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ABSTRACT

Due to the continuous scaling of integration density and
the increasing diversity of customized designs, there are in-
creasing demands on the scalability and the customization
of EDA tools and flows. Commercial EDA tools usually
provide an interface of TCL scripting to extract and modify
the design information for a flexible design flow. However,
we observe that the current TCL scripting is not designed
for the complete netlist extraction, resulting in a significant
degradation in performance. For example, it takes over 20
minutes to extract the complete netlist of a 466K-cell de-
sign using TCL. This extraction may be repeated several
times when interfacing between the existing EDA platforms
and the actual distributed EDA algorithms. This drastic
decrease in efficiency is a great barrier for customized EDA
tool development. In this paper, we propose to build a dis-
tributed framework on top of TCL to accelerate the netlist
extraction, and use the distribution detailed placement as
an example to demonstrate its capability. This framework
is promising in scaling out physical design algorithms to run
on a cluster.

CCS Concepts

eHardware — Physical design (EDA); Methodolo-
gies for EDA; eComputing methodologies — Parallel
algorithms; Distributed algorithms;

Keywords

Physical Design; Detailed Placement; FPGA; TCL;
Distributed Computing; Spark

1. INTRODUCTION

The computational demand of physical design and EDA
tools keeps growing, due to the increasing complexity of elec-
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tronics designs. The semiconductor industry is involved in
the new applications including medical technology, automo-
tive, robotics, and energy systems, which in turn exposes
some complex design problems and thus needs greater com-
putational power [8].

The EDA vendors have already adopted a distributed stor-
age solution for data management [5, 6]. Some EDA tools
provide multi-threaded solutions to relieve the runtime issue.
However, the emerging and mainstream distributed comput-
ing infrastructures are not fully adopted by EDA tools, due
to the cost of rewriting software and the unclear pricing
models. In the meanwhile, EDA users have various needs
for customized tools in their flow. In addition to the core
physical design steps, users may develop additional tools for
their specific needs. There are strong needs for powerful and
extensible framework to design EDA tools and flows.

A related topic is putting EDA tools and solutions in the
cloud [30]. These recent efforts mainly spread across the
applications of training, demonstrations, and web-based col-
laboration. These can be viewed as the interaction-intensive
end of the design platform, which create opportunities and
hide the complexity for the development of parallel and dis-
tributed computing tools in the compute-intensive end. And
there is another example in academia, called bX [27], to
provide computational power for regression testing of EDA
algorithms.

Here, we investigate a distributed computing framework
for EDA algorithms and flows. We take advantage of the
progress in the computational engines (e.g., Spark [37]) in
the big data ecosystem, and design a framework capable of
interfacing the existing commercial EDA platforms. In this
way, the academia will be able to design more distributed
EDA algorithms and test with industrial-grade design ex-
amples; and the industry will have a low cost to migrate
some of the design tools to this distributed framework. The
interface implements design query and modification through
TCL scripting supported by mainstream EDA tools. TCL
scripting is a good candidate to implement a general in-
terface across commercial EDA tools, and there have been
some practices of customized in-house EDA tools developed
using TCL [35, 16]. However, we observe that existing TCL
support is not designed for high-throughput queries. The
extraction of the whole netlist takes an ineligible amount of
time. We propose a distributed parser to efficiently read de-
sign data from existing EDA platforms, and provide a solu-
tion to maintain data consistency when interact distributed



EDA algorithm with existing tools. We also demonstrate
the capability of this framework using a distributed detailed
placement algorithm.

The remainder of this paper is organized as follows. Sec-
tion 2 states the background and related work. Section 3
proposes the design and details of a distributed EDA frame-
work with an application example of detailed placement.
Then Section 4 describes the experimental results. Sec-
tion 5 discusses the challenges and opportunities for a scal-
able EDA framework.

2. BACKGROUND AND RELATED WORKS

First, we summarize the latest efforts in putting EDA in
the cloud. In the meanwhile, we give a short introduction
to the techniques like Spark and Docker in the big data and
cloud ecosystem. Though it may not be an urgent task for
the EDA companies to take advantage of the progress in
these techniques, it is about time to design new distributed
physical design algorithms for scalability. In the next sec-
tion, we will propose a distributed computing framework
that can build on top of existing EDA platforms.

A concept related to the scalability of EDA tools is the
cloud EDA. The EDA vendors have been investigated the
opportunity of offering the solutions in the cloud [30]. Ca-
dence provides Hosted Design Solutions [14] as a produc-
tion design environment in the private cloud. Synopsys has
put its functional verification solution VCS in the cloud [19].
And Mentor Graphics has a cloud-based SystemVision [7] for
modeling and design of electro-mechanical systems. Besides,
there have been multiple companies putting their products
in the cloud, including Altium, OneSpin, Plunify, Tabula,
etc. Recently, IBM provides its high-performance services
for EDA through SiCAD [21].

On the other hand, the MapReduce [13] programming
model and infrastructure have been used widely for scal-
able data processing in the big data ecosystem. Users of
MapReduce implements all the computations using only two
functions, map and reduce, where a unit computation takes
the input of <key,value> pairs and generates the output
of another set of <key,value> pairs. Though the MapRe-
duce model seems less flexible and has lower peak perfor-
mance [29] than the traditional message-passing model [17],
it increases the productivity and has even better perfor-
mance for the programs written by non-experts in distributed
computing. Spark [37] is an open-source data-parallel com-
putation engine using the MapReduce programming model.
Different from Hadoop [34], a previous open-source imple-
mentation of MapReduce, Spark enables efficient iterative
algorithms and interactive queries by keeping data in mem-
ory using the Resilient Distributed Datasets (RDDs). More-
over, it supports general computation DAGs and allows op-
tional specification of data partitioner to avoid data move-
ment. Since most EDA algorithms are iterative, Spark is a
suitable engine to scale out EDA tools.

Linux container is a lightweight virtualization technique,
which provides an isolated kernel namespace for the pro-
cesses, file system and network without running a full OS on
virtual hardware. Docker [4] is a representative implementa-
tion. The comparative study of virtual machines (VMs) and
containers shows that containers have equal or better perfor-
mance than VMs and lower overhead in OS interaction [15] .
The basic idea of container is illustrated in Figure 1. We will
show in the next section that container is useful to manage
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existing EDA platforms in the environment of Linux clus-
ters.
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Figure 1: Virtual machine vs. container.

Inspired by the techniques above, we propose a distributed
EDA framework for the scalability of physical design algo-
rithms. Comparing with existing cloud EDA solutions, it is
a computational infrastructure that can deploy either in the
public cloud or private cloud.

3. FRAMEWORK DESIGN

3.1 Overview

The overall design of our proposed framework for dis-
tributed EDA algorithms and flows is illustrated in Figure 2.
Existing EDA platforms are supported using TCL scripts
for design data extraction and modification. The design
data and the FPGA architecture or technology information
are presented on top of the distributed computing engine of
Spark. While we can follow OpenAccess as the data model
of post-synthesis design, it is promising to design and de-
velop portable physical design algorithms and flows in the
distributed computing engine of Spark.

customized
EDA flows

customized
distributed
EDA algorithms

Spark
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Figure 2: The distributed EDA framework.

3.2 Interfacing Existing EDA Platforms

TCL is a de facto standard for mainstream commercial
EDA products. One has to import the design data from ex-
isting EDA platforms to the distributed computing frame-
work using TCL scripts. The outline of the parser code is
shown in Listing 1, which is implemented for the Xilinx Vi-



vado platform. The scripts are only slightly different for the
Altera Quartus platform.

Listing 1: Extract netlist from Vivado using TCL

foreach cell [get_cells ...] {
puts

}

foreach net [get_mets ...] {
foreach pin [get_pins -of $net] {

var cell [get_cells -of $pin]
puts
}

© 00 O Uk W -

()

However, we observe the TCL execution on existing FPGA
EDA platforms is relatively slow. For example, it takes over
20 minutes to extract the complete netlist of a 466K-cell
design using TCL. This extraction may be repeated sev-
eral times when interfacing between the existing EDA plat-
forms and the actual distributed EDA algorithms. And this
runtime cannot be directly reduced given more computing
resources. In order to solve this issue and make the dis-
tributed computing framework meaningful, we propose a
parallel parser to accelerate the execution of TCL scripts.
The parser design is illustrated in Figure 3. In this exam-
ple, four instances of Vivado execute on two server nodes. In
this implementation, the parser reads partial data from each
instance, and then combine and convert the design to the in-
memory RDD in Spark. The RDD can be partitioned into
sub-designs for further MapReduce steps, with an example
shown in the next subsection.

Spark

parallel parser

i1 slave

containers
Vivado Vivado Vivado Vivado
| server node | | server node |

Figure 3: Parallel reads for efficient parsing.

After a design is processed by a distributed algorithm in
Spark, the result has to be written back if a conventional
step in Vivado is needed. This procedure is briefly listed
in Figure 4. First, as shown in Figure 4a, the updated de-
sign (from data v0.1 to v0.2) in Spark is written back to a
single instance of Vivado. Second, the outdated instances
(data v0.1) are stopped and removed; at the same time, the
remaining instance can run a conventional step in Vivado
to obtain a further updated design (data v0.3), as shown in
Figure 4b. Last, the remaining instance can be replicated as
in Figure 4c, so that the parallel parsing can be performed to
run another distributed algorithm in Spark. The instances
of Vivado are managed using the Docker technique, where
they can be killed or replicated conveniently. The check-
point and restore operations are able to save and restore the
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in-memory data, and thus can be used to replicate a live
instance [31].
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(a) Write data back to a single instance when a
conventional step in Vivado is needed.
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(b) Kill the outdated instances, and run a conven-
tional step in the remaining instance.
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(c) Replicate the instance with the latest data, and
get ready for the next parallel parsing.

Figure 4: Writing strategy for data consistency.

In this way, we are able to develop new distributed algo-
rithms in Spark on top of Vivado. The runtime of the TCL-
based parser is accelerated by parallel reads from multiple
identical instances of Vivado. The data consistency for data
write-backs can be guaranteed using the Docker technique
to management the Vivado instances. This methodology is
straightforward to be applied to any other mainstream EDA
platforms that support TCL scripting.

3.3 Example Application: Detailed Placement

The detailed placement algorithms [23, 12, 28] usually
include global swapping and local swapping. As an illus-
trative example, we implement a brute-force algorithm of
local swapping on Spark to examine the capability of the
distributed EDA framework.

The information produced by previous TCL parsing stage
contains the lists of the cells, nets, initial placement, and
feasible placement locations. The netlist and the placement
region is processed and partitioned into “DP tile” structures
after a few MapReduce steps. Each DP tile consists of its
partial netlists and subregion information needed by the re-
gional local swapping algorithm. The set of DP tiles is the
RDD for a map operator to do parallel swapping. This map
operator takes a DP tile as the input and generates a new
DP tile after local swapping.

Compared with the conventional sequential solution, our
method partitions the whole FPGA into N x N DP tiles and
performs local swapping in each tile. During the swapping



in each individual tile, we sweep a sliding window and enu-
merate all possible permutations of the cells in this window
to pick a partially best solution. A size of 3 x 2 and 2 x 3
are selected for the sliding window, and the 6! = 720 per-
mutations of each window can be examined in a reasonable
amount of time. After completing one iteration, the best
permutation of cells is committed, and the sliding window
moves to next position. We send all the tiles in N rounds,
and a group of map operations process N tiles in parallel.
These N tiles are chosen in a way that there are not any
pair of tiles on the same row or column, so that the esti-
mation of wirelength improvement in each tile is consistent.
The partitioning and local swapping scheme are illustrated
in Figure 5.

& DP tile

\_ Sliding window in
the map operator

Figure 5: Distributed detailed placement scheme.

4. EXPERIMENTAL RESULTS

Our experiments are run on a Linux cluster with four
nodes, each with two 6-core Intel Xeon Processor E5-2620
v3 at 2.40GHz and 64GB memory. The distributed comput-
ing engine is powered by Spark 1.5.2 and HDFS of Hadoop
2.6.3. The four nodes are connected by Gigabit Ethernet.

The summary of the test cases is described in Table 1.
The test cases are obtained from the Titan benchmarks [24].
They are synthesized and placed using Xilinx Vivado 2015.3
targeting VC707 (part name XC7VX485TFFG1761-2). The
total number of logic cells and a short description are also
included in the table.

Table 1: Summary of the test cases

name F#cells description
SLAMspherc | s7i_| el coordnat

4.1 Distributed TCL Parser

After synthesis and placement, the next step in our exper-
iments is to load the data from Xilinx Vivado to memory.
We use TCL scripts to extract the design information.

The parsing time of the three test cases in Vivado is illus-
trated in Figure 6. The part of “load design” is a one-time
execution to load a design in Vivado. The parts of “foreach
cell” and “foreach net” correspond to the execution of TCL
scripts in Listing 1. These two parts are usually executed
multiple times when there are multiple interactions between
the Spark program and the Vivado services. The runtime of
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TCL execution is too long for such interactions, and hurts
the speedup from any distributed algorithm in Spark.

M foreach cell foreach net load design
25
= 20
E
g
= 10
C
3
s
[ i

SLAM_spheric bitcoin_miner guassianblur_d1

Figure 6: Decomposition of parsing time.

Thus, we use the parallel parser as illustrated in Figure 3
previously, and achieve about 3x speedup with 3x memory
using four instances of Vivado. The TCL runtime and mem-
ory consumption are shown in Table 2. The runtime can be
further reduced using more Vivado instances.

Table 2: TCL runtime time and memory consump-
tion using four instances of Vivado.

test case TCL time memory
(min) | decr. | (GB) | incr.
SLAM_spheric 1.0 4.0x 6.4 3.2%
bitcoin_miner 2.1 3.9% 8.0 3.2x
guassianblur_d1 6.9 29x | 11.0 | 3.0x

The current support of live replication of Vivado instances
using Docker and CRIU [1] is experimental. The experi-
ments in [10] show that it takes about 9 seconds to check-
point and restore a container with 1GB memory. These fea-
tures are under development by the communities of Linux
containers and we can expect a runtime improvement in the
near future.

4.2 Distributed Detailed Placement

The distributed detailed placement algorithm is written
in Python, and is executed by the command “spark-submit
—executor-memory 4G dplace.py”.

The runtime results of the distributed detailed placement
are listed in Table 3, and the quality of wirelength improve-
ment is similar to the sequential version. The results show
great potentials in speedup in the distributed computing.

Table 3: Runtime of distributed detailed placement
with different number of parallel tiles

test case r1.1ntime (min?

1 tile 48 tiles
SLAM_spheric 36 18
bitcoin_miner 51 20
guassianblur_d1 611 25

S. CHALLENGES AND OPPORTUNITIES

In the previous sections, we demonstrate a proof-of-concept
for a distributed EDA framework to scale out the physical
design algorithms. In this section, we highlight the chal-
lenges and opportunities to attract the efforts of the physi-
cal design community to design and develop new distributed
algorithms.



The following are the necessary components to make the

distributed EDA framework for scalable physical design generic

and useful.

Algorithmic kernels. These algorithmic kernels are pre-
ferred to be either a map operator in the MapReduce dis-
tributed computing paradigm for the partitioned design data
or a composed series of MapReduce operations. There have
already been some widely-used physical design tools devel-
oped. FLUTE [11] is one of such examples, which is adopted
by most global routers in the ISPD routing contests [26, 25]
to construct rectilinear Steiner minimal trees for multi-pin
nets. The algorithmic kernels are analogous to the cognitive
computing services for language, speech, vision and data on
IBM Bluemix [3]. It is necessary and challenging to build
and maintain a library for such algorithmic kernels.

Standard interfaces. The standard interfaces include
the ones connecting some algorithmic kernels to form a com-
plete EDA algorithm, as well as the ones connecting existing
EDA platforms and the distributed computing framework.
Though the format of raw design data will keep changing
due to new design rules and new objectives, it is feasible to
provide a conversion operator as an algorithmic kernel for
backward compatibility. The relatively stable standard in-
terfaces across different EDA platforms and raw design data
will extend the lifetime of an algorithmic kernel and help
the growing of the algorithmic library. OpenAccess [18] sets
a good example of an open-source data model and API for
physical design. Given the necessity of a distributed com-
puting framework to scale out physical design, it is about
time to re-define a new set of standard interfaces in such
context.

Flow composition. The current implementation of Ope-
nAccess only supports the flow composition by tool-by-tool
inter-operation. Given the algorithmic kernels and stan-
dard interfaces, the distributed computing framework will
be able to support both tool-by-tool inter-operation (macro-
flow composition) and the connection of algorithmic kernels
(micro-flow composition). The former one is conventional,
and it will help the innovations in EDA design flow when
there are sufficient amount of tools supported in the frame-
work. The latter one is promising to keep up the innovations
in EDA algorithms. For example, there have been a series
of routibility-driven placement contests [33, 32, 36, 9]. Most
of these algorithms share similar algorithmic kernels, and
varies in some of these kernels and the detailed tuning of
the flow. Such research activities can attract boarder at-
tentions, if the existing kernels and flows can be reused; so
that a group new to this area does not need to start from
scratch but can focus on the innovation of the critical ker-
nels (e.g., the routability estimator, the inflation strategy,
the placement objective, etc.).

The distributed computing framework have potential ben-
efits in the following aspects.

Scalability. There are extensive efforts to develop the
distributed computing engines like Spark and Tachyon [22],
which are motivated by big data applications. The port-
ing of EDA algorithms on new distributed engines can take
advantage of such progress in the big data ecosystem, and
keep up with the scaling of design complexity in the long
run. Though there are results [29] showing that Spark is one
order of magnitude slower than MPI for specific data sets,
it has a data management infrastructure better in handling
node failure and data replication. Moreover, these emerg-

)
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ing distributed engines lower the barrier to get involve with
distributed computing, and bring more EDA experts to im-
plement algorithmic kernels and flows in the framework.

Reproducible results. It is hopefully the algorithmic
kernels and flows can be encapsulated with its dependent
dynamic linking libraries using the Linux container tech-
nologies like Docker. In this way, they are executable in any
mainstream Linux clusters without configuration or com-
pilation issues and generate reproducible results. There is
also an opportunity to provide “cloud” services for such dis-
tributed EDA framework, so that the design data, bench-
marks and design flows can be shared in the community
similar to GitHub [2]. Moreover, when the flows are exe-
cuted in the cloud by the masses on some existing bench-
marks, it is possible to apply the idea of data deduplication
to skip the execution of the first few stages if a flow has been
executed before. It will save runtime for the development of
late-stage physical design algorithms.

Collaborative innovation. The collaborative innova-
tion comes with the standard interfaces and execution of the
algorithmic kernels and flows in the distributed computing
framework. And it is promising to bridge the gap between
industry and academia. The opportunity of “cloud” services
to share design data, benchmarks and design flows is a way
to boost collaborations. On one hand, when the results of
the algorithmic kernels and a design flow from academia are
reproducible, it will be easier for the industry to try the flow
and get direct access to the new ideas from academia. On
the other hand, since the framework is compatible with ex-
isting EDA platforms, the industry can set up an evaluation
system like ImageNet [20] for academia to submit their tools
and flows in an executable form, with industry-grade design
data without worrying about sensitive data leakage.

Education. The distributed computing framework cre-
ates opportunities for instructors to provide a design flow to
students in a quick way. The students are not only able to
see an example of the whole design flow (the highest-level of
a composed flow) conveniently, but will also be much easier
than nowadays to replace a design step with their own al-
gorithm. The lower barrier to getting familiar with design
flows and experiment on EDA algorithms is promising to
attract more students understand the EDA field.

6. CONCLUSION

In this paper, we propose a distributed computing frame-
work for extreme-scale EDA algorithms development. Fur-
thermore, we outline the challenges and opportunities of how
such framework will benefit the innovations in both EDA
algorithms and flows, as well as the collaboration between
industry and academia.

Specifically, our proposed framework enables the design
and development of new distributed EDA algorithms while
being compatible with commercial EDA design platforms.
This framework uses TCL language to interact with exist-
ing EDA platforms, and converts the design information to a
distributed in-memory data structure in Spark. The current
TCL support in existing EDA platforms is mainly designed
for customized flows and lightweight customized tools. As a
result, we observe that the extraction of the complete design
information using TCL takes a significant amount of time.
And this will cancel out the speedup from the distributed
EDA algorithms in our proposed framework according to
Amdahl’s law. To solve this issue, we start multiple in-



stances to open the same design in multiple server nodes,
and extract the design data in a distributed way. The de-
sign data is stored in memory for further processing in the
distributed computing engine of Spark. To demonstrate the
proposed framework, we implement a distributed detailed
placement algorithm and show a substantial speedup.

In the end, we summarize the challenges and opportuni-
ties to scale out physical design algorithms in a distributed
framework. It is promising that such framework will accel-
erate the innovations in both large-scale EDA algorithms as
well as new EDA design flows.
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