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ABSTRACT
Circuit clustering is usually done through discrete optimiza-
tions, with the purpose of circuit size reduction or design-
specific cluster formation. Specifically, we are interested in
the multi-bit flip-flop (MBFF) design technique for clock
power reduction, where all previous works rely on discrete
clustering optimizations. For example, INTEGRA was the
only existing post-placement MBFF clustering optimizer with
a sub-quadratic time complexity. However, it degrades the
wirelength severely, especially for realistic designs, which
may cancel out the benefits of MBFF clustering. In this
paper we enable the formulation of an analytical clustering
score in nonlinear programming, where the wirelength ob-
jective can be seamlessly integrated. It has sub-quadratic
time complexity, reduces the clock power by about 20% as
the state-of-the-art techniques, and further reduces the wire-
length by about 25%. In addition, the proposed method is
promising to be integrated in an in-placement MBFF clus-
tering solver and be applied in other problems which require
formulating the clustering score in the objective function.

Categories and Subject Descriptors
B.7 [Integrated circuits]: design aids placement and rout-
ing

Keywords
Multi-bit flip-flops, placement, clock power, timing

1. INTRODUCTION
Circuit clustering technique is a useful stage in electronic

design automation. There are two categories of clustering
problems: one is for circuit size reduction, where a short
survey can be found in [20]; the other is for design-specific
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Figure 1: Clock tree synthesis for (a) conventional
flow (b) MBFF flow

Table 1: The power and area of our MBFF library

Bit number Normalized Normalized
power per bit area per bit

1 1.00 1.00
2 0.86 0.96
4 0.78 0.71

cluster formation, such as voltage island grouping [19] and
register grouping [5],[6].

In this paper we are interested in the multi-bit flip-flop
(MBFF) clustering problem, which is a promising technique
for clock power reduction, due to the power savings on clock
nets and flip-flops (FFs) themselves. As shown in Figure
1, the basic idea of MBFF technique is to reduce the load
capacitance on the clock network, including the reduction
of metal wires in the last-level of the clock tree, as well as
the reduction of clock pins. In addition, the normalized per-
bit power and area of a MBFF are less than a single-bit FF.
Specifically, for the MBFF library we used as shown in Table
1, 4-bit MBFF is the most power-efficient and area-efficient.

Existing works explore MBFF clustering in three design
stages: pre-placement stage [1][10], in-placement stage [17]
[7], and post-placement stage. Because of the adequate
physical information, post-placement MBFF clustering has
attracted a lot of attentions, such as [21][11][18][9]. Among
all these works, INTEGRA[9] delivers the best performance
in both power reduction and runtime consumption and is the
only one with sub-quadratic complexity. However, almost all
previous works pay little attention to the signal wirelength,
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either regarding it as secondary objective [21][11][18] or even
ignoring it at all [9]. We demonstrate latter that for a se-
ries of realistic benchmarks, INTEGRA’s clustering degen-
erates into a random clustering of MBFFs and induces huge
degradation of signal wirelength, which might cancel out the
power benefit of MBFFs.

In this paper we propose an analytical model for the clus-
tering score. The basic idea is to first propose an exact for-
mulation of the number of clusters based on the Dirac delta
function, and smooth it using the Gaussian function to make
it applicable in a nonlinear programming (NLP) framework
with another objective in wirelength. With a well-designed
NLP solver, the acceleration techniques such as customized
fast Gauss transformation, and a further discrete refinement,
our clustering flow delivers high-quality MBFF clustering re-
sults with short wirelength in sub-quadratic time. Taken IN-
TEGRA as baseline, our method shows a comparable power
reduction, reducing clock power by about 20%. Further-
more, our method optimizes signal wirelength by about 25%.
What’s more, the proposed method is promising to be in-
tegrated in an in-placement MBFF clustering solver, and
be applied in other problems which require formulating the
clustering score in the objective function.

The rest of this paper is organized as follows. Section 2
reviews the effectiveness and limitations of previous work.
Section 3 introduces our optimization flow, including ana-
lytical clustering model and discrete refinement. Section 4
elaborates the details of NLP solver and the acceleration
technique. Section 5 evaluates our method, and shows ex-
perimental data and comparisons. Finally, Section 6 con-
cludes this work.

2. PRELIMINARY AND MOTIVATION
This section will focus on two concepts, the timing violation-

free distance (TVFD) and the average distance between neigh-
boring flip-flops (AFFD). The concept of TVFD will be de-
scribed in Section 2.1, and the concept of AFFD and our
motivations will be discussed in Section 2.2.

2.1 Post-placement MBFF Problem Formula-
tion and Previous Solutions

Given the following inputs, the post-placement MBFF
clustering problem will replace a few single-bit FFs with
MBFF such that the power is minimized and the timing
constraint and placement density constraint are satisfied.

• The number of N placed flip-flops (FFs), where each
FFi with coordinate (xi, yi) can either be single-bit or
multi-bit.

• The upstream pin PIi and downstream pin POi of
FFi, and corresponding timing slacks Ts(PIi,FFi) and
Ts(POi,FFi) between the pins and FF on the up-
stream and downstream timing paths, respectively.

• The MBFF library with information of power and area.

• The locations of placement blockages.

Timing constraint is proposed to prevent MBFF cluster-
ing from violating cycle delay. The basic idea is shown in
Figure 2. With timing analysis, we could obtain timing slack
between input (output) pins and FF. By transforming the
timing slack into equivalent metal wirelength using Elmore

Figure 2: Concept of timing-violation-free distance
(TVFD) and timing-violation-free region (TVFR)

delay model [4], we can find the timing-violation-free dis-
tance (TVFD) between FF and input (output) pins. Taken
the input and output TVFDs into account, each FF can
find a feasible region for movement without violating timing,
which we label as timing-violation-free region (TVFR) in
Figure 2. Consequently, clustering a few single-bit FFs with
overlapped TVFRs can optimize power and area without vi-
olating timing constraint. Specifically, using the library in
Table 1, the basic objective of MBFF clustering problem
should merge FFs with overlapped TVFRs into 4-bit groups
as many as possible.

Previous works certify the timing constraint with well-
designed structures: intersection graph [21][11][18] or in-
terval graph [9] and search the MBFF candidates on these
graphs.

The MBFF clustering based on intersection graph has the
following defects: 1) searching maximum clique is computa-
tional expensive with known best performance of O(N3). 2)
The window-based optimization technique for problem size
reduction limits the clustering ratio of MBFF due to the
difficulty of manipulating the boundaries.

Unlike window-based technique, INTEGRA considers all
FFs simultaneously, with a well designed structure: interval
graph. Searching on the interval graph is more efficient, with
sub-quadratic complexity. Moreover, the optimization with
global information delivers better clustering ratio than the
optimization with local information only. Thus, INTEGRA
outperforms the previous work in terms of power reduction
and runtime complexity.

However, the efficient runtime of INTEGRA partially ben-
efits from the simple strategy of choosing MBFF candidates
without measuring the impact to signal wirelength. Taking
an extreme case as example, where the intervals of feasible
region for each FF is as large as the placement region, INTE-
GRA’s solution degenerates to a random solution. Although
the wirelength degradation on widely used benchmarks C1-
C6 [11] is acceptable (around 3%), we analyze in the follow-
ing subsection that for a series of realistic designs, wirelength
degradation is quite huge. Such observation motivates us to
propose a new solution with great power reduction, better
signal wirelength and efficient time complexity.

2.2 Previous Solutions are Inappropriate for
Realistic Designs

We demonstrate in this part that 1) the widely used bench-
marks C1-C6 [11] can only represent a single kind of circuit;
2) realistic designs from IWLS[2] are quite different from
C1-C6 in terms of TVFR. Specifically, for the realistic de-

94



signs, MBFF clustering is quite easy if no signal wirelength
is considered. Thus, what really matters is to find a solution
with short signal wirelength while keeping the clustering ra-
tio high.

Firstly, we define the average FF distance (AFFD) as√
ChipArea/#FF. It is obvious that the average distance

between every pair of nearest FFs is approximately AFFD,
assuming all the FFs are evenly placed. Then TVFD/AFFD
is calculated for every FFs to roughly estimate how many
FFs can be covered within the range of TVFD.

As is shown in Figure 3(a), the histogram of TVFD/AFFD
for the benchmark C1 indicates that the range of TVFD is
limited. The majority of FFs can only reach 3 other FFs on
average within the range of TVFD.

Interestingly, all other benchmarks, C2-C6, follow exactly
the same distributions as C1, even though the number of
FFs is different. Moreover, if we look at the number of
FFs and the placement region of these benchmarks, they
scale in exactly the same ratio. These facts indicate that
the benchmarks C1-C6 can only represent a single kind of
circuit. They are not sufficient to evaluate the performance
of MBFF clustering algorithms.

Similarly, we pick a realistic design, vga, from the IWLS
benchmark suite, and synthesize it by Synopsys DC and Ca-
dence SOC Encounter with a tight timing constraint. Specif-
ically, the worst negative slack (WNS) reported after place-
ment is 0.108 ns with clock cycle time of 3.5 ns and 2.5 ns
for the two clock domains. The TVFD/AFFD distribution
is revealed in Figure 3(b).

Comparing Figure 3(a) and Figure 3(b), we can easily
find that TVFD in realistic designs is two orders of mag-
nitude greater than TVFD in C1-C6. Thus, realistic de-
signs have much greater freedom of choosing clustering can-
didates. However, INTEGRA almost has no evaluation on
signal wirelength. With the analysis in Subsection 2.1 and
statistics in Table 4, we see that the solution of INTEGRA
damages the signal wirelength a lot for realistic designs. For
example, the degradation of wirelength for ethernet is up to
20 times of original wirelength.

Figure 3: The histogram of TVFD/AFFD for bench-
mark (a) C1 (b) realistic design Vga

3. ANALYTICAL MODEL AND THE OPTI-
MIZATION FLOW

3.1 The Basic Idea
In this paper, we view the MBFF clustering problem as

an optimization problem subject to timing constraint. The
objective function optimize the number of MBFF clusters

as many as possible while taking the signal wirelength into
account.

Our optimization includes two steps: the analytical op-
timization step and the discrete refinement step. In the
analytical optimization, we carefully define the formulation
with a continuous and differentiable objective function and
exploit an effective non-linear programming (NLP) solver
[12] to make our method practical. After the analytical op-
timization, we can get a rough clustering. Then we invoke
the discrete optimization to discretize and further improve
the clustering solution. The overall flow is shown in Figure
4 and details will be illustrate in the following part.

Figure 4: Optimization Flow

3.2 Analytical Optimization Step

3.2.1 Definition of Clustering Score
Our objective function trades off the signal wirelength

fl(x,y) and cluster number fc(x,y) with parameter α, where
x = (x1, . . . , xN )T and y = (y1, . . . , yN )T represent coordi-
nates for N FFs. Because of the timing constraint, FFs’
locations are bounded within their feasible regions. Thus,
the problem is formulated as optimization problem under
the timing constraint.

minimize α · fl(x,y)− fc(x,y)

subject to t(x,y) ≤ T
(1)

The signal wirelength fl(x,y) is measured by the total
half-perimeter wirelength (HPWL) between locations of FFs
and their upstream and downstream pins. Since HPWL is
non-differentiable, we use the weighted-average approxima-
tion in [8].

The cluster number fc(x,y) is measured by the distance
metric. If FFi and FFj are clustered eventually, their coor-
dinates will be exactly the same. Analytically, we use the
delta function to evaluate the relationship between two FFs.
As shown in Equation 2 and Equation 3, the value of delta
function becomes one if and only if two FFs are placed at the
same location. The summation in Equation 3 calculates the
total number of FFs that can be “clustered” with FFi. For
example, if Ni(x,y) equals to 3, we can see FFi is placed
at the same location as three other FFs. They form a 4-bit
cluster together.

δ(ω, z) =

{
1 (ω = z)

0 (ω 6= z)
(2)
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Ni(x,y) =
∑
j 6=i

δ(‖ (xi, yi)− (xj , yj) ‖, 0) (3)

According to the library in Table 1, the 4-bit MBFF is
the most efficient in power and area reduction. Thus, each
FF is encouraged to cluster with three other FFs. As shown
in Equation 4, minimizing the −fc term of the objective
function encourages maximizing the number of FFs in 4-
bit clusters. In the next subsection, we will demonstrate
that our clustering function (fc) is capable of generating
attractive and repelling forces during the optimization so
that it enables the formation of 4-bit clusters as many as
possible.

min−fc = −max fc = −max

N∑
i=1

δ(Ni(x,y), 3) (4)

The delta function is non-differentiable. In practice, we
smooth it with Gaussian function. As Equation 5 shows,
the Gaussian function can degenerate very quickly. The pa-
rameters ε and d20 are used to control the degenerate speed,
where ε ranges from 0 to 1 and d0 is a distance metric.
Equation 6 quantifies that the function value will decrease
below ε when distance is greater than d0. The effect of pa-
rameter d0 will be discussed in the Subsection 4.3. With the
smoothing technique, our constraint optimization problem
can be solved by non-linear programming (NLP) solvers. In
Subsection 4.1, we will systematically illustrate our efficient
and effective NLP solver.

δ(ω, z) ≈ D(ω, z) = exp((ω − z)2 ln ε/d20) (5){
D(ω − z) = 1 when w = z

D(ω − z) < ε when | ω − z |> d0
(6)

3.2.2 Insights of the Clustering Function

Property 1. FFi contributes a term fc,i = δ(Ni(x,y), 3)
to the clustering score fc. When FFi lies in an under-sized
(Ni < 3) cluster, maximizing this term results in attractive
forces for the neighboring FFs of FFi; when FFi lies in an
over-sized (Ni > 3) cluster, maximizing this term results in
repelling forces for the neighboring FFs of FFi.

Proof. The force direction of FFj resulting from fc,i to-
wards can be detected by checking the sign of Equation 7.
Here we only consider the x-direction without loss of gener-
ality.

FFi attracts FFj when (xi − xj) ·
∂fc,i
∂xj

> 0

FFi repels FFj when (xi − xj) ·
∂fc,i
∂xj

< 0

(7)

When smoothing with Gaussian function, the calculation of
partial derivative is shown in Equation 8, 9, 10.

∂fc,i
∂Ni

= 2λ1(Ni − 3) exp((Ni − 3)2λ1) (8)

∂Ni
∂xj

= 2λ2 exp(λ2((xi − xj)2 + (yi − yj)2))(xj − xi) (9)

∂fc,i
∂xj

=
∂fc,i
∂Ni

· ∂Ni
∂xj

(10)

Please note that both λ1 and λ2 equal to ln ε/d20, which are
negative when ε is less than 1. Thus, the force direction is

only related to Ni, which is shown in Equation 11{
(xi − xj) · ∂fc,i∂xj

> 0 when Ni < 3

(xi − xj) · ∂fc,i∂xj
< 0 when Ni > 3

(11)

In Figure 5, we illustrate the force direction and strength
from FFi towards other FFs and the convexity of clustering
function. As is shown in Figure 5(a), when FFi is adjacent to
less than 3 FFs, FFi will attract more FFs to form a cluster
of size 4; when there are more than 3 neighbors, FFi will
repel the extra FFs. Thus, it guarantees the maximization of
4-bit clusters’ number. Since fc,i part contains Exp function,
which degenerates quickly, FFi will only affects other FFs
within distance of r in Figure 5(a).

Here we take a specific case as an example to illustrate the
force strength from FFi, where FFi locates at (0, 0) point, ε
is set to 0.5, and d0 is set to 100. In Figure 5(b), where the
x-axis represents the change of xj of another FF and y-axis
indicates the value of ∂fc,i/∂(xj), we can see that FFi only
affects other FFs in the neighbourhood. We consider such
feature to accelerate the gradient calculation with fast gauss
transformation (FGT) in Subsection 4.2.

From the previous analysis, the fl term of the objective
function can pull FFs towards their “optimal locations” in
terms of signal wirelength. While the fc term of the objec-
tive function can effectively cluster FFs in the neighborhood
into 4-bit groups as many as possible. Thus, our objective
function achieves high-quality results in both signal wire-
length and clustering ratio.

In fact, our clustering function is not convex. Supposing
in the following circumstance, for FFi, its’ neighbouring FFs
are FFa and FFb and they are aligned in horizontal. The
value of fc,i term changes with different locations of FFi,
which has been illustrated in Figure 5(c). Although it is not
convex, we will show its efficieness in Section 5.

Figure 5: Analysis of force direction, magnitude and
convexity of clustering function

96



3.3 Discrete Optimization Step
Since the analytical solution is an approximately continu-

ous solution, additional steps are required to map the con-
tinuous solution to a final discrete solution.

We apply discrete optimization in Algorithm 1 to com-
plete the conversion from a given analytical solution to the
final solution. The discrete optimization flow looks like two-
passes of best-choice clustering [3]. In the first pass (line
6-11), we extract partial clusters by bottom-up clustering
based on the proximity relation after analytical solution. In
this step the size of partial clusters will not exceed the maxi-
mum size (i.e. 4-bit in our library). Then we perform further
refinement to improve the ratio of 4-bit clusters in the sec-
ond pass (in line 12-20). It is necessary since there will be
some 2-bit or 3-bit clusters after the first pass. In this step
we temporally form clusters that exceed the maximum size
and kick out the extra FFs immediately based on the heuris-
tic score. Please note that we perform timing constraint
check during cluster formation to guarantee that FFs in the
same cluster have overlapped feasible regions.

Algorithm 1 Discrete Optimization

Require:
1) The initial FFs’ locations based on analytical solution
2) The feasible region for each FF
Preprocessing

1: Construct Bin-Structure for nearest neighbour searching

2: Search three nearest neighbours on Bin-Structure and
Insert tuples into Priority Queue
Clustering & Refinement

3: Pass← 1
4: while Pass <= 2 do
5: Pop top tuple(FFi, FFj , d) from PQ
6: if Pass == 1 then
7: if |Group(FFi)

⋃
Group(FFj)| < 4 then

8: if satisfy timing constraint then
9: Merge Group(FFi) and Group(FFj)

10: end if
11: end if
12: else
13: if |Group(FFi)

⋃
Group(FFj)| < 4 then

14: if satisfy timing constraint then
15: Merge Group(FFi) and Group(FFj)
16: end if
17: else
18: Merge Group(FFi) and Group(FFj) and Kick

out excess FFs
19: end if
20: end if
21: if PQ.empty && Pass==1 then
22: Remove the 4-bit groups and insert the tuples for

nearest neighbors for the remaining FFs.
23: end if
24: Pass+ +
25: end while
26: return MBFF clustering result

Line 1-2 extracts the proximity relation based on the an-
alytical solution. For each FF, we calculate distances with
three nearest neighbors. For the purpose of maintaining

proximity relation, FF pair with small distance will be ma-
nipulated in high priority during the later cluster formation.
In order to identify the globally nearest FF pair, we insert
tuple(FFi,FFj , d) into a priority-queue (PQ) with the dis-
tance d between FFi and FFj as the sort key. Naive search-
ing of three nearest neighbors requires O(N2) complexity
for N FFs. In order to accelerate the O(N2) searching to
O(N), we design an efficient bin-structure, which will be
explained in Section 4.2. With our bin-structure, we can ef-
ficiently search three nearest neighbors for N FFs in O(N)
time, assuming that FFs are well distributed.

Line 6-11 is the clustering step (first pass). Since 4-bit
MBFF is the most power-efficient and area-efficient, the
cluster’s capacity is limited to 4, which we call capacity
constraint. After the preprocessing stage, we pick up the
top tuple(FFi,FFj , d) from PQ. If merging the groups that
FFi and FFj belong to does not violate the capacity con-
straint and timing constraint, we commit the merge. Sup-
posing the top two tuples are (A,B, d1) and (A,C, d2) (as
in Figure 6(a)), after checking the capacity constraint, A
and B will be firstly merged into a group of two. Then the
group of AB and the group of CD will be clustered into a
4-bit group. However, group of HI and group of EFG can
not be merged because of capacity constraint. The group
information after clustering step is shown in Figure 6(b).

Line 12-20 is the refinement step (second pass). In this
step, we allow the clustering of two groups, the sum of whose
size exceeds 4, and then kick out the excess part by com-
paring heuristic score. The heuristic score will estimate the
HPWL of signal nets if a FF candidate is stayed in the group,
which is bounded by the locations of pins connected to all
the FFs in the group. The less the score is, the more possi-
bility of that FF will be stayed in the group. In Figure 6(c),
we pick up the top tuple, namely (I, E, d3), from PQ. Since
merging the two groups results in a group size of 5, we kick
out one FF with maximum heuristic score. The final FFs
groups’ formation is shown in Figure 6(d).

Figure 6: Discrete optimization
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4. IMPLEMENTATION DETAILS

4.1 Nonlinear Programming Solver
As shown in Section 3.2, we formulate an analytical ob-

jective function in the constrained nonlinear programming
model. Instead of the penalty methods, we apply a gradient
projection method to handle the timing constraints.

In this work we use the Nesterov’s method [12] to choose
the step size to minimize the objective function efficiently.
The key algorithm for the NLP solver is described in Algo-
rithm 2.

Step size αk is crucial to guarantee the convergence of Nes-
terov method. As [14] shows, αk = L−1 satisfies steplength
requirement, where L is the Lipschitz constant. Similar with
[12], we approximate Lipschitz constant instead of precisely
calculating. At line 1, we use backtrack method to further
refine the step size.

The solution after one step of the Nesterov’s method, at
line 4, may violate the timing constraint. Therefore, we ap-
ply a projection step in line 5 to find a closest solution in the
feasible space to replace the intermediate infeasible solution.
Since the feasible solution space with respect to timing con-
straint is a convex space, the projection is straightforward
to implement. The feasible region of a flip-flop is a circle
with Manhattan distance, and it becomes a rectangle after
rotating the coordinates by 45 degree. Thus, the projection
can be done by rotating the coordinates by 45 degree first,
and then project the location of a timing-infeasible flip-flop
into its rotated rectangular timing-feasible region.

Algorithm 2 Projected Nesterov Method

Require:
αk, µk, vk, vk − 1,∇f(vk),∇f(vk−1)

1: αk = BackTrack(vk, vk − 1,∇f(vk),∇f(vk−1))
2: µk+1 = vk − αk∇f(vk)

3: αk+1 = (1 +
√

4α2
k + 1/2)

4: vk+1 = µk + 1 + (αk − 1)(µk + 1− µk)/αk + 1
5: vk+1 = Project(vk+1)
6: return µk+1, vk+1, αk + 1

4.2 Customized Fast Gauss Transformation
The computation of Equation 4, in the objective function

is expensive. A direct computation requires O(N2) complex-
ity for all the N flip-flops. We use the fast Gauss transfor-
mation (FGT)[15] method to reduce the computation com-
plexity to O(N).

The basic idea of the FGT is demonstrated in Figure
7, where the evaluation of the exponential function is only
needed for the neighbourhood flip-flops. Supposing FFi is
located in a square with side length

√
H, which equals to√

−d20/ ln(ε) in our problem, as demonstrated in [15], the

searching within side length of 4
√
H is satisfied with four

digits of accuracy.
However, even using the stage-of-the-art FGT library Figtree

[13], the runtime is still too slow due to the overhead of
maintaining essential data structure KD-Tree, which is more
suitable for high-dimensional data. Thus, we implemented
a customized multithreaded FGT solver with an efficient
bin structure instead of the KD-Tree structure for our two-
dimensional data.

Figure 7: Explanation to fast Gauss transformation
(FGT)

Table 2: Comparison of Figtree and our customized
FGT

#FF NLP solver with NLP solver with SpeedUp
Figtree for FGT(s) customized FGT(s)

120 1.25 0.72 1.74
480 5.80 0.52 11.15
1920 31.43 1.59 19.76
5880 143.33 4.20 34.13
12000 413.45 7.92 52.20
192000 7817.23 207.68 34.64
Avg. - - 25.60

In our bin-structure, the whole chip is partitioned into a
mesh of bins. And we record the amount of FFs that each
bin holds. By querying adjacent bins, we can quickly ob-
tain FFs in the neighbourhood. Time complexity is linear
and the practical runtime is fast. Compared with Figtree-
based implementation, our bin-structure based implementa-
tion can achieve 25.6X speed up on average for different
amount of FFs in benchmark C1-C6. Please refer to Table
2 for detailed statistics.

4.3 Parameters Tunning
The value of α (in Equation 1) is set to balance the mag-

nitude of fl part and fc part. In fact, the magnitudes of
fl and fc are positively related to Chipwidth and the total
number of FFs (N), respectively. Thus, α is set as Equation
12.

α =
N

Chipwidth

(12)

The value of ε and d0 (in Equation 5) are critical for the
performance. If d0 is too small, FFs do not have enough force
to affect others. However, if d0 is too big, each FF can “see”
too many FFs. Finally, FFs will reach their“balanced”states
under the effects of many forces. In practice, we observe
the best performance when d0 is set as the average distance
between every second nearest FF pairs in Equation 13.

d0 =
1

N

N∑
i

‖ FFi − FFsecond nearest to FFi ‖ (13)

In our implementation, ε is set to 0.5, meaning that clus-
tering score between two FFs is less than 0.5 when their
distance exceeds d0.
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Table 3: Comparisons between INTEGRA and our method on C1-C6

Circuit
INTEGRA Ours

PWR WLR RT-all (s) PWR WLR #iter-NLP RT-NLP(s) RT-all (s)

C1 82.8 96 0.01 83.5 77.4 151 0.42 0.42
C2 80.9 102 0.01 82.3 76.4 208 0.96 0.96
C3 80.8 104 0.01 82.3 74.9 300 3.11 3.14
C4 81.0 104 0.02 82.4 75.6 423 10.45 10.59
C5 80.7 105 0.05 82.1 76.4 421 15.98 16.66
C6 80.7 105 1.11 82.3 82 351 197.91 217.41

Avg. 1 1.33 1 1.02 1 - 244.88 251.83

Table 4: Comparisons between INTEGRA and our method on realistic designs

Circuit
INTEGRA Bound-INTEGRA Ours

PWR WLR RT(s) factor PWR WLR RT(s) PWR WLR #iter-NLP RT-NLP RT-all(s)

tv80 78.11 350.46 0.01 0.05 78.11 109.20 0.01 78.10 95.71 212 0.93 0.94
wbconmax 78.02 540.81 0.02 0.05 78.26 128 0.03 78.02 105 449 2.29 2.30

pairing 78.00 931.45 0.05 0.05 78.00 132.17 0.03 78.00 109 501 6.51 6.61
dma 78.03 798.29 0.06 0.05 78.04 124.71 0.05 78.02 96 501 5.39 5.43
ac97 78.02 673.28 0.09 0.05 78.02 120 0.02 78.02 95.71 351 4.74 4.88

ethernet 78.00 2038.71 1.61 0.05 78.00 216.51 0.63 78.00 87.92 501 20.81 24.51
Avg. 1 9.32 1 - 1 1.43 0.76 0.99 1 - 82.19 83.52

5. EXPERIMENTAL RESULTS

5.1 Performance Comparison
We implement our two-steps post-placement clustering

method in C++, and evaluate it on an Intel Xeon machine
with 16 logical threads. The MBFF clustering benchmarks
include widely used C1-C6 [11] and realistic designs from
IWLS-2005 suite.[2]

5.1.1 Results on the Widely Used C1-C6
We compare our results with the state-of-the-art post-

placement MBFF clustering method INTEGRA in Table 3.
Notations like“PWR”,“WLR”,“#iter-NLP”,“RT-NLP”and
“RT-all” represent power reduction, wirelength reduction, it-
erations in NLP, the runtime of NLP, and total runtime re-
spectively. Table 3 shown that our method achieves almost
the same power reduction, and further reduces the wire-
length by about 33% compared with INTEGRA. The only
drawback is runtime. However, the runtime is practical for
realistic circuits, and we can show that its time complexity
is sub-quadratic in the next subsection.

5.1.2 Results on the Realistic Designs
We use Synopsys DC and Cadence Encounter SOC to syn-

thesize realistic designs with tight timing constraint. Prop-
erties of these benchmarks can be found in Table 5, in which
“#FF” represents the number of FFs in the circuit, “WNS”
denotes worst negative timing slack after placement. Then
the FFs and slacks information will feed in INTEGRA to do
MBFF clustering.

Table 5: Realistic Design Property

Circuit #FF WNS

tv80 359 0.015
wbconmax 770 0.038

paring 1338 0.094
dma 1816 0.109
ac97 2191 0.078

ethernet 10443 0.046

Figure 8: Effect of different bound factors to power
ratio and WL ratio.

From the statistics in Table 4, we can find INTEGRA
damages the wirelength about 932% on average. Accord-
ing to our previous analysis, the damage of signal wirelength
mainly due to the large timing-feasible region. In order to
relieve this defect, we shrink the TVFD with bound factor
to limit the movement of FFs for INTEGRA, which we call
Bound-INTEGRA. Figure 8 compares the impacts of differ-
ent bound factors to power ratio and WL ratio. We choose
the one that can achieve best WL ratio when guarantee the
best power reduction in our implementation. For example,
in Figure 8, the best bound factor is 0.05.

As shown in Table 4, Bound-INTEGRA can achieve much
better signal wirelength. Even compared with Bounded-
INTEGRA, we can still obtain 43% wirelength improve-
ment on average. Besides, our power reduction is compa-
rable with INTEGRA. Although our runtime is longer than
INTEGRA, it is acceptable in practice.

5.2 Time Complexity Analysis
Our method consists of two steps, the analytical optimiza-

tion step and the discrete optimization step.
For the analytical optimization, it requires evaluating the

derivative of objective function. The derivative evaluation
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of wirelength part is O(N), and the derivative evaluation
of clustering score is O(N) with the customized FGT ac-
celerating technique. Though it is difficult to analyze how
many iterations it takes for the NLP solver, the practice
in placement shows that empirical number of iterations of
the placement-like NLP problem is O(N1.18) [16]. Thus,
the overall runtime for the analytical optimization is O(Nα)
with α < 2.

For the discrete optimization, the most time consuming
part is on the pair-wise distance calculation at line 2 and 22
in Algorithm 1. With our efficient bin-structure, the search-
ing process can be done in O(N) time.

Therefore, the empirical time complexity for the overall
algorithm is sub-quadratic.

6. CONCLUSION
In this paper we propose an analytical model for the clus-

tering objective. The basic idea of this model is to first pro-
pose a function that computes the number of clusters given
a final clustering solution. The definition of such function
relates to the non-differentiable Dirac delta function. In or-
der to make it compatible with nonlinear program method,
we smooth it using Gaussian function. The naive quadratic-
time evaluation of the Gauss summation can be computed
by the Figtree library for fast gauss transformation. How-
ever, this general implementation still does not meet the
requirement of massive evaluations in an NLP solver. Thus,
we implement a customized fast Gauss transformation us-
ing multithreading. The final runtime of this approach is
practical, and the overall runtime is sub-quadratic. Com-
pare to other post-placement MBFF clustering methods, our
method achieves the same power reduction of about 20%,
and also reduces the wirelength by 25%.

The proposed method is promising to be integrated in
an in-placement MBFF clustering solver, and be applied
in other problems which require formulating the clustering
score in the objective function.
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