
Designing Scratchpad Memory Architecture with 
Emerging STT-RAM Memory Technologies 

Peng Wang,1 Guangyu Sun,1 Tao Wang,1 Yuan Xie,2 Jason Cong1,3,4 

1Center for Energy-Efficient Computing and Applications, School of EECS, Peking University, Beijing, 100871, China 
2Computer Science and Engineering Department, Pennsylvania State University, PA 16802, USA 

3Computer Science Department, University of California, Los Angeles, CA 90095, USA 
4UCLA/PKU Joint Research Institute in Science and Engineering 

{wang_peng, gsun, wangtao}@pku.edu.cn, yuanxie@cse.psu.edu, cong@cs.ucla.edu 
 

Abstract—Scratchpad memories (SPMs) have been widely used 
in embedded systems to achieve comparable performance with 
better energy efficiency when compared to caches. Spin-transfer 
torque RAM (STT-RAM) is an emerging nonvolatile memory 
technology that has low-power and high-density advantages over 
SRAM. In this study we explore and evaluate a series of 
scratchpad memory architectures consisting of STT-RAM. The 
experimental results reveal that with optimized design, STT-
RAM is an effective alternative to SRAM for scratchpad 
memory in low-power embedded systems. 

I. INTRODUCTION 

Energy consumption is an important design issue for 
embedded systems. Since on-chip SRAM caches usually 
consume 25% to 45% of the total chip power [1], the on-chip 
memory in embedded processors is often configured as a 
software-managed scratchpad memory (SPM). The SPM does 
not have the tag array and relevant comparison logic that 
cache uses to support the fast lookup and dynamic mapping of 
data or instructions in off-chip memory. Therefore, it is more 
energy- and area-efficient than caches [1]. Moreover, SPM is 
managed by software, which can often provide better timing 
predictability in real-time systems [2]. 

As the technology advances, traditional SRAM-based on-
chip memory has become a bottleneck for energy-efficient 
design due to its high leakage power. The emerging 
nonvolatile memory (NVM) technologies, such as the spin-
transfer torque RAM (STT-RAM) and phase change RAM 
(PCRAM), are possible solutions for future memory systems. 
Compared to SRAM, STT-RAM and PCRAM provide higher 
density and lower leakage power. In addition, STT-RAM can 
significantly exceed PCRAM with respect to endurance, 
access latency, and dynamic power, while PCRAM has higher 
density. Previous works have showed that STT-RAM is more 
suitable for performance-critical last-level caches [3][4], while 
PCRAM is promising as an alternative for DRAM in the main 
memory [5]. Therefore, we primarily focus on STT-RAM-
based design in this paper.  

Although STT-RAM has many attractive characteristics, 
such as low leakage power and high density, there is one 

major drawback we need to overcome. Unlike SRAM, in 
which read and write operations consume the same time and 
energy, a write operation of STT-RAM needs much longer 
latency and higher energy than a read operation. Moreover, 
the latency and energy of write operations in conventional 
STT-RAM are several times larger than those of SRAM. 
Since on-chip memory is nearest to CPU in the memory 
hierarchy, reducing the access latency of on-chip memory is 
critical to performance.  

New STT-RAM device cell designs have been developed 
to mitigate the low speed and high energy of write operations. 
Perpendicular MTJs (PMTJ) were developed [6][7] to achieve 
a low switching current while maintaining a high thermal 
stability for nonvolatility of STT-RAM. Through careful 
device-architecture co-optimization [8], we can significantly 
alleviate the write problem of STT-RAM SPM. In this paper  
we use the methodology in [8] to generate different types of 
STT-RAM configurations. We attempt to find an efficient 
SPM solution. 

We also explore the design space of hybrid SPM 
architectures consisting of STT-RAM and SRAM in order to 
take advantage of the fast writes of SRAM. Because SPM is 
explicitly managed by software, programmers can tune the 
software manually or use special compiler support to 
counteract the negative effects of the write operations of STT-
RAM SPM. We use a data allocation scheme aimed at the 
hybrid SPM architecture to reduce the number of writes on 
STT-RAM. The basic idea is to allocate the most-written data 
into SRAM and the most-read data to STT-RAM. 

The major contributions of this work are summarized as 
follows: 

 We explored a low-power SPM architecture that 
contains STT-RAM in an embedded system. 
According to our experimental results, the device-
architecture co-optimized PMTJ-based STT-RAM is a 
potential replacement to SRAM-based SPM. 

 We conducted a sensitivity analysis to various area 
ratios of a hybrid SPM architecture consisting of STT-
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RAM and SRAM. The experimental results show that 
the hybrid SPM with a 2:1 SRAM:STT-RAM area 
ratio achieves the best performance and energy-delay 
product, while the pure STT-RAM configuration 
outperforms the others in energy. 

The remainder of this paper is organized as follows. 
Related work is discussed in Section II. Section III presents 
the scheme used for allocation of SPM data. The experiments 
for different SPM configurations are presented and analyzed 
in Section IV. Section V concludes our work. 

II. RELATED WORK 

Effective utilization of SPM is critical for an SPM-based 
system. Research on automatic data allocation for SPM has 
focused on how to place the frequently used data in a program 
in SPM so as to maximize for both improved performance and 
energy consumption. The process of data allocation 
determines the location of each piece of data in SPM. 
Compilers or programmers need to decide on an appropriate 
data allocation before execution. Several compiler-based data 
allocation techniques, e.g. [9][10][11][13], have been 
proposed. The existing techniques can be classified into two 
major categories: static methods and dynamic methods. 

In the static methods, the contents of the SPM are 
determined before the execution of a program and never 
change during the execution. These static allocation 
approaches either use greedy strategies to find an efficient 
solution, or model the problem as a knapsack problem or an 
integer linear programming problem (ILP) to find an optimal 
solution. The profiling method is often used. Avissar et al. [9] 
proposed a memory allocation scheme for global variables that 
is optimal in relation to the profiling provided. Cong et al. [10] 
proposed a compile-time technique which uses the SPM to 
reuse the data with consideration of prefetching in affine-
indexed arrays. 

In the dynamic methods, the contents of the SPM may 
change during the program execution. Dynamic methods 
based on compile-time techniques change the SPM allocation 
based only on compile time decisions and profiling 
information. Udayakumaran et al. [13] proposed a dynamic 
data allocation method for global and stack data. Verma et al. 
[11] proposed an overlay-based memory allocation method for 
both code and data that uses ILP to find the optimal memory 
allocation and minimize energy consumption for a given 
profile. Dynamic methods are usually more efficient than 
static ones in exploiting the benefits of SPMs. 

None of the methods above consider the latency and 
energy overhead associated with the write operations of STT-
RAM because they are aimed at the traditional SPM 
consisting of SRAM. Hu et al. [12] design an SPM data 
allocation algorithm to counteract negative effects of the write 
operation of STT-RAM. However, their design uses the 
PCRAM as the SPM, which is not an ideal choice compared 
to STT-RAM in terms of performance and energy. They also 
did not evaluate the impact of using different device 
technologies on the overall system performance and energy. 

III. DATA ALLOCATION SCHEME FOR HYBRID SPM 

In hybrid SPM architecture, STT-RAM SPM and SRAM 
SPM share the same address space with the main memory. 
The CPU can load data from both SPMs, and data can be 
migrated between them using special instructions. 

We use a dynamic data allocation scheme based on Hu et 
al.’s scheme [12]. A program is divided into several program 
regions by a compiler, as in [13]. Data allocation is performed 
for each program region before execution using compiler-
inserted code at the beginning of a program region. The 
scheme allocates the most-written data into SRAM and the 
most-read data into STT-RAM optimally in a region. 

First, we evaluate costs for each data item in the region. 
We define three costs, S(D), T(D) and M(D), which are the 
total costs for the data D if D is allocated in SRAM, STT-
RAM, and main memory, respectively. The costs can be 
computed as Equation 1. 

ݐݏܿ	݈ܽݐܶ  = 	∑ሺ݉݅݃݃݊݅ݐܽݎ	ݐݏܿ + ݀ܽ݁ݎ	݂	ݎܾ݁݉ݑ݊ ݀ܽ݁ݎ	ݎ݁	ݐݏܿ× + ݁ݐ݅ݎݓ	݂	ݎܾ݁݉ݑ݊ ×  ሻ݁ݐ݅ݎݓ	ݎ݁	ݐݏܿ
Here the cost per read/write is the access time of 

reading/writing SPM, and the moving cost is the time needed 
for migrating data between SRAM SPM, STT-RAM SPM, 
and main memory. We can obtain the number of read or write 
in the region through profiling. 

Second, we allocate each data item to the appropriate place 
to minimize the total cost. A variant of the dynamic 
programming solution in [12] to the multiple knapsack 
problem is used to select the best place for each data item. 

IV. EXPERIMENTS 

A. Experimental Setup 

We evaluate the proposed design on a simulation platform 
built upon Simics [14] with GEMS [15]. Table I provides the 
parameters used in our baseline model. Notice that the 
configuration of the CPU and main memory remains the same 
through all simulations. Our test benches consist of nine 
benchmark applications from MiBench [16]. We use 
Udayakumaran’s algorithm [13], which is a greedy algorithm, 
to manage the data allocation for pure SRAM SPM. 

TABLE I.  BASELINE SIMULATION PARAMETERS 

Simulator Simics with GEMS 

CPU Single 1GHz processor 

SPM 16KB, 2-cycle latency SRAM 

Main Memory 64MB DRAM, 100-cycle access 

Benchmark MiBench 

We use the NVM simulator NVsim [17] to estimate the 
read/write latencies and energy consumption for a given size 
of SRAM and STT-RAM. We use 45nm technologies with the 
tool and select three different types of optimization targets for 
SPM—latency optimized, energy-delay-product (EDP) 
optimized, and energy optimized STT-RAM. Table II shows 
the parameters of SPM used in our experiments. 

(1) 
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TABLE II.  CONFIGURATION OF 45NM 16KB STT-RAM SPM AND 
COMPARISON WITH SRAM 

 
Latency 

opt. STT-
RAM 

EDP opt. STT-
RAM 

Energy opt. 
STT-RAM 

SRAM 

Area (mm2) 0.031 0.021 0.018 0.093 

Read 
latency (ns) 

0.906 0.835 0.813 1.085 

Write 
latency (ns) 

0.997 3.135 5.128 1.085 

Read 
energy (pJ) 

10.951 7.091 6.516 20.589 

Write 
energy (pJ) 

29.56 21.87 22.65 14.501 

Leakage 
(mW) 

0.924 0.616 0.606 7.916 

B. Experimental Results 

We explore two different approaches to leverage STT-
RAM for scratchpad memory design: the first approach is a 
direct replacement of SRAM with a pure STT-RAM 
scratchpad memory; the second approach is a hybrid 
SRAM/STT-RAM scratchpad memory design.  

Pure STT-RAM Scratchpad Memory. First we 
evaluated the case of direct replacement of SRAM scratchpad 
with STT-RAM scratchpad. We compared the performance 
(in terms of instruction per cycle, IPC) and the energy 
consumption of different configurations. We used the 
conventional pure SRAM (ALL-SRAM) SPM design as the 
baseline. Figure 1 shows the IPC performance of the simulated 
SPM designs normalized to the baseline ALL-SRAM case 

Performance. On average, implementing the SPM using 
the “energy optimized” STT-RAM design results in more than 
an 8% IPC degradation due to the longer write latency. 
However, the performance of the SPM using the “latency 
optimized” and “EDP optimized” STT-RAM design is 
significantly improved compared to that of the SRAM SPM. 
The average normalized IPCs of latency optimized and EDP 
optimized are 1.24 and 1.10, respectively. The performance 
improvement of latency optimized and EDP optimized SPM 
compared to the SRAM baseline comes from the shorter read 
latency, even though its write latency is still longer (as shown 
in Table II). However, SPM read accesses are far more 
frequent than write accesses in most benchmarks. In some 
benchmarks, for example mp3enc, the latency optimized 
design achieves a better than 30% improvement in IPC. 

 
Figure 1.  Comparison of performance.  

Energy. The energy consumptions of different SPM 
designs normalized to the baseline ALL-SRAM cases are 
summarized in Figure 2. The results show that implementing 
the SPM with the latency optimized STT-RAM is much less 
energy-efficient than the SRAM by 20%. The EDP optimized 
and energy optimized STT-RAM SPM designs achieved 
significant energy savings of 18% and 31%, respectively, 
compared to the SRAM baseline. 

 

Figure 2.  Comparison of energy consumption. 

SRAM/STT-RAM Hybrid Scratchpad Memory. In 
order to leverage the benefit of both SRAM (faster write) and 
STT-RAM memory (higher density), we propose a 
SRAM/STT-RAM hybrid scratchpad memory. We evaluate 
the proposed hybrid SPM with different SRAM and STT-
RAM area ratios. The total area is the fixed value of a 64KB 
SRAM SPM. For example, the 1:1 area ratio means that the 
hybrid SPM has 32KB of SRAM and 128KB of STT-RAM, 
while the baseline SPM has 64KB of SRAM. Since STT-
RAM can be made about four times denser than SRAM, these 
two SPMs have a similar silicon area. In the experimental 
results, we use the EDP optimized STT-RAM design for the 
hybrid design. To be consistent with the previous section, we 
normalize the simulation results to the ALL-SRAM design. 

Figure 3 compares the normalized performance results. 
We can see that the 2:1 SRAM:STT-RAM area ratio is the 
best, with an average 36% improvement over the baseline. 
Figure 4 shows the corresponding energy result with EDP 
optimized STT-RAM. We can see that on average the “ALL 
STT-RAM” configuration is the best, with 29% less energy. 

 
Figure 3.  Normalized performance comparison of various area ratios for 

hybrid SPM design. (normalized to ALL-SRAM baseline, with EDP 
optimized STT-RAM design). 
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Figure 4.  Normalized energy comparison of various area ratio hybrid SPM 
design (normalized to ALL-SRAM baseline, with EDP optimized STT-RAM 

design). 

Figure 5 shows the corresponding energy-delay product 
(EDP) result with EDP optimized STT-RAM. The 2:1 
configuration achieves the best results on average, reducing  
45% of total energy-delay.  

 
Figure 5.  Normalized energy-delay product (EDP) comparison of various 

area ratios for hybrid SPM design (normalized to ALL-SRAM baseline, with 
EDP optimized STT-RAM design). 

There are two reasons why the performance and energy-
efficiency of the hybrid SPM are improved. First, the 
allocation scheme allocates the most-read data into STT-RAM 
and the most-written data into SRAM. Therefore, we can take 
advantage of the efficient read of STT-RAM and reduce the 
expensive writes to the STT-RAM. Second, since STT-RAM 
has a higher density than SRAM, for the same area, the hybrid 
SPM has a larger capacity. Therefore, there are fewer off-chip 
memory accesses in the hybrid SPM than in smaller SRAM 
SPM. The evaluation results also show that there is no single 
hybrid SPM design which can outperform the others in terms 
of performance, power, or EDP. It means that a re-
configurable SPM design that can dynamically adapt 
configurations and data management has the potential to 
further improve STT-RAM SPM design. 

V. CONCLUSIONS 

STT-RAM has many attractive characteristics, such as low 
leakage power and high-density, which make it a promising 
universal memory replacement in low-power embedded 

systems. In this paper we verified three types of STT-RAM as 
scratchpad memory replacements in an embedded system. We 
also evaluated the hybrid SPM, which consists of STT-RAM 
and SRAM, to leverage the benefit of both SRAM and STT-
RAM. According to our experimental results, the hybrid SPM 
architecture can outperform SPMs consisting of either pure 
SRAM or pure STT-RAM. 
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