on 
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solving the practical challenges of finding the human loca-
tion in a room and detecting vital signs of multiple people 
concurrently. To verify the robustness of their work to dis-
tance, they study the impact of distance on RR accuracy. But 
they avoid discussing the impact of distance on HR accuracy 
and only estimate HR within 3 meters.

MmWave technologies also show their great development 
potential in wireless communication because of mmWave’s 
large spectrum resource. MmWave can further improve its 
spectral efficiency through the first mmWave massive MIMO 
software radio (Zhao et al. 2020).

3 � Understanding vital sign detection

In this section, we first discuss the theoretical foundation 
of distance detection and further chest movement detection 
based on mmWave. Then, we analyze the typical features of 
respiratory and heartbeats. Finally, we introduce the exist-
ing algorithms for respiratory rate (RR) and heart rate (HR) 
detection.

3.1 � Principle of RF distance detection

Consider the simplest scene that we have a pair of transmit-
ter and receiver equipped with directional antennas and point 
them to the target. To measure the length change along the 
signal path, our system continuously emits a packet of the 
tone signal with a fixed interval of less than one millisec-
ond. At the same time, it receives the reflected signal and 
analyzes the phase delay. If there is only one signal path 
reflected, the phase delay of RF is proportional to the RF 
signal path length (Tse and Pramod 2005). Although our 
system is not able to obtain the absolute values of these two 
variables, we can still detect the variation of them accord-
ing to the equation: Δ�(tn) = −

2�fΔD(tn)

c
 . Here Δ�(tn) is the 

first order difference of received signals’ phase delay �(tn) , 

f is the frequency of RF signal and ΔD(tn) is the first order 
difference of the signal path length D(tn).

3.2 � Human body movement detection

To analyze the reflections from a more practical human 
body, we first need to properly model it. Although a human 
body could be considered as a combination of many layers in 
sequence: clothing, skin, subcutaneous adipose tissue (SAT), 
muscle and so on, more than 90% of the transmitted power 
is absorbed in the epidermis and dermis layer as mentioned 
in Wu et al. (2015). Besides, most power of mmWave signal 
can be propagated through clothing. As such, one layer of 
skin is sufficient for a reliable electromagnetic evaluation 
in our study.

Next, the layer of skin is not a flat “mirror” but a rough 
surface. When the beams of antennas are focused on the 
human body, the reflection region is the range of the human 
body illuminated by the transmitter. According to Li and Lin 
(2008), respiration and heartbeats lead to different move-
ments and these movements may vary across different parts 
of the human body. Thus, the mmWave signal path reflected 
from these parts of the human body leads to different phase 
delays. And the received signal we obtain is the sum of 
reflected signals in the beam range of receiver’s antenna. 
Thus, the ΔD(tn) calculated from the received signal does 
not represent the length change of a single reflected signal 
path. Rather, it is the result of the length changes of all the 
reflected paths.

Then the question is how to get RR and HR from the 
measured ΔD(tn) . The idea is as follows: although the ampli-
tude attenuation and the phase delay of each signal path are 
unknown, the features of each path have the quasi-synchro-
nous changes with human body’s periodic motion caused by 
respiration and heartbeats. Therefore, the sum of reflected 
signals also has synchronous changes, from which we can 
detect human body’s periodic motion without accurately 
measuring the detailed displacement of the human body.

(a) Respiratory together with heartbeat (b) Heartbeat without respiratory

Fig. 1   Phase change detected by our system and ground truth of ECG output for two scenes with/without respiratory. The large variations in a 
represent respiration and the small variations in red circles represent heartbeat
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3.3 � Features of respiratory and heartbeats

Before going into the details about measuring HR and 
RR, we first explain how the phase varies with vital signs. 
According to work in Adib et al. (2015), the change of phase 
delay is mainly caused by the expansion and contraction of 
user’s chest, which is synchronous with user’s respiration. In 
this paper, we consider that the typical respiratory rate for an 
adult at rest is between 8 and 16 breaths per minute (Bpm), 
as mentioned in U.S. National Library of Medicine (2018). 
Figure 1a shows the phase delay over time, measured with 
our 60 GHz system. The fluctuation of the phase delay is 
caused by respiratory and heartbeats. The peaks and valleys 
correspond to exhale and inhale motions of the user, and the 
small variations in the red circles represent user’s heartbeats. 
To verify the heartbeats, we can compare the red circles in 
Fig. 1a with those of ECG output as ground truth in Fig. 1a.

Heartbeats cause slight skin movements of user’s chest, 
and a normal resting heart rate for adults ranges from 60 to 
100 beats per minute (bpm) as mentioned in Mayo Clinic 
(2018). The physiological phenomenon of ballistocardiogra-
phy (BCG) makes the heart rate easier to detect, which refers 
to movements of the body synchronous with the heartbeats 
due to ventricular pump activity (Eduardo et al. 2010). We 
show an example experiment measured with our system in 
Fig. 1b. Here, we ask the user to hold his breath deliber-
ately in order to clearly show the phase change caused by 
heartbeats. We observe that the phase peaks in Fig. 1b are 
synchronous with the peaks of ECG output in Fig. 1b and 
the red circles are three examples.

3.4 � Existing algorithms for RR and HR measurement

Since the quasi-static user may consciously move his limb 
or change his posture sometimes, previous work (Adib et al. 
2015) preprocess the original phase/RSS data by discarding 
the intervals of time when the data change rapidly. Then in 
order to measure the respiratory rate, the simplest method 
is to count the number of phase peaks after applying a peak 
detection algorithm. However, if the user has unconscious 
jitters or sudden changes from background sometimes, this 
method is unable to distinguish the peaks caused by respira-
tion from noise. Therefore, the authors in Adib et al. (2015) 
and Yang et al. (2016) use frequency-domain dominating 
methods. They collect phase or RSS sequence for the time of 
a fixed window and use Fast Fourier Transformation (FFT) 
to change the sequence from the time domain to the fre-
quency domain. Then they select the highest peak, apply 
a custom filter according to the peak and use linear fitting 
or peak detection to get a more accurate measurement of 
respiratory rate.

As for heart rate measurement, more complex algorithms 
are leveraged because of the minute chest movement caused 

by heartbeats and interference from breathing harmonics. 
We classify the HR detection methods used in Adib et al. 
(2015), Yang et al. (2016), Zhao et al. (2016) into two types 
as follows.

Frequency-domain Information based HR Detection 
(FiHR). The authors in Adib et al. (2015) and Yang et al. 
(2016) use the similar idea in RR detection to measure HR. 
They focus on the peaks in the frequency of about [40-200] 
bpm to separate heartbeats from respiration’s first harmonic. 
To get rid of respiration’s higher harmonics, FiHR will 
remove the peaks that correspond to breathing harmonic 
and select the highest peak from the remaining ones. The 
remaining steps are the same with RR measurement to get 
a more accurate measurement of heart rate according to the 
selected peak.

Time-domain Information based HR Detection 
(TiHR). According to work in Zhao et al. (2016), breathing 
is usually slow and steady while a heartbeat involves rapid 
contraction of the muscles. Therefore, the acceleration of 
breathing is smaller than that of heartbeats. In order to seg-
ment the acceleration signal into individual heartbeats, they 
formulate an optimization problem to find the periodic pat-
tern corresponding to each heartbeat cycle. After that, they 
can easily measure the heart rate by counting the number of 
individual heartbeats.

Without eliminating the interference of breathing har-
monic, the HR estimation performance of TiHR is not as 
good as FiHR. On the other hand, the frequency resolution 
of FiHR is the reciprocal of FFT window length which is a 
tradeoff between accurate vital sign estimating and quick 
reaction to vital sign change. However, TiHR can react to an 
increase or decrease in HR immediately. Another advantage 
of TiHR over FiHR is the ability to estimate the inter-beat-
interval (IBI) for other purposes such as emotion recognition 
(Zhao et al. 2016) since TiHR can separate each heartbeat 
in the time domain.

4 � Hart rate detection in practical scenes

4.1 � Simple scenes and practical scenes for HR 
detection

Based on the technique of mmwave, mmVital (Yang et al. 
2016) uses the same 60 GHz frontends as ours. The most 
commonly evaluated scenario for HR detection in mmVital 
is a simple scene where the quasi-static user stands or sits 
in front of the antennas with the chest movements caused 
by respiratory and heartbeats. Specifically, the user can 
move his limb or change his sitting posture sometimes. 
The antennas are at the same height as user’s chest, and the 
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HR detecting distance is limited to 3 meters. In this scene, 
the variety of phase delay or RSS mainly consists of res-
piratory, heartbeats and tiny background changes. Then the 
major noise is the interference from breathing harmonics. 
Besides, there are also unconscious jitters of user as well as 
tiny changes from background and phase noise.

In more practical scenes discussed in this paper, the trans-
mitter and the receiver are not close to the user but hanging 
on the ceiling or on the wall. And the detection range is 
extended to the whole room. When the detecting distance 
gets longer, the illuminated range will get larger and intro-
duce more noise from the background. Then the impact of 
chest movement on the received signal will also get smaller. 
In this practical case, the tiny change from background and 
phase noise of hardware will play a more important role. We 
conclude all the noise sources for two scenes in Table 1 and 
now we’ll analyze the impact of these noise sources on HR 
detection of FiHR and TiHR in practical scenes.

To deal with noise source of type 1, the original phase/
RSS data are preprocessed by discarding the intervals of 
time when the data change rapidly. As for noise sources of 
type 2 and 3, they will impact the time domain information 
obviously. And the HR measurement will not be accurate 
enough when just considering the local fluctuation of phase 
acceleration. We term this property as the local sensitivity 
of TiHR. However, by focusing on the frequency domain 
and remove breathing harmonic peaks, FiHR can mitigate 
these two noise sources and magnify the periodicity effect 
of heartbeats, which is termed as the local insensitivity of 
FiHR. A strong noise source of type 4 is the key feature 
of the practical scene. Once the periodicity effect of min-
ute heartbeats is as weak as being overwhelmed by the 
background and phase noise, a “misleading peak” for HR 
measurement in the frequency domain will appear. Figure 2 
shows an example of a misleading peak. Here the true HR 
peak is 1.05 Hz according to the ground truth of ECG out-
put, but the highest peak in the range of [0.7 Hz, 2 Hz] is 
0.79 Hz. This happens because the beam width of 20o intro-
duces strong reflected signals from the background within 
the detection distance of 3 meters and the effect of heartbeats 
is quite weak. In this case, FiHR will lead to a significant 

measurement error of up to tens of percent, and we term 
this property as the global instability of FiHR. On the other 
hand, TiHR preserves the complete frequency information 
of heartbeats by applying acceleration rather than focusing 
on the peak of heartbeats’ first harmonic. Therefore, noise 
source of type 4 has a limited influence on TiHR and we 
term this property as the global stability of TiHR. From the 
above analysis, we can find that both the global instability of 
FiHR, and the local sensitivity of TiHR decrease the accu-
racy of HR estimation. Therefore, we explore how to lever-
age both the global stability of TiHR and the local insensi-
tivity of FiHR and propose our algorithm in the next section.

4.2 � Time‑domain and frequency‑domain 
information based HR detection

To improve the robustness of the heart rate detection algo-
rithm, we employ a Time-domain and Frequency-domain 
Information based HR Detection (TFiHR) algorithm which 
combines the ideas of FiHR and TiHR. The specific design 
idea of TFiHR is as follows. First, TFiHR discards the 
intervals of time when the data change rapidly. Then If the 
gap between the highest peak with the other peaks in HR 

Table 1   Four types of noise 
sources and their impacts in 
previous simple scene and 
current practical scene

“–” represents the impact of noise source is small while “+” represents the impact is large

Type Noise sources Scene in mmVital 
(Yang et al. 2016)

Practical 
Scene in this 
paper

1 Conscious limb move or posture change of user + +
2 Unconscious jitters of user + +
3 Interference from breathing harmonics + +
4 Tiny changes from background and phase noise – +
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Fig. 2   An example of a misleading HR peak in FiHR. The measured 
RR peak is exactly the true RR peak because of the obvious periodic-
ity of respiratory, while the measured HR peak is a misleading peak 
when the periodicity effect of the heartbeats is overwhelmed by envi-
ronmental noise
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frequency range is larger than a threshold, we believe that 
the highest peak is apparent enough and it represents the 
periodicity of the heartbeats. Then we’ll just use the fre-
quency of this peak as a heart rate reference value ref. Oth-
erwise, we will employ part of methods in TiHR to help find 
the heart rate reference value.

As can be seen from Fig. 3a, the heartbeat pattern in the 
original phase ( �(tn) ) is covered by respiration pattern and 
noise. Thus we first apply a high-order bandpass filter with 
cutoff frequencies of 0.5Hz and 5Hz and get the signal in 

Fig. 3b. Then according to work in Zhao et al. (2016), we 
use the second order differentiator to express the accelera-
tion of the signal ( ���

(tn) ). In Fig. 3c, we can find that the 
periodicity of the acceleration signal is more obvious than 
that of filtered phase signal in Fig. 3b. Before separating 
the acceleration by peaks, we will normalize the accelera-
tion signal to reduce the influence of amplitude fluctua-
tions. Specifically, we first generate the analytic version of 
signal by taking it and then adding its Hilbert Transform 
(Høst-Madsen et al. 2008) as ���

a
(tn) = �

��

(tn) + jH(�
��

(tn)) , 
where H(⋅) is the Hilbert Transform. As we only care about 
the periodicity of each heartbeat cycle for HR estimation, 
we normalize the acceleration signal by dividing the com-
plex magnitude to enlarge the heartbeat periodicity and get 
�

��

N
(tn) = �

��

(tn)∕|�
��

a
(tn)| as shown in Fig.  3d. Then after 

removing the peaks that correspond to breathing harmonic, 
we use the reference value to find the peak in the frequency 
domain with maximum probability. 
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Fig. 3   The effect of acceleration in TFiHR. a The original phase sig-
nal; b the filtered phase with cutoff frequencies between [0.5–5] Hz; 
c the acceleration of the filtered phase which has more obvious perio-
dicity; d the normalized acceleration; e the ground truth of ECG out-
put. The peaks of the normalized acceleration are basically synchro-
nous with those of ECG output

Overall, it’s easy to find a strong relationship between the 
ground truth of ECG output value and normalized accel-
eration. However, the peaks of normalized acceleration are 
not aligned with those of ECG output. What’s worse, we 
can find the normalized acceleration (shown in Fig. 3d) 
during the 32nd to 34th second has one more peak com-
pared to the ECG output (shown in Fig. 3e). Therefore, we 
need to abandon signal with distortion to reduce the effect 
of noise. We first divide the normalized acceleration into 
cycles according to the peaks. Then, we scan through the 
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cycles and identify any cycle with abnormal intervals com-
pared to its neighbors. Obviously, the interval of the cycle 
between about 32 and 34 s is distorted seriously compared 
to its adjacent neighbors and should be abandoned. Next, we 
use the remaining periodic cycles to calculate the reference 
heart rate ref. The reference rate is further used for helping 
find the most likely peak in the original phase’s FFT result. 
In Fig. 2, the reference heart rate is 1.07 Hz according to 
the processing in Fig. 3, which means the true HR peak 
should be in the neighborhood of 1.07 Hz. In our system, we 
empirically define the neighborhood of the reference heart 
rate as [ ref − 0.1Hz , ref + 0.1Hz ]. Therefore, we will select 
the peak of 1.05 Hz as the true HR peak to proceed with 
the following steps rather than the peak of 0.79 Hz. In this 
way, TFiHR can help our system to deal with the problem 
of misleading frequency peaks in Fig. 2. Alg. 1 summarizes 
the steps of TFiHR.

5 � Implementation and evaluation

In this section, we first introduce our system implementation, 
then explain our experimental setup and finally we evaluate 
the system and report our evaluation results. Specifically, we 
carefully evaluate factors that may impact our system’s per-
formance such as detecting distance, aiming point, depres-
sion angle, human orientation and beam width. Also, we 
study the performance with strong background interference. 
And finally, we evaluate our system in the more future real-
istic working environments.

5.1 � System implementation

Hardware. We use YunSDR Y310 as our baseband process-
ing unit (BPU) to generate a baseband signal of 0.625MHz 
on the intermediate frequency (IF) carrier of 500MHz, and 
use a host to control and exchange the digital signal with 
the BPU over Ethernet. Then we use the 60 GHz front-ends 
PEM009-KIT to modulate and demodulate 60 GHz RF sig-
nal. The transmitter and receiver are synchronized by using 
the same reference clock. As for antennas, we use horn 
antennas with the gain of 20dBi, 24dBi and 34dBi. Figure 4 
shows the structure of the mmWave platform.

Software. Our host runs signal processing algorithms 
written in C code, and can generate the estimation of res-
piratory rate and heart rate in real time. The FPGA of Yun-
SDR Y310 is programmed with the function of baseband 
processing using its native library. Figure 5 shows the data 
flow diagram of MiVital. Both the hardware and software 
can be transplanted into 60 GHz access points equipped with 
commercial phased array antennas.

5.2 � Experimental setup

To imitate different beam patterns of phased array antennas 
by electronic beamforming, we apply directional antennas 
with different beam widths in this study. Since the work of 
human finding technique that helps the system to locate a 
user and the work of multi-user feasibility study has been 
accomplished in Yang et al. (2016), we focus on detecting 
the vital signs of a single user by varying the environmen-
tal factors and deploying in a more practical environment, 
and we suppose that our system can be extended to detect 

Fig. 4   MmWave Platform of MiVital. Our host can control and exchange baseband signals with the FPGA of BPU. The BPU can generate and 
process the intermediate frequency signal, and the 60 GHz front-ends (Tx and Rx) can transmit and receive mmWave signal

Fig. 5   Data flow diagram of 
MiVital. The host receives the 
reflected baseband signal from 
BPU and extracts phase delay 
changes. Then the host uses the 
phase delay changes to estimate 
RR and HR
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vital signs of multi-user with the availability of phased array 
antennas and further transplanted into commercial 60 GHz 
access points.

Experiments. During the experiments, the user is 
required to sit on a chair facing the antennas and keep the 
body quasi-static. That is to say, he is allowed to move 
limbs or change sitting posture to relax sometimes. And the 
requirement of quasi-static is also mentioned in other state-
of-the-art systems (Adib et al. 2015; Zhao et al. 2016). For 
each experiment, our system monitors the user for thirty 
seconds and applies signal processing algorithms to measure 
the RR and HR. To reduce the effect of random error, we 
repeat the above experimental procedure 10 times in each 
situation while fixing the position of user and antennas.

Participants. To evaluate the performance of our system, 
we enroll 12 participants (2 female) with the Body Mass 
Index (BMI) of 19 − 23kg∕m2 , age of 20 − 24 years and 
weight of 54 − 72kg . During the experiments, the user wore 
shirts, T-shirts, sweaters, and jackets with different fabric 
materials.

Ground truth. For respiratory rate, we count the number 
of complete breaths manually since the respiration move-
ment is obvious and slow enough. As for heart rate, we use 
a medical-grade ECG (AD8232) device to acquire ECG 

waveform and then compute HR ground truth. For RR and 
HR of each experiment, we evaluate the accuracy of our 
system using the estimation error for breathing rate (Bpm) 
and heart rate (bpm).

5.3 � Performance comparison between Phase 
and RSS based detection

MmVital (Yang et al. 2016) use RSS of mmWave to moni-
tor the vital sign of the user. However, RSS is insensitive 
to the minute chest movements caused by respiration and 
especially the more minute heartbeat. This is because the 
change of RSS is not only caused by the distance change 
between the human body and antennas but also seriously 
influenced by background and system noise. To support this 
idea, we record phase and RSS of reflected signal simulta-
neously and compare the performance of phase and RSS 
based detection in Fig. 6. From time domain in Fig. 6a, the 
large variations in phase change represent respiratory while 
the RSS changes are seriously influenced by noise. And 
from frequency domain in Fig. 6b, the peaks in red circles 
at 0.3 Hz and 1.1 Hz in the FFT result of phase respectively 

Table 2   The range of four environmental factors in setup

When considering the impact of each factor, we arrange the setup 
with default values

Parameter Range Default value

Detecting distance 1, 2, ...7 m 1 m
Aiming position Left chest, right chest, center, 

left abdominal, right abdomi-
nal

Center

Depression angle 0◦ , 20◦ , 40◦ , 60◦ 0◦

Beam width 20◦ , 12◦ , 3◦ 3◦

Human orientation Front, back, left, right Front

(a) Time domain (b) Frequency domain

Fig. 6   a Changes of Phase and RSS in time domain. The large vari-
ations in Phase change represent respiratory while the RSS changes 
are seriously influenced by noise. b FFT results of Phase and RSS in 

frequency domain. In the FFT result of Phase, the peaks in red circles 
at 0.3 Hz and 1.1 Hz respectively represent RR and HR. But we can 
only find the RR peak at 0.3 Hz in the FFT result of RSS
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represent RR and HR. But we can only find the RR peak at 
0.3 Hz in the FFT result of RSS. Therefore, we’d like to use 
more insensitive phase for vital sign detection.

5.4 � Performance of TFiHR compared with TiHR 
and FiHR

To evaluate the performance of TFiHR compared with the 
previous algorithms, we use the default setup in Table 2 and 
extend the detecting distance from 1 to 7 meters. For the 
received signal of each experiment, we apply three algo-
rithms of FiHR, TiHR and TFiHR to get three estimations 
of HR. Figure 7 shows the heart rate estimation error of the 
three algorithms in different distances.

In the distance of less than 2 meters, all the three algo-
rithms for heart rate detection perform well with the mean 
estimation error of less than 2 bpm. This is because the 
majority of the received signal within 2 meters is the effec-
tive reflected signal from user’s body. As the distance 
gets larger, the estimation errors of three algorithms have 
an upward trend. With the larger detecting distance, the 
strength of effective reflected signal in the received signal is 
getting weaker. Then TiHR will be influenced by the sudden 
changes from background and phase noise, while FiHR will 
be seriously influenced by the periodic parts in the changes 
from background and phase noise. Thus both of their estima-
tion error will increase gradually. However, by leveraging 
the global stability of TiHR and the local insensitivity of 
FiHR, TFiHR always performs the best and its estimation 
error keeps below 3 bpm.

5.5 � Micro‑Benchmark for HR detection

The practical scene is quite different from the previous sim-
ple scene and we’d like to analyze the difference from sev-
eral micro-benchmark studies. Specifically, we will study the 
impact of environmental factors such as detecting distance, 
aiming position, human orientation and depression angle on 
the estimation error of HR. The experimental environment is 
an open space to reduce background noise. When consider-
ing the impact of one factor, we arrange the default setup in 
Table 2 first. We place the antennas together in front of the 
user for the distance of 1 meter, adjust the antennas at the 
same height as user’s chest and adjust the antennas towards 
the center of user’s front body. Then, we change the value 
of the target factor for different situations. In each situation, 
we use 3 types of antennas with different beam widths as 
listed in Table 2, and for each type of antenna, we repeat the 
experimental procedure 10 times.

5.5.1 � Accuracy of HR versus detecting distance

To verify that our system works well in its detection range, 
we ask the user to sit at different distances from the front-
ends. As the distance becomes larger, the mmWave signal 
will get attenuated, and the coverage area of the signal will 
get larger which further weakens the effect of body move-
ment caused by heartbeats. Figure 8 shows HR’s estimation 
error of our experiments. When the user is out of MiVital’s 
detecting range, we can hardly detect the body movement 
and give up showing the estimation error in the figure. For 
distances of less than 2 meters, the estimation error can keep 
at 2 bpm using 20 dBi antenna. As distances get larger, the 
mean estimation error of HR will rise to 3 bpm but is still 
acceptable. And we can conclude that the detection range 
of 20 dBi antenna is about 4 meters. As for 24 dBi and 34 
dBi antennas, the detection ranges are about 5 meters and 
7 meters.
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5.5.2 � Accuracy of HR versus aiming position

Although the heart is always beating at the left chest of 
user’s body, the effect of BCG is supposed not just limited 
to the left chest. Thus we’d like to study whether the posi-
tion of the aiming point will impact the accuracy of HR. In 
Fig. 9, we plot the estimation error of HR when using all 
the three kinds of antennas and aiming at different positions 
(the center, left chest, right chest, left abdominal and right 
abdominal) of the human body. We can observe that the 
mean estimation error of HR is always less than 2 bpm when 
changing the factor of aiming point based on the default 
setup in Table 2. This shows that the effect of BCG is suf-
ficient enough for our system to measure user’s HR, as long 
as we are aiming at the front of the human body.

5.5.3 � Accuracy of HR versus orientation

In the practical scene, the user will not always face the 
antennas, and it’s necessary for us to study the performance 
when the user stays front, back, left and right to the anten-
nas. The result in Fig. 10 shows that the human heartbeat can 
be detected from any orientations of the body. This shows 
that the BCG jitter caused by human heartbeat influences the 
whole body. From Fig. 10, we can also find that the mean 
estimation error of HR is less than 1.5 bpm when the user is 
front and back to the antennas. When the user is left or right 
to the antennas, the mean estimation error will increase but 
still keep under 3 bpm. This is because using the high direc-
tional mmWave horn antennas, the phase delay is sensitive to 
the body movement in the narrow antenna’s beam. For front 
and back orientations, the mmWave signals are reflected by 
the flat chest and back of the body whose movements are 
mainly due to the vital signs of respiratory and heartbeat. 
However, for left and right orientations, the narrow beam 
can be easily blocked by the user’s arms whose movements 
get little influence from human heartbeat and the periodic 
phase changes due to the heartbeat will get weak.

5.5.4 � Accuracy of HR versus depression angle

In the access point imitating experiment, the antennas are 
fixed on the ceiling, and the user may sit or rest at any place 
in the room. The depression angle of the antennas can get 
larger when the user stays under the antennas. Thus we’d 
like to discuss the impact of depression angle without chang-
ing detecting distance. Under the condition of the detecting 
distance of 1 meter, we move the antennas towards the user 
and raise the antennas properly to increase the depression 
angle. The result in Fig. 11 shows that the estimation error of 
HR is always less than 3 bpm. We can conclude that chang-
ing only the depression angle will not impact the accuracy 
of HR too much. Because the human body has an irregular 
surface rather than a flat “mirror”, the receiver can still cap-
ture the reflected signal even with a large depression angle 
of 60 degrees. Moreover, the received signal is still strong 
enough to detect the human body movement with this large 
depression angle.
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5.6 � Performance of HR detection with strong 
background interference

Having proved that our system is robust with tiny changes 
from the background, we consider the strong background 
interference such as moving objects or human body behind 
the user in the practical scene. To control the background 
interference in different levels, we conduct the experiments 
by putting the antennas at a distance of 3m from the user 
and ask another participant to walk around behind the user 
at different distances from 1m to 4m. We study the perfor-
mance on different beam widths and show the estimation 
error in Fig. 12.

The HR detection using 20 dBi antennas is seriously 
influenced when the interference person is within the dis-
tance of 3m from the user. The interference-free distance is 
4m where the mean estimation error is lower than 3 bpm. 
As for 24 dBi and 34 dBi antennas, the interference-free dis-
tances are 3m and 1m, respectively. We can see that when the 
interference person is sufficiently far from the user, it will 
not interfere with HR detection. And the interference-free 
distance is shorter for antennas with narrower beam width 
because of less background noise.

5.7 � Performance of access point imitating 
experiments

Finally, we’d like to evaluate the system performance in a 
practical working environment by imitating an access point 
mounted on the ceiling. In the future, we envision that the 
vital sign detection system runs on an 802.11ad router and 
the access points hang on the ceiling or are fixed on the 
wall. Both devices transmit and receive mmWave signals. 
Therefore, we deploy our system by mounting a mmWave 
access point on the ceiling and conduct our experiments in 
two scenes: an open space and a cluttered office room.

5.7.1 � Access point imitating in an open space

The first scene is an open space as shown in Fig. 13a. Dur-
ing the experiments, we place the directional transmitting 
and receiving antennas at the coordinate of ( −0.5 , 1.5) and 
( −0.5 , 2.5) in Fig. 13b with a height of 2.5 meters. For each 
experiment, we first refer to the human finding algorithm 
developed in Yang et al. (2016) and manually adjust the 
direction of antennas towards the user according to the phase 
variation. After that, the system starts to detect user’s vital 
sign. For each of the 24 squares, we randomly select two of 

Fig. 13   a The experimen-
tal environment of an open 
space in an office room. The 
detection area is divided into 
8 × 3 squares. b The set up of 
mmWave device where the 
antennas are set near the ceiling

(a) Environment layout (b) Experimental setup
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the participants and conduct experiments using the 3 types 
of antennas with different beam widths. In the following 
subsections, we’ll analyze the accuracy of HR and RR in the 
access point imitating experiments.

Accuracy of HR. The black parts in Fig. 14 represent that 
our system can hardly detect the vital sign of user sitting in 
these places. The result shows that with 20dBi antennas, 
our system can detect the vital sign of user within 3 meters. 
With 24 dBi antennas, our system can detect the vital sign of 
user within about 4.2 meters, while the 34 dBi antennas can 
expand detection range to cover the whole detection area in 
Fig. 13a. It’s obvious that when the beam width of antennas 
is narrower, the detection range is larger.

In the working range for each antenna, the HR estima-
tion error of our system is always less than 6 bpm. Besides, 
for the same place, the estimation error will often get lower 
using antennas with narrower beam width. Combining the 
result of three kinds of antennas, we can also conclude that 
the square at the coordinate of (2.5, 1.5) has the most robust 
accuracy of heart rate. When the user sits at this place, the 
height of his chest is about 1 meter and then the relative 
height of antennas to user’s chest is about 1.5 meters. Then 
the detecting distance is about 2.3 meters and the depression 
angle is about 40◦ . Both of them are in the appropriate range 
of our system.

Finally, our system is always robust and accurate when 
the user is in its detection range, and the overall estima-
tion error of HR in this access point imitating experiment 
can keep at 2.386 bpm by averaging the estimation errors 
of experiments in all the squares. The HR accuracy of our 
system is comparable to that of MmVital (Yang et al. 2016) 
whose mean estimation error of HR is 2.15 bpm but our 
experiments are conducted in a more practical scene.

Accuracy of RR. As shown in Fig. 15, the measurement 
result of RR is always accurate (less than 1 Bpm estima-
tion error) in the working range. Besides, the difference 
between the estimated respiratory cycles by our system and 
the ground truth is always within one cycle. By averaging 
the accuracies of experiments in all the squares, the over-
all estimation error of RR can keep at 0.487 Bpm in the 
open space which is also comparable to MmVital Yang et al. 
(2016)’s RR mean estimation error of 0.43 Bpm.

5.7.2 � Access point imitating in a cluttered office room

After evaluating the accuracy of HR and RR in the open 
space, we’d like to further verify the robustness of our sys-
tem in a cluttered office room as shown in Fig. 16a. The 
room is full of wooden desks, PCs and other devices. These 
objects will introduce many multipath reflections and further 
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Fig. 16   a The experimental 
environment of a typical clut-
tered office room. b The set up 
of mmWave device where the 
antennas are set near the ceiling

(a) Environment layout (b) Experimental setup
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influence the detecting accuracy when we detect user’s vital 
sign. To evaluate our system’s performance, We place the 
directional transmitting and receiving antennas on a wooden 
cabinet under the ceiling in Fig. 16b with a height of 2.5 
m. For each experiment, we follow the same experimental 
procedure in Sect. 5.7.1. For each test point, we randomly 
select three of the participants and conduct experiments 10 
times using the 34 dBi antennas because only the 34 dBi 
antennas have a large enough detecting range to cover the 
whole room.

The result in Fig. 17a shows that for the points close to 
the antennas (1, 2 and 3), the estimation error of HR is quite 
low (less than 1.5 bpm) while for those far from the anten-
nas (4, 5 and 6), the estimation error of HR will increase to 
2 ∼ 3 bpm. Although the system can detect user’s heartbeat 
at all points, long-distance heart rate detection will still be 
influenced by the reflection of surrounding objects. As for 
RR detection shown in Fig. 17b, the system has an accurate 
RR estimation in all six points with a mean estimation error 
of less than 0.4 Bpm. This is because the chest movement 
caused by respiratory is large enough for a narrow beam to 
accurately detect.

After comparing the experimental results in the open 
space environment and the cluttered environment, we can 
conclude that the accuracy of HR estimation will be influ-
enced by the objects near the users because of multipath 
reflections. This phenomenon is more obvious in a cluttered 
environment especially when the user is far from the anten-
nas with large background noise.

6 � Limitations and Discussion

The influence of sidelobes. The sidelobe effect can’t be 
ignored in the beam pattern of the phased array antennas. 
However, the gain of sidelobe is much lower than that of 
mainlobe. Besides, when the main lobe is aiming at the 
user in the line of sight, the beam arriving at side lobe will 
experience more attenuation because of longer transmission 

distance. Therefore, we believe the influence of sidelobes is 
little in the line of sight situation for a single user.

Random body motion cancellation. RBM cancellation 
is a significant challenge to be handled. Our system works 
when the user is sitting still and suffers from RBM. Here, 
we provide a possible solution: with two transmitters aim-
ing at different positions of the user’s body, we may be able 
to detect the vital sign by comparing the two received sig-
nals when the user is under one-dimensional random body 
motion. We leave this solution for future work.

Recent 60 GHz mmWave phased array antennas. 
Nowadays, 60 GHz mmWave phased array antennas have 
been used widely for electronic beam-steering in research 
(Wang et al. 2020; Zhao et al. 2020; Zhang et al. 2016; Saha 
et al. 2019; Lacruz et al. 2020). Among the available 60 GHz 
phased array antennas, the commodity 802.11ad radio from 
Airfide Inc. Airfide Networks (2019) used in Wang et al. 
(2020); Zhao et al. (2020) applies the maximum number 
of antenna elements ( 6 × 6 elements). However, the beam 
patterns generated by these 60 GHz phased arrays cannot 
satisfy the needs of room-level vital sign detection due to the 
limited number of antenna elements and discrete beamform-
ing weight control. Specifically, the current phased array 
antennas face the following situations compared to the horn 
antennas we use. First, the gains of their beam patterns are 
much smaller than the gains of directional horn antennas, 
but the path loss is quite large for vital sign detection after 
the 60 GHz signal is reflected by human body. Second, cur-
rent 60 GHz phased array antennas have much larger beam 
widths than directional horn antennas and introduce stronger 
background interference. Third, the sidelobe suppression 
performance for current 60 GHz phased array antennas are 
not as good as directional horn antennas, and the sidelobes 
can also introduce more background interference. Therefore, 
we believe that the performances of horn antennas are more 
similar to those of the future 60 GHz phased array antennas 
with much more antenna elements.
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7 � Conclusion

In this article, we verify the feasibility of mmWave vital sign 
detection in practical scenes by implementing a phase-mod-
ulated system on the software-defined radio platform. Also, 
we develop a time-domain and frequency-domain information 
based HR detection algorithm for heart rate detection by lever-
aging the global stability of TiHR and the local insensitivity of 
FiHR.  We verify its robustness by studying the impact of multi-
ple environmental factors and deploying our system on the ceil-
ing to imitate an access point. The results show that the system 
can provide accurate and robust RR and HR estimations, which 
is comparable with state-of-the-art mm Wave systems, and 
work at a further distance of up to 7 meters. Our system can 
be transplanted into future 60 GHz phased array antennas with 
larger antenna elements and narrower beams.
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