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Abstract—Routing is a time-consuming process in the FPGA
design flow. Parallelization is a promising direction to accelerate
the routing. While synchronous parallelization can converge a
feasible solution, the ideal speedup is rarely achieved due to exces-
sive communication overheads. Asynchronous parallelization can
provide an almost linear speedup, but it is difficult to converge
in the limited number of iterations due to net dependency. In
this paper we propose SAPRoute, which coordinates synchronous
and asynchronous parallelism on distributed multiprocessing
environment to accelerate the routing for FPGAs. The objective
is to boost the more speedup of parallel routing algorithm under
the requirement of convergence. To the best of our knowledge,
this is the first work to study the impact of synchronization and
asynchronization during parallelization. Experimental results
show that our approach have negligible explicit synchronization
overhead and achieves significant speedup improvement over a
set of commonly used benchmarks. Notably, SAPRoute produces
the speedup of 24.27× on average compared to the default serial
solution.

I. INTRODUCTION

FPGAs are increasingly popular for application-specific

computing in datacenters, because they deliver high perfor-

mance and energy efficiency compared to general purpose

CPUs and GPUs, respectively. Moreover, FPGAs are an

attractive design style that provides greater flexibility and

shorter time-to-market than ASICs, because FPGAs can be

modified to meet new requirements and have lower non-

recurring engineering costs associated with manufacturing.

However, as the density of FPGA design keep increasing, the

associated CAD tool takes a very long time to synthesize the

designs onto the underlying FPGAs device. This enlightens

us to develop a fast and scalability design automation tool for

FPGAs.

Routing is one of the most runtime-intensive steps in the

FPGA design flow, which can take hours or days to complete

a complex state-of-the-art design [1]. A promising direction

to address the runtime challenge is to accelerate routing

algorithm through parallel computing. Reducing the execution

time of routing algorithm will improve the engineering pro-

ductivity due to the shorter debug cycles. In addition, faster

routing algorithm will increase the capacity of design space

exploration. If routing is fast enough, it can also be integrated

into the placement stage to provide more accurate timing

information, which produces the better placement quality.

Routing is a complex NP complete problem that finds the

disjoint paths in the graph to connect the pins of the source

and sinks for each net, and whether a Quality of Results

(QoR) goals are met. Routing a single net consists in assigning

routing resources such that all the sinks are reachable from

the source. When routing a set of nets in sequential, the order

in which the nets are routed is critical since some routing

resources needed by a net may be used by nets that are

routed earlier [2]. Thus, the congestion avoidance mechanism

is employed to resolve contention for routing resources.

Typical negotiation-based PathFinder algorithm [3] is the

most versatile serial routing algorithm available in academic

VPR framework [14]. Also, a variant of PathFinder is used in

commercial FPGA CAD tools. The goal of PathFinder is to

balance the performance and routability. PathFinder uses an

iterative scheme that converges to a solution in which all nets

are routed while achieving close to the optimal performance.

Notice that routability is achieved by forcing nets to negotiate

for a resource and thereby determine which net needs the

resource most. In essence, nets negotiate with each other

for which net keeps a shared routing resource. We explore

the coarse-grained distributed parallel routing to improve the

runtime in this iterative framework.

It is non-trivial to develop a parallel routing algorithm

for FPGAs. This is because the dependency is always in a

sequential routing process of several nets. Most of the previous

attempts to exploits synchronous parallelism to accelerate

the routing while maintaining the convergence and routing

quality. However, they have lost sight of the fact that the

vast communication overheads severely hinder the speedup

of parallel routing algorithm, especially when we scale with

more processor cores. Asynchronous parallelization may help

overcome this obstacle, but it is difficult to converge a feasible

solution with the limited number of iterations. These motivates

the need to design a novel parallel router, which provides close

to linear speedup and maintains the convergence.

In this paper we propose SAPRoute, a coordinated syn-

chronous and asynchronous parallel approach to improve the

speedup for FPGA routing. SAPRoute makes use of the

dependency-aware rip-up and re-route based iterative scheme

to eliminate the congestion between different nets until to

find a feasible solution. In order to take full advantage of

the parallelization, our design differs in multiple aspects from

previous parallel routers in literature. The key contributions

are summarized as follows:
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• We provide a quantitative study on the speedup and

convergence of synchronous and asynchronous parallel

routing algorithms.

• We propose a novel parallel router that coordinates the

synchronous and asynchronous parallelism to provide

significant speedup.

• We demonstrate promising improvements in speedup for

a set of common benchmarks. Our source code will be

publicly available on the authors’ websites.

II. BACKGROUND

A. Routing and Parallel Routing

The routing resources in an FPGA and their connections

are represented by the directed graph. The set of vertices

contains prefabricated wires in the FPGA architecture while

the edges contains programmable switches that connect the

wires together. There is a set of nets to be routed using the

routing resources in the graph. The routing objective is to find

a tree for each net such that all of the trees do not use the same

routing resources and other requirements such as wirelength

are satisfied.

The parallel routing is an extension of the serial routing

problem. The parallel routing is also concerned with the

speedup of serial routing algorithm when multiple process

cores are available. A parallel routing algorithm generally

divides the serial routing problem into several subproblems

and conquers them concurrently. Ideally, every subproblem

is the same size and there is no overhead, the speedup of

parallel routing algorithm is equal to the number of processing

elements. However, the ideal speedup is rarely obtained due

to the overheads of synchronization and communication when

executing the parallel routing algorithm. Moreover, the parallel

routing algorithm is irregular [7].

Notice that since the amount of parallelism is determined

by the input to the problem, it is impossible to determine the

optimal scheduling at routing time to parallelize the nets.

B. Related Work

Existing parallel routing approaches can be classified into

two categories. One is coarse-grained distributed-memory par-

allelization [4], [8], [6], [9], and the other is fine-grained

shared-memory parallelization [10], [11], [12].

Chan and McMurchie [4] are first to leverage parallel

techniques to accelerate the routing for FPGAs. They explore

the update of congestion cost to improve the parallelism

and ensure convergence. However, they do not guarantee the

deterministic routing results due to the change of dependent

net ordering. They provide the speedup of 2.5× with three

processor cores.

Gort and Anderson [8] exploit the region-based partition

to parallelize the net routing. Deterministic routing results

are guaranteed by invoking the block version of MPI receive

function. However, they are not scalable as evident in the

diminishing speedup as the number of processors increases.

This is due to the number of processors increases, the number

of nets that across partitioning boundaries increases, requiring

more inter-processor communication and reducing speedup.

They achieve 2.8× speedup using eight processor cores.

Shen and Luo [6] accelerate the net routing using parallel re-

cursive partitioning. They partition the nets into three subsets,

where the first subset contains potentially conflicting nets, and

the two remaining subsets consists of potentially conflicting-

free nets. The latter two subsets are routed in parallel after

routing the former subset. They achieve a speedup of up to

7.02× with 32 processes but has the same limitation as the

parallel router [8].

Instead of directly partitioning, Cabral and Maculan [9]

design a disjoint switch box topology, where the wires can

only be connected to other wires on the same track. This

restriction simplifies the parallel routing by allowing each

processor to independently route a subset of nets. However,

the disjoint architecture provides limited routability and is

no longer used in state-of-the-art commercial FPGAs. As

expected, they achieve an almost linear speedup because there

is minimal communication overheads.

Moctar and Brisk [10] exploit the dynamic parallelism

to parallelize the maze expansion for a single net routing.

They leverage lock-based expansion operator and software

transactional memory (STM) based priority queue to avoid the

congestion in parallelization. However, the overhead of lock

acquisition and rollback due to STM reduces speedup with

the number of threads increases. They have a good speedup

of 5.46× with eight threads, although they do not produce the

deterministic routing results.

Hoo and Ha [11] develop a parallel FPGA router using Intel

Threading Building Block techniques. They leverage a linear

program to model the routing problem that can be decomposed

into independent subproblem with Lagrangian relaxation. As

a result, the nets can be parallelized, and good speedup of

7.05× is achieved. However, this method is only applied into

the global routing problem and can not be extended to the

detailed routing problem.

Shen and Luo [12] explore the GPU-accelerated parallel

techniques for FPGA routing. They leverage both routing

search space reduction and dynamic parallelism to accelerate

the single net routing on GPU. Moreover, they also design

an efficient multiple nets parallel routing method and achieve

an average of 18.75× speedup with 3% degradation in routed

wirelength.

While existing synchronous parallel works [4], [8], [6],

[10], [12] have provided good speedup, none of these works

focuses on the communication overhead reduction to increase

the parallelism. In this paper, we explore the design of coarse-

grained coordinated synchronous and asynchronous parallel

routing on distributed multiprocessing environment.

III. QUANTITATIVE STUDY

In this section we study the impact of synchronous and

asynchronous on the convergence and speedup of parallel

routing algorithms in the MPI-based parallel programming

model. Our experimental methodology is to check whether the

number of congestion nodes of parallel routing algorithm has
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stopped decreasing monotonically in the iteration procedure,

because this is a sign that the algorithm is having difficulty

converging. More specifically, two different strategies are

proposed to motivate the novel parallel router.

A. Asynchronous Parallel Routing
Asynchronous strategy can improve the efficiency of par-

allel execution by avoiding the communication overhead and

synchronization cost between processor cores. This encourages

us to have an asynchronous parallel implementation for FPGA

routing.
Having partitioned the nets into subsets, the processes begin

to route their respective net subsets. After a process routes a

net, it do not synchronize the routing state and communicate

with all of the other processes, and continues to route the next

net until to finish the subset. Figure 1 shows that the nets

are split with runtime load balancing between two processes

and routed in asynchronous parallel at each iteration. Notice

that we synchronize processes at the end of each iteration to

ensure that all processes are working on the same iteration at

the same time.

Net 4Process 1

Process 0

Syn

Runtime

Net 2 Net 3 Net n-1

Net 1 Net n

Fig. 1. Asynchronous parallel routing.

With the iteration proceeds, this approach continues to route

the nets until the configurable maximum number of iterations1

or a congestion free state is reached. At the meanwhile, the

number of congested nodes is checked in each iteration, and if

the value is zero, it indicates that routing is completed because

there are no congested nodes. However, it is difficult to con-

verge a feasible solution with the limited number of iterations

due to the nets exists the dependency and no synchronization

performs in asynchronous parallel routing.
Basically, whether the number of congested nodes has

stopped decreasing monotonically, which is a sign that the

algorithm may not converge a congestion-free state. With

this in mind, a promising approach for assuring convergence

is to decrease the number of active processes towards the

end of routing when the algorithm is not making adequate

progress. When the number of congested nodes between nets

has stopped monotone decreasing, we reduce the number of

active instances to one. It means that we use a single process to

route the nets, and this is sequential routing. By transforming

the asynchronous parallel routing into the sequential routing,

we reduce the possibility of convergence problems.
As described above, while such this approach overcomes

the limitation of asynchronous parallel routing, the speedup is

inefficient due to the proportion of execution time that the part

benefiting from parallelization is very little. This motivates the

need to explore the design of synchronous parallel routing for

FPGAs.

1We set the maximum number of iteration is 50.

B. Synchronous Parallel Routing

Synchronous parallel techniques are commonly used to

accelerate the routing for FPGAs. Similar with the existing

works [4], [8], [6], we also use the MPI messages to commu-

nicate the intermediate results and synchronize the respective

states between the processes.

In synchronous parallel routing, each process must know

which routing resources are used by other nets and must avoid

using such these resources. When a process routed a net,

it synchronizes the update with all other processes, and the

update message contains the routing results and congestion

information of the net. Meanwhile, this process must wait

until the update is available from other processes. And once

the update is obtained by this process, the next net will be

route until it has no more nets to route. Figure 2 provides

an example of synchronous parallel routing at every iteration.

While it is very costly to stall to synchronize the intermediate

results and states due to the dependency of nets, it is easy to

find a feasible solution.

Net 4Process 1

Process 0

Syn

Runtime

Net 2 Net 3 Net n-1

Net 1 Net n

Syn Syn Syn

Fig. 2. Synchronous Parallel Routing.

The pseudocode for our synchronous parallel routing is

shown in Algorithm 1. Note that it only shows the parallel

portion of implementation. The Algorithm 1 is the perspective

of one of N processes participating in the routing. The variable

i represents the process index, and local is the index of the

master process when the algorithm executes. subset[i] is the

subset of nets assigned to process i for routing. The array

net[i] holds which net is currently being routed by each

process. The first net() function extracts the first net from the

subset of process i to route. The next net() function returns

the next net to be routed by process i.

Algorithm 1 Synchronous parallel routing

1: while congestion exists or routing incomplete do
2: partition the nets into N subsets

3: for i such that i �= local do
4: net[i] = first net(subset[i])
5: end for
6: for net local ∈ subset[local] do
7: route the net local
8: synchronize the update for the net local
9: for i such that i �= local do

10: the update is obtained from process i for net[i].
11: net[i] = next net(subset[i])
12: end for
13: end for
14: end while

The while loop is the iteration of routing algorithm, and we

partition the nets into N subsets, where N is the number of
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Fig. 3. Analysis of convergence and stall time of asynchronous and synchronous parallel routers.

processes. Each process is aware of the subset of nets being

in every other process. For each process i, except the local
process, we use the first net of subset[i] to initialize the net[i]
variable. In the coming outer loop, we route once for each net

in the subset of nets of local process. We first route the local

net net local, and then synchronize the update message to all

other processes containing the routing result and congestion

state of net local. In the inner loop, we execute once for

each process, i, apart from local. This loop is responsible for

receiving any update messages from other processes that have

already been sent. We receive an update message, and then

extract the next net from subset[i] to update the net[i] that to

be routed.

The advantage of such a mechanism synchronous message

handling is efficient and convenient, but also overcome the

shortcoming of asynchronous parallel routing. With the it-

eration proceeds, the number of congestion nodes reduces

to zero, and that, this parallel router converges a feasible

solution. Unfortunately, due to the synchronization is costly,

this approach can not provide high speedup.

C. Analysis of Convergence and Stall Time

Here we evaluate one representative design diffeq1 from the

VTR benchmark suite [14], and use both convergence and stall

time as two important evaluation metrics of parallel routing

approach. We leverage the two aforementioned approaches to

parallelize the net routing in the negotiation-based iterative

framework [3]. Notably, we use the number of congestion

nodes to demonstrate the convergence, and the maximum

number of iteration is set to 50. Moreover, stall time is

measured using the hardware counters internal to an Intel Xeon

processor. Results are given for 2, 4, 8, 16, and 32 processes.

Figure 3 analyzes the normalized congestion node count and

stall time of asynchronous and synchronous parallel routers,

respectively. Figure 3(a) shows the congestion node count

of asynchronous parallel router is oscillatory and can not

converge a congestion-free state with the limited number

of iterations. Figure 3(b) gives the decrease of congestion

node count of synchronous parallel router coincides with the

reduction of sequential router during the iteration. While this

approach is convergence, the communication overhead is very

costly, as shown in Figure 3(c). While we are only presenting

one benchmarks here due to space limitation, we observe from

our experiments very similar trends to Figure 3 across a broad

range of designs, which motivates us to propose SAPRoute

that will be detailed in the next section.

IV. SAPROUTE TECHNIQUES

SAPRoute partitions the nets into processor cores, and

applies an iterative fashion to eliminate the congestion in par-

allel. This fashion integrates commonly used negotiation-based

policy to progressively balance the goals of performance and

routability. The coordinated synchronous and asynchronous

parallelism are exploited to accelerate the routing. In this

section we describe the SAPRoute techniques in detail and

mainly focus on the speedup optimization. We also show that

SAPRoute can easily be extended to handle the timing-driven

router.

A. Dependency-Based Coordination

Dependency may occur when several nets are near to each

other, when the nets are routed concurrently. To avoid to

dependency, processes must recognize when a resource is

also used by other routing paths and synchronize the routing

states to maintain the convergence in parallel. Two important

observation are as follows.

1) Routing resource graph is sparse.

2) Most of the nets are low fan-out2.

These enlightens that we coordinate the asynchronous and

synchronous parallelism to accelerate the potential indepen-

dent and dependent nets, respectively. Notice that the inde-

pendent nets are parallelized in asynchronous to strive for

more speedup, and the dependent nets are parallelized in

synchronous to maintain the convergence.

It is non-trivial to determine the net dependent state due to it

is dynamic with the routing iteration proceeds. An promising

method is to use the previous dependent state to predict

the current net dependency such that we choose the optimal

parallel strategy. Notably, the dependent state is involved to the

net bounding box before the first iteration, but it is related to

the routing resource nodes of net during the iteration. Figure 4

coordinates the synchronous parallelism for the dependent

net routing and the asynchronous parallel routing for the

independent nets. This approach reduce the communication

2We observe that the about 85% nets have only one or two sinks from the
VTR benchmarks.
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overhead to improve the speedup with the requirement of

convergence.

Net 5

Net 7

Syn

Net 4Process 1

Process 0

Synchronous
 parallel routing

Runtime

Net 2 Net 3

Net 1

Aynchronous 
parallel routing

Fig. 4. Coordinated Parallel Routing.

While this approach has the potential to determine the op-

timal parallel strategy to accelerate the routing, it is challenge

to balance the amount of workloads between processes in

the multi-core distributed environment. To guarantee the load

balance among the processors, we must estimate the runtime

used to route a net. The aforementioned method leverages the

number of routing resource nodes visited during maze routing

in previous iteration to predict the routing time needed for

the net in the current iteration. While the exiting work [8] has

also demonstrated the effectiveness of this method, they do not

provide the full load balance due to there exists difference be-

tween the node count and routing time. Moreover, since the net

dependency state will change during the routing iterations, the

static partitioning is not an optimal method for parallelization.

In the next section, we introduce a novel dynamic partitioning

approach to explore the maximum parallelism available by

routing nets while minimizing the load imbalance.

B. Task-Based Dynamic Partitioning

The task-based dynamic partitioning strategy boosts the

parallelism of multi-net routing on multi-core distributed en-

vironment. The idea is to maintain all processes working

with almost full load during parallelization. Thus, this method

can obtain more parallelism than the region-based static par-

titioning strategy [4], [8], [6]. The algorithmic flow is as

follows. A net routing is defined as a task, and a task queue

is used to preserve all tasks. The task queue is updated at

the beginning of each iteration, and each process repeatedly

acquires a task from the task queue when the process finishes

the task. Because all tasks are dynamically partitioned into

available processes, load variation between processes can be

minimized.

(a) (b)

Fig. 5. (a) The region-based partitioning; (b) the task-based partitioning

Although this method overcomes the obstacles of the load

imbalance, the competition of routing resources between

processes is a critical challenge. Figure 5(a) shows that in

the region-based partitioning strategy, the boundary of each

subregion constrains the routing search space of each net. The

region restriction degrades the routing quality, but it avoids the

usage of the same routing resource by more than one process.

Figure 5(b) shows the task-based partitioning, one process may

compete with other processes for the same routing resource,

and this competition probably needs more iterations.

An efficient approach is to roll back an earlier state and

start over with software transactional memory when there

is a dependency on a shared resource. While the previous

work [10] has also demonstrated the effectiveness of this

method, they do not produce high parallelism because the

rollback process has an expensive overhead. Moreover, this

approach do not provide the deterministic results. In the

following section, we present a heuristic dependency-aware

approach to solve this problem.

C. Dependency-Aware Rip-Up and Re-Route

The original rip-up and re-route strategy takes the most

computation time, which the entire routing tree is ripped-up

regardless of the congestion state of the nodes. However, we

observe two important phenomena by analyzing the rip-up and

re-route a net.

1) A low-fanout net often only has a few routing resource

nodes.

2) A net bounding box is incrementally relaxed such that

the routing search space and the identified routing path

of a net change only slightly.

The first tells that the low-fanout net needs only a few detours

to avoid the dependent resources. The second implies that the

process may reuse most routing resource nodes of the original

path in the new routing path3. These motivates us to stop

new routing path sharing with the resources from the original

routing path of other routed nets in the previous iteration.

N1

N2

(a) (b)

(c) (d)

Fig. 6. Dependency-aware rip-up and re-route.

A promising approach is to leverage dependency-aware

rip-up and re-route to enable each process to inform other

processes, if there exits nodes have been occupied by other

nets. Consequently, each process avoids to use these nodes

and detour to find other paths. The implementation details

are as follows. Prior to the current routing iteration, each

process labels these nodes that have been used by other nets in

3We observe that the about 20% routing resource nodes are different
between the new and original routing path.

581



the previous iteration, and then cleans these labels until new

routing path is constructed. By assigning extra routing cost

to theses labelled nodes, this approach encourages alternative

routes to be explored to avoid the dependency.

Figure 6 shows that two processes 0 and 1 parallel re-route

nets N1 and N2, respectively. Initially, two routing paths are

given in Figure 6(a). However, two paths are ripped-up due

to they are dependent. And at the meanwhile, the original

routing path are labelled with dotted lines in Figure 6(b) and

Figure 6(c), respectively. Then, the nets N1 and N2 attempt

to explore the alternative paths because extra routing cost is

assigned to the labelled nodes. At last, two legal paths are

produced in Figure 6(d). If a routing path uses the labelled

nodes, it suggests that the routing quality is still acceptable,

although the dependency exists on the path. This is because

the capacity is larger than the demand for these nodes.

SAPRoute dramatically reduces the routing time with the

dependency-aware rip-up and re-route approach. Moreover,

this approach excels at routing the high-stress benchmarks as

well.

D. Overall Design Flow

We summarize the overall design flow of SAPRoute using

the techniques in Section IV-A, IV-B and IV-C. Figure 7 shows

the overall flow of SAPRoute.

Routed design

Placed design

Task-based dynamic 
partitioning

All of nets

Feasible Update cost

Yes No

O
ne

 it
er

at
io

n

Dependency-based 
coordination

Dependency-aware 
rip-up 

Fig. 7. Overall design flow of SAPRoute.

SAPRoute takes the netlist and routing resource graph

as the input, and first leverages a task-oriented scheme to

dynamically partition the nets into the processes detailed in

Section IV-B. SAPRoute then uses the dependency-oriented

fashion detailed in Section IV-A to coordinate the synchronous

and asynchronous parallelism to accelerate the routing. Un-

less converging a congestion-free state, these congestion nets

are subsequently ripped-up and parallel re-routed with the

dependency-aware technique detailed in Section IV-C, which

generates the optimized version of the maze expansion. And

then, SAPRoute re-partitions the nets into the processor cores

to parallelize the routing.

We define an iteration as the three steps including multi-

net partitioning, coordinated synchronous and asynchronous

parallel routing, and rip-up and re-route optimization. At each

iteration, SAPRoute re-partitions the nets into the different

processor cores using the techniques in Section IV-B. In the

rare case where the re-partitioned results are identical to

the ones from the previous iteration, we discard the current

partitioning and re-partition the nets again. This re-partitioning

scheme is more effective than a static pre-partitioning, as it

allows the coordinated strategy to uncover more parallelism.

In SAPRoute, the overall flow contains a user-specified

number of iterations, and the overall flow terminates when it

reaches the maximum number of iterations or the routing time

limit. A legal routed design is generated as the final result.

E. Extension to Timing-Driven Router

SAPRoute can be extended to support timing-driven delay

optimization router with only a few modifications4 to the

parallel design flow. In timing-driven routing algorithm, we

assume that the input routing resource graph and netlist are

the same as the negotiation-based routing algorithm. And

SAPRoute will attempt to reduce the delay of nets that the

congestion does not increase. To handle timing-driven routing

algorithm, we modify the SAPRoute flow in the following

aspects:

1) We replace the negotiation-based router with a timing-

driven router so that the delay constraint is likely to be

met.

2) During each iteration, after re-partitioning the nets, we

add a delay optimization step that re-routes the nets

using the delay-oriented routing techniques.

3) After the delay optimization step, we reject the result

of the current iteration if the design exceeds the user-

defined iterative constraint or the delay of the design

increases compared to the previous iteration. If a cur-

rent iteration is rejected, we reuse the netlist from the

previous iteration.

The above extensions ensure that the delay constraint is

satisfied throughout the design flow, while the SAPRoute

techniques are able to handle the wirelength optimization

under the congestion constraint.

V. EXPERIMENTAL RESULTS

In this section, we measure the impact of the novel parallel

routing algorithm introduced in the previous section on the

quality of results and speedup of SAPRoute. We also compare

them with the original VPR 7.0 router and the state-of-the-art

parallel FPGA routers.

A. Experimental Setup

We implement SAPRoute techniques in C/C++ and use the

VTR 7.0 CAD flow [14] in these experiments. This flow takes

as input a benchmark Verilog circuit and an FPGA architecture

description file. The flow maps the circuit to the architecture

described in that file then outputs statistics about that final

mapping. We use Odin II for elaboration, ABC for logic

4It is also based on the negotiation-congestion routing flow.
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synthesis, AAPack for packing, and VPR 7.0 for placement

and routing. VPR is left at default values.

We use the well-known VTR 7.0 benchmarks to evaluate

the effectiveness of SAPRoute. The VTR 7.0 benchmarks are

a standard set of Verilog circuits that come from a variety of

different applications. MCNC benchmarks were not evaluated

due to even the largest benchmark spent several minutes to

route. Table I shows a summary of the 10 largest benchmarks

used for the experiments.

TABLE I
SUMMARY OF RESULTS USING VTR 7.0 ROUTER ACROSS 10 LARGEST

BENCHMARKS.

Circuit Nets Widt. Iter. Wire. Time(s)

blob. 6606 68 16 119927 544.73
mkSMAd. 7154 56 15 108553 360.03
mkPKtM. 7474 52 15 109980 275.73
or1200 8078 68 16 133856 858.66
stere.0 9312 96 9 115870 217.62
stere.1 13523 154 9 199814 840.54
LU8PEE. 16278 160 12 426520 2170.24
bgm 27853 116 11 152096 1843.27
stere.2 36479 182 11 702836 14159
mcml 81282 196 11 1542736 29640.2

Experiments were performed on Linux servers, where each

node has two 6-core Intel Xeon E5-2430 processors at 2.2GHz

and 32GB shared memory. We ran our parallel router using

2, 4, 8, 16 and 32 processes, and use four networked nodes

when the number of processes exceeds 8. The baseline for

comparison is the serial VPR router, which was implemented

in C without any parallelization overhead.

Table I shows the absolute values of running the VTR flow

using VPR 7.0 router. The leftmost column lists the circuit

used. After that, from left to right, the columns are as follows:

1) The number of nets used in each benchmark; 2) The channel

width is the 1.4× minimum channel width [10], [6] needed by

VPR router. 3) The number of iterations needed to route the

circuit. 4) The routed wirelength when the circuit is routed for

the current flow; and 5) The time needed to route the circuit in

seconds; This table serves as the baseline values from which

the later relative comparisons are made.

B. Speedup and Quality

Figure 8 shows the speedup provided by increasing the num-

ber of processes, normalized to single-process VPR 7.0 exe-

cution. On average, this synchronous parallel router achieves

1.42×, 2.07×, 3.85×, 5.63×, and 6.58× speedup with 2, 4, 8,

16, and 32 processes, respectively. These results indicates that

this parallel router scales up to at least 32 processes, although

the parallelism is inefficient. The perfectly linear speedup is

rarely achieved due to excessive communication overheads

and synchronization cost between processes. That being said,

these experiments shows that this approach is feasible, and

motivates us to explore the asynchronous parallelism for the

ideal speedup.

Figure 9 shows the normalized speedup of SAPRoute when

we coordinate the synchronous and asynchronous parallelism

using dynamic partitioning and dependency-aware rip-up and

re-route. On average, speedups of 1.67×, 3.35×, 6.57×,
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Fig. 8. Speedup of synchronous parallel router using 2, 4, 8, 16 and 32
processes.

12.82×, and 24.27× are achieved with 2, 4, 8, 16, and 32

processes, respectively. Notably, SAPRoute achieves close to

ideal speedup using 2, 4, and 8 processes due to there is very

little communication overhead on a single machine. While the

perfect speedups are not expected in the multi-server network,

SAPRoute still achieves a promising speedup of 24.27× with

32 processes. Compared with the synchronous parallel router,

SAPRoute has advantages of high parallelism, and highly

scalable. Moreover, it is compatible with the fine-grained

parallel router, such as the work of Moctar and Brisk [10],

and can obtain much further speedup.
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Fig. 9. Speedup of SAPRoute using 2, 4, 8, 16 and 32 processes.

Table II shows the normalized wirelength of synchronous

parallel router and SAPRoute using various processes. Observe

that in all circuits, the average change to the routed wirelength

is less than 0.4% for the synchronous parallel router. This

approach do not significantly impact the routed wirelength.

Unfortunately, the wirelength is increased by 3.2% using

SAPRoute with 32 processes, on average. This is due to

the dependency-aware rip-up and re-route fashion requires

extra detours to explore the longer routing paths to avoid

the congestion. Still it is meaningful to trade 3.2% quality to

achieve 24.27× speedup for many FPGA-based applications,

especially for the custom computing and logic emulation [13].

As the number of used processes increases, the number

of used routing resources increases, and the total size of
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TABLE II
IMPACTS ON THE ROUTED WIRELENGTH

Quality Wirelength

Name synchronous parallel router SAPRoute

Circuit 2-proc 4-proc 8-proc 16-proc 32-proc 2-proc 4-proc 8-proc 16-proc 32-proc

blob. 119933 119972 120065 120142 120221 120217 120554 121123 122195 123113
mkSMAd. 108546 108572 108637 108783 108962 108843 109128 109635 110573 111727
mkPKtM. 109972 110125 110234 110327 110420 110397 110834 111201 112247 113252
or1200 133867 133892 133956 134321 134434 134395 134672 135313 137205 138334
ster.0 115883 115910 116108 116214 116525 116372 116750 117230 118606 119425
ster.1 199886 199924 200195 200312 200465 200343 200952 201527 203773 205595
LU8PEE 426543 426885 426957 427251 427564 427375 428761 431754 435904 441017
bgm 152125 152157 152371 152540 152665 152603 153245 154136 155312 156568
ster.2 702854 703241 703383 705537 705650 705625 708243 713282 721718 729536
mcml 1542839 1542957 1545243 1547435 1547682 1547564 1553526 1562214 1581572 1596547

Avger. 1.000 1.001 1.001 1.003 1.004 1.003 1.007 1.012 1.023 1.032

used caches by processors increases. It means that SAPRoute

needs more cache accesses and less memory accesses. Thus,

SAPRoute is highly scalable and can provide further speedup

with sufficient resources support.

C. Comparison with existing works

Figure 10 compares the average speedup of SAPRoute

to existing parallel routers. The speedup is normalized to

VPR router and averaged across the ten benchmarks that we

evaluated such that a fair comparison with existing works can

be made. Although we use 1.4× the minimum channel width

for our experiments, Gort [5], Moctor [10], Shen [6], and

Shen [12] use 1.3×, 1.4×, 1.4×, and 1.3×, respectively.
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Fig. 10. Speedup of SAPRoute compared to existing work.

TABLE III
COMPARISONS OF ROUTED QUALITY.

Name Gort Shen Hoo Shen SAPRoute
Quality 1% 10% 7.5% 2.7% 3.2%

It can be seen that with only 40% higher than min-

imum channel width, SAPRoute outperforms the state-of-

the-art parallel routers. Notably, SAPRoute runs 3.43× and

1.29× faster than the most recent coarse-grained distributed

parallel router [6] and fine-grained GPU-accelerated parallel

router [12], respectively. While SAPRoute achieves much

better performance for maximum parallelism, there still has

room for improvement. Moreover, SAPRoute is integrated

with fine-grained parallel method [12], making it potential to

get much further speedup.

Finally, it can be seen from Table III that our SAPRoute

outperforms the parallel router of both Shen [6] and Hoo [11]

in terms of quality of results. It is acceptable to have 3.2%

degradation on the routing quality for SAPRoute.

VI. CONCLUSION

In this paper we present a coordinated synchronous and

asynchronous parallel routing approach based on dynamic

partitioning and dependency-aware rip-up and re-route. The

advantages of synchronous and asynchronous parallelism are

used to parallelize the routing with convergence. Moreover,

dynamic partitioning guarantees the full load balance, and

dependency-aware rip-up and re-route optimizes the routing

time. With these three techniques, this approach provides

24.27× speedup and increases 3.2% wirelength.
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