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Abstract— The key to high performance for GPU architecture lies in
massive threading to drive the large number of cores and enable overlap-
ping of threading execution. However, in reality, the number of threads
that can simultaneously execute is often limited by the size of the regis-
ter file on GPUs. The traditional SRAM-based register file costs so large
amount of chip area that it cannot scale to meet the increasing demand of
massive threading for GPU applications. Racetrack memory is a promis-
ing technology for designing large capacity register file on GPUs due to
its high data storage density. However, without careful deployment of
registers, the lengthy shift operation of racetrack memory may hurt the
performance.

In this paper, we explore racetrack memory for designing high perfor-
mance register file for GPU architecture. High storage density racetrack
memory helps to improve the thread level parallelism, i.e., the number of
threads that simultaneously execute. However, if the bits of the registers
are not aligned to the ports, shift operations are required to move the bits
to the ports. To mitigate the shift operation overhead problem, we develop
a register file preshifting strategy and a compile-time managed register
mapping algorithm. Experimental results demonstrate that our technique
achieves up to 24% (19% on average) improvement in performance for a
variety of GPU applications.

I. INTRODUCTION

Modern GPUs employ a large number of simple, in-order cores,

delivering several TeraFLOPs peak performance. Traditionally, GPUs

are mainly used for super-computers. More recently, GPUs have

penetrated mobile embedded system markets. The system-on-a-chip

(SoC) that integrates GPUs with CPUs, memory controllers, and other

application-specific accelerators are available for mobile and embed-

ded devices.

The key to high performance of GPU architecture lies in the mas-

sive threading to enable fast context switch between threads and hide

the latency of function unit and memory access. This massive thread-

ing design requires large on-chip storage support [5, 20, 18, 9, 19, 10].

The majority of on-chip storage area in modern GPUs is allocated for

register file. For example, on NVIDIA Fermi (e.g. GTX480), each

streaming multiprocessor (SM) contains 128 KB register file, which

is much larger than the 16KB L1 cache and 48KB shared memory.

The hardware resources on GPUs include (i) registers (ii) shared

memory (iii) threads and thread blocks. A GPU kernel will launch

as many threads concurrently as possible until one or more dimension

of resource are exhausted. We use occupancy to measure the thread

level parallelism (TLP). Occupancy is defined as the ratio of simulta-

neously active threads to the maximum number of threads supported

on one SM. Though GPUs are featured with large register file, in re-

ality, we find that the TLP is often limited by the size of register file.

Table I gives the characteristics of some representative applications

from Parboil[2] and Rodinia[3] benchmark suites on a Fermi-like ar-

chitecture. The setting of the GPU architecture is shown by Table II.

The maximum number of threads that can simultaneously execute on

this architecture is 1,536 threads per streaming multiprocessor (SM).

However, for these applications, there exists a big gap between the

achieved TLP and the maximum TLP. For example, one thread block

of application hotspot requires 15,360 registers. Given 32,768 regis-

TABLE I. Kernel Description

Application Register per thread Occupancy Register utilization

hotspot[3] 60 33% 93.75%

b+tree[3] 30 67% 93.75%

histo_final[2] 41 33% 64.06%

histo_main[2] 22 50% 51.56%

mri-gridding[2] 40 50% 93.75%

TABLE II. GPGPU-Sim Configuration

# Compute Units (SM) 15

SM configuration 32 cores, 700MHz

Resources per SM
Max 1536 threads, Max 8 thread blocks, 48KB shared
memory, 128KB 16-bank register file(32768 registers)

Scheduler 2 warp schedulers per SM, round-robin policy

L1 Data Cache
16/32KB, 4-way associativity, 128B block, LRU re-
placement policy, 32 MSHR entries

L2 Unified Cache 768KB size

ters budget (Table II), only two thread blocks can run simultaneously.

This leads to a very low occupancy as 2×256
1536

= 33%.

To deal with the increasingly complex GPU applications, new reg-

ister file design with high capacity is urgently required. Designing the

register file using high storage density emerging memory for GPUs

is a promising solution [7, 17]. Recently, Racetrack Memory (RM)

has attracted great attention of researchers because of its ultra-high

storage density. By integrating multiple bits (domains) in a tape-like

nanowire [12], racetrack memory has shown about 28X higher den-

sity compared to SRAM [21]. Recent study has also enabled racetrack

memory for GPU register file design [11]. However, prior work pri-

marily focuses on optimizing energy efficiency, resulting in very small

performance gain [11].

In this paper, we explore racetrack memory for designing high per-

formance register file for GPU architecture. High storage density

racetrack memory helps to enlarge the register file capacity. This al-

lows the GPU applications to run more threads in parallel. However,

racetrack-based design presents a new challenge in the form of shifting

overhead. More clearly, for racetrack memory, one or several access

ports are uniformly distributed along the nanowire and shared by all

the domains. When the domains aligned to the ports are accessed, bits

in them can be read immediately. However, to access other bits on the

nanowire, the shift operations are required to move those bits to the

nearest access ports. Obviously, a shift operation induces extra timing

and energy overhead.

To mitigate the shift operation overhead problem, we develop a reg-

ister file preshifting strategy and a compile-time register mapping al-

gorithm that optimizes the mapping of registers to the physical ad-

dress in the register file. The preshifting strategy is implemented in

hardware and tries to preshift the unaligned racetracks toward the cor-

responding access ports as much as possible.The mapping algorithm

consists of two phases. In the first phase, our algorithm partitions the

registers into groups. The registers in the same group have frequent

inter-communication. Thus, we will align them to the same offset

along multiple ports so that they can be accessed simultaneously via

multiple ports without shifting overhead. In the second phase, our al-

gorithm determines the mapping for each group. By partioning the

registers into groups, this also helps to scale down the problem size.

The key contributions of this paper are as follows,

• Framework. We develop a register file design and compile-time
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Fig. 1. GPU and register file architecture.

register mapping framework for GPUs using racetrack memory.

• Optimization techniques. We develop a architecture-level

preshifting strategy and compile-time register mapping algo-

rithms to minimize the number of shift operations of RM-based

register file.

• We conduct experiments using a variety of applications and show

that compared to SRAM design, our racetrack-based register file

design improves performance by 19% on average.

II. BACKGROUND AND MOTIVATION

A. GPU Architecture
A GPU is a highly parallel, multithreaded, many-core proces-

sor [19, 10]. The design of our baseline GPU is based on the GPGPU-

Sim[1](version 3.2.2) as shown in Figure 1. The SMs are grouped into

core clusters and each SM contains many streaming processors (SPs).

Each SM coordinates the single-instruction multiple-data (SIMD) ex-

ecution of its SPs. All the SPs in an SM share the computing and

memory resource including warp scheduler, register file, special pur-

pose units (SPUs), L1 cache, and shared memory, etc. The detailed

setting of the GPU architecture used in this paper is shown in Table II.

The structure of the GPU kernel written in CUDA programming

model is closely related to the GPU architecture. A GPU kernel is

composed of many threads hierarchically organized into groups called

thread blocks. At run-time, GPU thread block scheduler dispatchs the

threads to SMs at the unit of thread blocks. The thread block scheduler

tries to dispatch as many thread blocks as possible to each SM until

the resource limitation is reached. The threads in a thread block are

further grouped into warps, set of 32 threads. Warps are the basic

scheduling units on GPU.

B. Racetrack Memory
More recently, racetrack memory is becoming increasingly popular

due to its high storage density [12, 17, 15]. Compared with SRAM,

Racetrack memory (RM) could achieve about 28X storage density

while keeping comparable access speed [21]. Analogous to access

the head of hard disk, one access head in RM can access multiple bits.

However, RM needs to shift the bit to the head if the bit is not aligned

to the port.

RM stores multiple bits in tape-like magnetic nanowires called

cells. A cell is made of a nanowire holding successive domains to
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Fig. 2. Physical structure of a racetrack memory cell.

Fig. 3. GPU performance in different applications.

save bits and several access ports to access them, as shown in Fig-

ure 2. The “white bricks” represent the domains and those separations

are domain walls used to isolate successive domains. Each access

head has two transistors T1 and T2, as outlined by the red dash boxes.

T1 is used to read. The magnetization direction of each domain rep-

resents the value of the stored bit. If the direction is anti-parallel to

the reference domain (grey bricks) in the access port, the value is “1”,

else it will be “0”. T2 is used to write bit into a domain. When T2 is

on, a crosswise current is applied on the domain, and the required bit

is shifted in just as a shift operation.

Shift operation is based on a phenomenon called spin-momentum

transfer caused by spin current.The shift current provided by shift con-

trol transistor (SL) drives all the domains in a racetrack cell left and

right. Note that several overhead domains are physically assigned at

either end of the cell, in order to save valid domains with stored bits

when they are shifted out.

C. Motivation
GPUs employ massive threading to hide the latency of functional

unit and memory operations. However, as shown by Table I, the GPU

occupancy is often limited by the size of register file. Certainly, larger

register file will help to unleash the power of massive threading for

them. In Figure 3, we compare the performance of GPU in five appli-

cations under the same chip area budget for register file1. By doubling

the register file size, we achieve up to 29% (on average 22%) per-

formance improvement. The improvement is attributed by more oc-

cupancy enabled by larger register file. For example, for application

mri-gridding, the occupancy is improved from 50% to 100% by dou-

bling the register file size. Note that this improvement is the ideal per-

formance improvement by assuming the same access delay for 128KB

and 256KB register file and there is enough die area for enlarging reg-

ister file size. In this paper, we will explore racetrack based register

file design for GPU architecture. Racetrack memory has higher stor-

age density and almost no access latency overhead after the capacity is

increased. We will demonstrate that our design using racetrack mem-

ory can achieve the performance close to the ideal case.

III. REGISTER MAPPING PROBLEM

A. Racetrack-based Register File
The architecture of our racetrack-based register file is shown in Fig-

ure 1. Similar to the SRAM register file design, it partitions the regis-

ters into multiple banks (e.g. 16). Each bank is equipped with multiple

ports for simultaneous reading and writing. Each entry in a bank stores

the registers for a warp. Warps are the scheduling units in GPUs. All

the threads in a warp all executed together in a lock style. Thus, the

same index registers of the threads in the same warp are stored in an

entry in a bank. Each entry uses a number of racetrack stripes to store

the registers. One warp is often allocated dozens of registers. These

registers are spread across the banks as follows,

Bank_id = (Warp_id+Register_id) mod Num_Bank (1)

1The area budget is set according to the area of a 16-bank 128KB register file as shown
in TABLE II.
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Fig. 4. Comparison of different register mapping. For subfigure (b) and

(c), each arrow is associated with m(n), where m represents the mth

register access in the trace, and n represents the shift operations.

where Num_Bank refers to the total number of banks of the register

file, and Bank_id refers the allocated bank id of the register.

Multiple access ports are uniformly distributed along the racetracks

in a bank. Each access port can only serve the register access requests

within its private region as shown by Figure 1. Let us use Nd to de-

note the number of entries a bank could contain, and Np to denote the

number of ports a bank has. Then, �Nd
Np

� is the number entries allo-

cated to each port. The racetrack stripes within each bank have to be

shifted simultaneously. Multiple access ports in a bank can be used

to access multiple registers that are aligned to them simultaneously.

More clearly, given Np ports, Np registers can be accessed simulta-

neously. However, to access other registers in a bank, shift operations

are required to move the racetrack stripes to the nearest access ports.

Obviously, a shift operation induces extra timing and energy overhead.

When we double the capacity of register file from 128KB to 256KB

using racetrack memory, we create two racetrack arrays. Each race-

track array uses the architecture shown in Figure 1. Finally, to im-

prove the write efficiency, similar to prior work [11], we employ a

small write buffer for each bank as shown in Figure 1.

B. Problem Formulation
Our compile-time managed register mapping is implemented based

on GPGPU-Sim [1] compilation and run-time system. We analyze the

assembly-like PTX (Parallel Thread Execution) code, the intermediate

representation used in NVIDIA CUDA Compiler. Each PTX instruc-

tion can access up to 4 registers. We generate the register access trace

(sequence of register access) generated by executing the GPU appli-

cation on the target architecture. Then, based on the register access

trace, we optimize the mapping of the registers to the physical ad-

dress (e.g. entry) within a bank at compile-time. The original PTX

code does not support physical register allocation, and we implement

our register mapping algorithm by employing the register allocation

framework proposed in [18].

Figure 4 (a) shows a snippet of the register file access trace of

bank0. There are totally 5 registers (R0 - R4) accessed in the bank

and the trace contains 6 accesses to the registers. If we map the reg-

isters to the bank simply in an ascending order of register index as

shown in Figure 4 (b), the racetracks need 12 shift operations to ac-

cess the registers for this trace. The optimal mapping of register is

shown in Figure 4 (c). By exchanging the positions of register R0
and R4, the shift operations can be reduced to 6. The warps in GPUs

access the register file almost every clock cycle. Hence, we need to

carefully map the registers to physical address in racetrack register file

to reduce the shift operations and ensure high throughput.

In the following, we formulate the register mapping problem. We

observe that the register access trace of different banks are disjoint,

and thus different banks can be modelled independently. Hence, next

we will discuss the register mapping for one bank. The same tech-

niques can be repeated for different banks.

Let T be the register access trace (sequence of register access) gen-

erated by executing the GPU application on the target architecture. We

define a move from register Ri to Rj if Rj is accessed immediately

after the access of Ri. We use Cij to represent the number of move
from register Ri to Rj in the trace, where i, j = 0, 1, 2...Nr − 1, and

Nr is the number of registers in a bank. Cij can be easily derived by

traversing the trace.

We define a mapping function m(Ri) that maps register Ri to a

physical address in the register file as follows,

m(Ri) = p(Ri)×
Nd

Np
+ o(Ri) (2)

where 0 < p(Ri) < Np and 0 ≤ o(Ri) <
Nd
Np

. In other words, p(Ri)

determines which port’s region Ri is mapped to and o(Ri) determines

the offset of Ri in the region. Each physical entry can only be allo-

cated for one register. Thus, ∀0 ≤ i, j ≤ Nr − 1,m(Ri) �= m(Rj).
Then, we define the number of shift operations required for the

trace T as follows,

S =
∑

0≤i,j≤Nr−1

Cij · d(m(Ri),m(Rj)) (3)

where d(m(Ri),m(Rj)) represents the shift operation needed from

the physical address of Ri to Rj within a bank. The function

d(m(Ri),m(Rj)) is defined as follows

d(m(Ri),m(Rj)) = |o(Ri)− o(Rj)| (4)

Problem 1 [Shift Operation Minimization] Given the register ac-
cess trace T , find a mapping of the registers to the physical address in
the bank (e.g. m(Ri)) such that S is minimized.

IV. OPTIMIZATION TECHNIQUES

A. Register Mapping Algorithm
We solve Problem 1 in two phases. In the first phase, we develop

a register grouping algorithm that partitions the registers into groups.

The size of each group is Np (the number of ports). In the second

phase, we develop a register arrangement algorithm that optimizes the

arrangement of registers within a bank. The first phase determines the

p(Ri) part and the second phase determines o(Ri) part in m(Ri) for

each register, respectively.

A.1 Register Grouping Algorithm

We split the objective function (Equation 3) into two parts based on

o(Ri) and o(Rj) as follows,

S =
∑

0≤i,j≤Nr−1,o(Ri) �=o(Rj)
Cij · d(m(Ri),m(Rj))

+
∑

0≤i,j≤Nr−1,o(Ri)=o(Rj)
Cij · d(m(Ri),m(Rj))

=
∑

0≤i,j≤Nr−1,o(Ri) �=o(Rj)
Cij · |o(Ri)− o(Rj)|

+
∑

0≤i,j≤Nr−1,o(Ri)=o(Rj)
Cij · |o(Ri)− o(Rj)|

=
∑

0≤i,j≤Nr−1,o(Ri) �=o(Rj)
Cij · |o(Ri)− o(Rj)|

(5)

That is, the moves between two registers that share the same offset to

ports do not require shift operations. This is because these registers

can be accessed simultaneously via multiple ports in racetrack-based

register file without extra shift overhead.

Furthermore, given the register access trace T , the total number of

moves is a constant. We define it as follows,

Q =
∑

0≤i,j≤Nr−1 Cij

=
∑

0≤i,j≤Nr−1,o(Ri) �=o(Rj)
Ci,j

+
∑

0≤i,j≤Nr−1,o(Ri)=o(Rj)
Ci,j

(6)

From Equation 5 and 6, we find that
∑

o(Ri)=o(Rj)
Ci,j is nega-

tive correlated with S. Thus, we can minimize S by maximizing∑
o(Ri)=o(Rj)

Ci,j . The intuition behind this is if there are frequent

moves between Ri and Rj (e.g. Ci,j is high), then we should align Ri

and Rj to the same offset along two ports so that they can be accessed
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Fig. 5. Illustration of register mapping algorithm.

Algorithm 1: Register Grouping Algorithm

input : G = (V,E)
output: m(Ri)

1 for t← 0 to �Nr
Np
� − 1 do

2 port_num← 0;
3 group_id = 0;
4 if |V | ≥ Np then
5 G′(V ′, E′)← FindMaxSubgraph(G,Np);

6 foreach vi ∈ V ′ do
7 o(Ri)← offset;
8 p(Ri)← port_num;
9 PortNum← port_num + 1;

10 delete G′ from G

11 group_id← group_id + 1;
12 else
13 G′(V ′, E′)← FindMaxSubgraph(G′, n);
14 foreach vi ∈ V do
15 o(Ri)← group_id;
16 p(Ri)← port_num;
17 port_num← port_num + 1;

18 FindMaxSubgraph(G = (V,E), Size){ V ′ ← ∅, E′ ← ∅;

19 while |V ′| ≤ Size do
20 wd ← 0, we ← 0;
21 foreach vt ∈ V do
22 w ←∑

vi,vj∈(Vs∪vt),i �=j Ci,j ;

23 if wd ≤ w then
24 wd ← w;
25 vd ← vt ;

26 foreach e(vm, vn) ∈ V do
27 w ←∑

vi,vj∈(Vs∪(vm,vn)),i �=j Ci,j ;

28 if we ≤ w then
29 we ← w;
30 Ve ← {vm, vn};

31 if wd ≥ we and |Vs| ≤ size− 1 then
32 V ′ ← V ′ ∪ vd ;
33 V ← V − vd ;

34 else if we > wd and |V ′| ≤ size− 2 then
35 V ′ ← V ′ ∪ Ve ;
36 V ← V − Ve ;

37 E′ = {e(vi, vj)|vi, vj ∈ V ′, vi �= vj};

38 return G′ = (V ′, E′);
39 }

simultaneously without shifting overhead. In our racetrack-based reg-

ister file design, each bank is associated with Np ports. Thus, we need

to partition the registers into groups of size Np. The registers in each

group g have high number of moves (e.g.
∑

Ri,Rj∈g Ci,j) between

them.

We build an undirected graph G = (V,E), where vi ∈ V repre-

sents register Ri, |V | = Nr . The edges are weighted using function

W , where W is defined as follows,

W (e(vi, vj)) = Ci,j + Cj,i (7)

Problem 2 [Subgraph Weight Maximization] Given the graph
G = (V,E), find a subgraph G′ = (V ′, E′) where V ′ ⊆ V , E′ ⊆ E,
|V ′| = Np, such at

∑
∀e∈G′ W (e) is maximized.

The registers in subgraph G′ form a group and we will distribute

the Np registers in G′ across the Np ports with the same offset.

Algorithm 1 describes the details of our register grouping al-

gorithm. It partitions the groups into �Nr
Np

� groups and each

group has Np registers. Algorithm 1 repeatedly calls func-

tion FindMaxSubgraph to form a group from G. Function

FindMaxSubgraph is a heuristic to Problem 2. It finds the nodes in

a group iteratively. It first finds the edge with the maximal weight.

Then, in each iteration, it will complement the existing subgraph

G′ with either one node (line 21-25) or two nodes (line 26-30) de-

pending on which results in larger weight (line 31-36). Each time

FindMaxSubgraph is called, it returns a subgroup G′ with size Np.

The registers in G′ are distributed across the Np ports with the same

offset. We assign the port region(P (Ri)) for each register in G′ (line

7-9, 15-17). As a byproduct of this process, we assign group identifier

for each group based on the sequence of when the group is formed.

Figure 5 illustrates Algorithm 1 using an example. In this example,

Np = 4. We partition the registers into 3 groups with group size of 4.

A.2 Register Arrangement Algorithm

Let σ ∈ Ω, then σ[i] is the offset of the ith group. Algorithm 2

presents the details for register arrangement algorithm. It finds the best

mapping that minimizes S (Equation 3) and returns m(Ri) for each

register. Figure 5 illustrates the register arrangement algorithm using

an example. In this example, Nr = 12 and Np = 4. By partitioning

the registers into 3 groups, we can easily determine the mapping for

groups through enumeration (3!) and then derive the mapping for all

the registers.

Algorithm 2: Register Arrangement Algorithm

input : g(Ri), p(Ri)
output: m(Ri)

1 S ← +∞;
2 foreach enumeration of groups σ ∈ Ω do
3 S′ ←∑

0≤i,j≤Nr−1 Ci,j · |σ[g(Ri)]− σ[g(Rj)]|;
4 if S′ ≤ S then
5 S ← S′ ;
6 foreach register Ri do o(Ri) = σ[g(Ri)];

// compute the final mapping function

7 foreach register Ri do m(Ri)← p(Ri) · Nd
Np

+ o(Ri);

B. Register File Preshifting Strategy
In this Section we also propose a preshifting strategy which is im-

plemented in hardware to further reduce the shift operation overhead.

GPU register file adopts a multi-banked structure. At any given

clock cycle only a small portion of register file banks could be ac-

cessed for read or write operations. For instance, in NIVIDIA fermi

architecture, up to 4 out of 16 register file banks could be accessed

simultaneously. In this paper, we regard the banks that is being ac-

cessed as busy banks, while the banks which are not being accessed as
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(a) performance (b) energy (c) shift number

Fig. 6. Performance, energy, and shift number in different applications.

(a) performance breakdown (b) energy breakdown (c) shift number breakdown

Fig. 7. GPU perfromance, energy, and shift breakdown in different applications.

Fig. 8. The flow of opportunistic register file preshifing strategy.

idle banks. Each bank of register file owns a read request queue and

write buffer which is shown in Figure 1. The read requests and write

requests to be served in each bank are all stored in the correspond-

ing queue or buffer. Because the requests in each queue or buffer are

served in a first-in first-out (FIFO) fashion, when a bank is appointed

to be busy bank to serve a request, the top request in the read request

queue or write buffer will be poped out and then served. It is needed

to note that the write request has higher priority than the read request,

so the write request will always be first served when there is a read

and write request conflict.

With the knowledge of the top requests in each queue and buffer,

we could determine the next warp register to be served in the following

for each bank, which leaves us a good opportunity to preshift the idle
banks in advance before they are appointed to be busy banks. There-

fore, we propose a idle bank preshifting mechanism shown in Fig-

ure 8. In the following, we will use the register file of NIVIDA fermi

architecture as an example to explain the preshifting mechanism.

First, in any given clock cycle, after the 4 busy banks are determined

by the register file arbitrator, each bank will be checked wether it needs

shift. If it is a busy bank, it will be read/written when it doesn’t need

a shift or be shifted toward target register when it does need a shift.

While if the bank is an idle bank, it will also be checked whether it

needs a shift operation or not. If it needs to shift to align the register to

corresponding access port, the bank will shift one step towards access

port, otherwise it will do nothing.

V. EXPERIMENTAL EVALUATION

We implement our racetrack-based register file design based on

GPGPU-sim[1]. We evaluate our technique using applications from

TABLE III. SRAM and RM operating parameters

Register File SRAM RM Write Buffer

capacity 128KB 256KB 2KB

bank # 16 16 -

read latency 0.31ns 0.28ns 0.15 ns

write latency 0.31ns 1.24ns 0.16ns

shift latency - 0.61ns -

read energy 218.88pJ 117.12pJ 15.6pJ

write energy 57.28pJ 173.22pJ 14.6pJ

shift energy - 56.16 -

leakage 12.31mW 7.95mW 1.12mW

benchmark suites Rodinia[3] and Parboil [2] as shown by Table I. We

extend GPGPU-sim with racetrack memory model using a circuit-

level racetrack memory simulator [21]. The design parameters of

racetrack-based register file are shown in Table III. Racetrack-

memory incurs long write latency. To mitigate this problem, similar

to prior study [11], we employ a write buffer to improve the writing

efficiency. The write buffer is 2KB and each bank has two entries as

shown by Figure 1.

A. Performance Results

Figure 6a shows that the performance improvement of our proposed

RM based register file design over the default SRAM design is up to

24% (19% on average). The reasons for the improvement are two

folds. First, under the same chip area budget, high-density RM based

register file could enable larger capacity (256KB) compared to default

SRAM design (128KB). The increased capacity of register file enables

the applications to execute more threads in parallel as to make GPU

achieve high occupancy as shown in Figure 9, where the occupancy is

increased from 46.6% to 86.8% on average. Second, compared with

the direct register mapping2 our proposed register file preshifting strat-

egy and register mapping technique have greatly reduced the number

of shift operations by 54% on average shown in Figure 7c, which has

largely alleviated the lengthy shift operation overheads.

To further quantify the respective portions of contribution from

these propsed techniques, we break down the contributions and show

the results in Figure 7a. It shows that RM-based register file, preshift-

ing strategy, and proposed mapping algorithm contributes to 20%,

21%, and 59% performance improvement respectively. Moreover, we

can see from the Figure 7c that preshifting strategy and the proposed

mapping algorithm contributes to 37% and 64% number of shift oper-

2The direct mapping strategy is to directly map each virtual register to a physical ad-
dress in register file according to its virtual register number
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Fig. 9. GPU occupancy in different applications.

ation reduction on average, which matches the performance improve-

ment contribution results we have concluded from Figure 7a.

B. Energy Results

Figure 6b shows that, compared with default SRAM design our

proposed RM design reduces up to 53% (on average 43%) energy

consumption. Furthermore, as shown in Figure 7b, RM-based reg-

ister file, preshifting strategy, and mapping algorithm contributes to

72%, 12%, and 16% energy reduction respectively, which means that

RM-based register file is major reason for the great energy reduction,

thus indicating that RM-based register file is a promising solution for

energy-efficient GPU register file design in the future.

C. Area Results

RM based register file saves 45% chip area over the SRAM based

register file, and this large area reduction is mainly attributed to the

high storage density of racetrack based memory, which indicates a

good scalability of racetrack memory based register file for GPU.

VI. RELATED WORK

Recently, emerging memory technologies have attracted a lot of at-

tention in both industry and academic area. Jog et al. presented a tech-

nique to improve STT-RAM based cache performance for CMP[8].

Topics about using STT-RAM to architect last level Cache has been

studied in[13, 14]. Optimization techniques at architecture and com-

pilation level are proposed for racetrack memory [15]. Chen et al.

has proposed a data placement strategy to minimize the shift opera-

tions for racetrack based memory in general CPU[4]. However, GPU

and CPU have distinct architecture. Thus, these techniques cannot be

directly applied to GPU.

Emerging Memory Technology for GPU Cache. There are a few

proposals that explore emerging memory for GPU caches by utilizing

its high storage density and power efficient features. TapeCache [16],

a cache designed with racetrack memory, demonstrated the benefits of

racetrack-based cache design for GPUs. Venkatesan et al. presented a

detailed racetrack memory based cache architecture for GPGPU cache

hierarchies [17], and their experiment results show substantial perfor-

mance and energy improvement.

Emerging Memory Technology for GPU Register File. GPUs

demand a large size of register file for thread context switch. Race-

track memory is a good candidate for designing GPU register file [17,

11]. Mao et al. presented a racetrack memory based GPGPU register

file[11]. They proposed to use a hardware scheduler and write buffer

to reduce energy consumption. Besides the racetrack memory, Jing et

al. proposed an energy-efficient register file design for GPGPU based

on eDRAM and also developed a compiler-assisted register alloca-

tion optimization technique [7, 6]. However, all the previous works

using emerging technology for GPU register file mainly focus on op-

timizing area, power and energy, resulting in no or little performance

improvement. In contrast, we focus on improving performance for

GPU applications by fully taking advantage of the high storage density

of racetrack memory. We also propose a novel compile-time register

mapping algorithm to minimize the shift operations.

VII. CONCLUSION

The massive threading feature has enabled GPU to boost perfor-

mance for a variety of applications. However, the number of simulta-

neously executing threads in GPUs is often constrained by the size of

the register file. The widely used SRAM based register file does not

scale well in power and area when the register file size is increased.

In this work, we explore racetrack memory for designing high per-

formance register file for GPUs. The high storage density feature

of racetrack memory increases the register file capacity and subse-

quently enables more threads to execute in parallel. We also develop

an architecture-level preshifting strategy and a compile-time register

mapping technique to minimize the shift operations to further improve

performance. Our experiments show that our racetrack-based register

file can achieve up to 24% (19% on average) performance improve-

ment for a variety of GPU applications.
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