
Designing Scratchpad Memory Architecture with
Emerging STT-RAM Memory Technologies

Peng Wang,1 Guangyu Sun,1 Tao Wang,1 Yuan Xie,2 Jason Cong1,3,4

1Center for Energy-Efficient Computing and Applications, School of EECS, Peking University, Beijing, 100871, China
2Computer Science and Engineering Department, Pennsylvania State University, PA 16802, USA

3Computer Science Department, University of California, Los Angeles, CA 90095, USA
4UCLA/PKU Joint Research Institute in Science and Engineering

{wang_peng, gsun, wangtao}@pku.edu.cn, yuanxie@cse.psu.edu, cong@cs.ucla.edu

Abstract—Scratchpad memories (SPMs) have been widely used
in embedded systems to achieve comparable performance with
better energy efficiency when compared to caches. Spin-transfer
torque RAM (STT-RAM) is an emerging nonvolatile memory
technology that has low-power and high-density advantages over
SRAM. In this study we explore and evaluate a series of
scratchpad memory architectures consisting of STT-RAM. The
experimental results reveal that with optimized design, STT-
RAM is an effective alternative to SRAM for scratchpad
memory in low-power embedded systems.

I. INTRODUCTION

Energy consumption is an important design issue for
embedded systems. Since on-chip SRAM caches usually
consume 25% to 45% of the total chip power [1], the on-chip
memory in embedded processors is often configured as a
software-managed scratchpad memory (SPM). The SPM does
not have the tag array and relevant comparison logic that
cache uses to support the fast lookup and dynamic mapping of
data or instructions in off-chip memory. Therefore, it is more
energy- and area-efficient than caches [1]. Moreover, SPM is
managed by software, which can often provide better timing
predictability in real-time systems [2].

As the technology advances, traditional SRAM-based on-
chip memory has become a bottleneck for energy-efficient
design due to its high leakage power. The emerging
nonvolatile memory (NVM) technologies, such as the spin-
transfer torque RAM (STT-RAM) and phase change RAM
(PCRAM), are possible solutions for future memory systems.
Compared to SRAM, STT-RAM and PCRAM provide higher
density and lower leakage power. In addition, STT-RAM can
significantly exceed PCRAM with respect to endurance,
access latency, and dynamic power, while PCRAM has higher
density. Previous works have showed that STT-RAM is more
suitable for performance-critical last-level caches [3][4], while
PCRAM is promising as an alternative for DRAM in the main
memory [5]. Therefore, we primarily focus on STT-RAM-
based design in this paper.

Although STT-RAM has many attractive characteristics,
such as low leakage power and high density, there is one

major drawback we need to overcome. Unlike SRAM, in
which read and write operations consume the same time and
energy, a write operation of STT-RAM needs much longer
latency and higher energy than a read operation. Moreover,
the latency and energy of write operations in conventional
STT-RAM are several times larger than those of SRAM.
Since on-chip memory is nearest to CPU in the memory
hierarchy, reducing the access latency of on-chip memory is
critical to performance.

New STT-RAM device cell designs have been developed
to mitigate the low speed and high energy of write operations.
Perpendicular MTJs (PMTJ) were developed [6][7] to achieve
a low switching current while maintaining a high thermal
stability for nonvolatility of STT-RAM. Through careful
device-architecture co-optimization [8], we can significantly
alleviate the write problem of STT-RAM SPM. In this paper
we use the methodology in [8] to generate different types of
STT-RAM configurations. We attempt to find an efficient
SPM solution.

We also explore the design space of hybrid SPM
architectures consisting of STT-RAM and SRAM in order to
take advantage of the fast writes of SRAM. Because SPM is
explicitly managed by software, programmers can tune the
software manually or use special compiler support to
counteract the negative effects of the write operations of STT-
RAM SPM. We use a data allocation scheme aimed at the
hybrid SPM architecture to reduce the number of writes on
STT-RAM. The basic idea is to allocate the most-written data
into SRAM and the most-read data to STT-RAM.

The major contributions of this work are summarized as
follows:

 We explored a low-power SPM architecture that
contains STT-RAM in an embedded system.
According to our experimental results, the device-
architecture co-optimized PMTJ-based STT-RAM is a
potential replacement to SRAM-based SPM.

 We conducted a sensitivity analysis to various area
ratios of a hybrid SPM architecture consisting of STT-

This work is supported by the National Natural Science Foundation of
China 61103028, 61202072, and Research Fund for the Doctoral Program of
Higher Education of China 20110001110099, 20110001120132.

978-1-4673-5762-3/13/$31.00 ©2013 IEEE 1244

RAM and SRAM. The experimental results show that
the hybrid SPM with a 2:1 SRAM:STT-RAM area
ratio achieves the best performance and energy-delay
product, while the pure STT-RAM configuration
outperforms the others in energy.

The remainder of this paper is organized as follows.
Related work is discussed in Section II. Section III presents
the scheme used for allocation of SPM data. The experiments
for different SPM configurations are presented and analyzed
in Section IV. Section V concludes our work.

II. RELATED WORK

Effective utilization of SPM is critical for an SPM-based
system. Research on automatic data allocation for SPM has
focused on how to place the frequently used data in a program
in SPM so as to maximize for both improved performance and
energy consumption. The process of data allocation
determines the location of each piece of data in SPM.
Compilers or programmers need to decide on an appropriate
data allocation before execution. Several compiler-based data
allocation techniques, e.g. [9][10][11][13], have been
proposed. The existing techniques can be classified into two
major categories: static methods and dynamic methods.

In the static methods, the contents of the SPM are
determined before the execution of a program and never
change during the execution. These static allocation
approaches either use greedy strategies to find an efficient
solution, or model the problem as a knapsack problem or an
integer linear programming problem (ILP) to find an optimal
solution. The profiling method is often used. Avissar et al. [9]
proposed a memory allocation scheme for global variables that
is optimal in relation to the profiling provided. Cong et al. [10]
proposed a compile-time technique which uses the SPM to
reuse the data with consideration of prefetching in affine-
indexed arrays.

In the dynamic methods, the contents of the SPM may
change during the program execution. Dynamic methods
based on compile-time techniques change the SPM allocation
based only on compile time decisions and profiling
information. Udayakumaran et al. [13] proposed a dynamic
data allocation method for global and stack data. Verma et al.
[11] proposed an overlay-based memory allocation method for
both code and data that uses ILP to find the optimal memory
allocation and minimize energy consumption for a given
profile. Dynamic methods are usually more efficient than
static ones in exploiting the benefits of SPMs.

None of the methods above consider the latency and
energy overhead associated with the write operations of STT-
RAM because they are aimed at the traditional SPM
consisting of SRAM. Hu et al. [12] design an SPM data
allocation algorithm to counteract negative effects of the write
operation of STT-RAM. However, their design uses the
PCRAM as the SPM, which is not an ideal choice compared
to STT-RAM in terms of performance and energy. They also
did not evaluate the impact of using different device
technologies on the overall system performance and energy.

III. DATA ALLOCATION SCHEME FOR HYBRID SPM

In hybrid SPM architecture, STT-RAM SPM and SRAM
SPM share the same address space with the main memory.
The CPU can load data from both SPMs, and data can be
migrated between them using special instructions.

We use a dynamic data allocation scheme based on Hu et
al.’s scheme [12]. A program is divided into several program
regions by a compiler, as in [13]. Data allocation is performed
for each program region before execution using compiler-
inserted code at the beginning of a program region. The
scheme allocates the most-written data into SRAM and the
most-read data into STT-RAM optimally in a region.

First, we evaluate costs for each data item in the region.
We define three costs, S(D), T(D) and M(D), which are the
total costs for the data D if D is allocated in SRAM, STT-
RAM, and main memory, respectively. The costs can be
computed as Equation 1.

ݐݏܿ	݈ܽݐܶ = 	∑ሺ݉݅݃݃݊݅ݐܽݎ	ݐݏܿ + ݀ܽ݁ݎ	݂	ݎܾ݁݉ݑ݊ ݀ܽ݁ݎ	ݎ݁	ݐݏܿ× + ݁ݐ݅ݎݓ	݂	ݎܾ݁݉ݑ݊ × ሻ݁ݐ݅ݎݓ	ݎ݁	ݐݏܿ
Here the cost per read/write is the access time of

reading/writing SPM, and the moving cost is the time needed
for migrating data between SRAM SPM, STT-RAM SPM,
and main memory. We can obtain the number of read or write
in the region through profiling.

Second, we allocate each data item to the appropriate place
to minimize the total cost. A variant of the dynamic
programming solution in [12] to the multiple knapsack
problem is used to select the best place for each data item.

IV. EXPERIMENTS

A. Experimental Setup

We evaluate the proposed design on a simulation platform
built upon Simics [14] with GEMS [15]. Table I provides the
parameters used in our baseline model. Notice that the
configuration of the CPU and main memory remains the same
through all simulations. Our test benches consist of nine
benchmark applications from MiBench [16]. We use
Udayakumaran’s algorithm [13], which is a greedy algorithm,
to manage the data allocation for pure SRAM SPM.

TABLE I. BASELINE SIMULATION PARAMETERS

Simulator Simics with GEMS

CPU Single 1GHz processor

SPM 16KB, 2-cycle latency SRAM

Main Memory 64MB DRAM, 100-cycle access

Benchmark MiBench

We use the NVM simulator NVsim [17] to estimate the
read/write latencies and energy consumption for a given size
of SRAM and STT-RAM. We use 45nm technologies with the
tool and select three different types of optimization targets for
SPM—latency optimized, energy-delay-product (EDP)
optimized, and energy optimized STT-RAM. Table II shows
the parameters of SPM used in our experiments.

(1)

1245

TABLE II. CONFIGURATION OF 45NM 16KB STT-RAM SPM AND
COMPARISON WITH SRAM

Latency

opt. STT-
RAM

EDP opt. STT-
RAM

Energy opt.
STT-RAM

SRAM

Area (mm2) 0.031 0.021 0.018 0.093

Read
latency (ns)

0.906 0.835 0.813 1.085

Write
latency (ns)

0.997 3.135 5.128 1.085

Read
energy (pJ)

10.951 7.091 6.516 20.589

Write
energy (pJ)

29.56 21.87 22.65 14.501

Leakage
(mW)

0.924 0.616 0.606 7.916

B. Experimental Results

We explore two different approaches to leverage STT-
RAM for scratchpad memory design: the first approach is a
direct replacement of SRAM with a pure STT-RAM
scratchpad memory; the second approach is a hybrid
SRAM/STT-RAM scratchpad memory design.

Pure STT-RAM Scratchpad Memory. First we
evaluated the case of direct replacement of SRAM scratchpad
with STT-RAM scratchpad. We compared the performance
(in terms of instruction per cycle, IPC) and the energy
consumption of different configurations. We used the
conventional pure SRAM (ALL-SRAM) SPM design as the
baseline. Figure 1 shows the IPC performance of the simulated
SPM designs normalized to the baseline ALL-SRAM case

Performance. On average, implementing the SPM using
the “energy optimized” STT-RAM design results in more than
an 8% IPC degradation due to the longer write latency.
However, the performance of the SPM using the “latency
optimized” and “EDP optimized” STT-RAM design is
significantly improved compared to that of the SRAM SPM.
The average normalized IPCs of latency optimized and EDP
optimized are 1.24 and 1.10, respectively. The performance
improvement of latency optimized and EDP optimized SPM
compared to the SRAM baseline comes from the shorter read
latency, even though its write latency is still longer (as shown
in Table II). However, SPM read accesses are far more
frequent than write accesses in most benchmarks. In some
benchmarks, for example mp3enc, the latency optimized
design achieves a better than 30% improvement in IPC.

Figure 1. Comparison of performance.

Energy. The energy consumptions of different SPM
designs normalized to the baseline ALL-SRAM cases are
summarized in Figure 2. The results show that implementing
the SPM with the latency optimized STT-RAM is much less
energy-efficient than the SRAM by 20%. The EDP optimized
and energy optimized STT-RAM SPM designs achieved
significant energy savings of 18% and 31%, respectively,
compared to the SRAM baseline.

Figure 2. Comparison of energy consumption.

SRAM/STT-RAM Hybrid Scratchpad Memory. In
order to leverage the benefit of both SRAM (faster write) and
STT-RAM memory (higher density), we propose a
SRAM/STT-RAM hybrid scratchpad memory. We evaluate
the proposed hybrid SPM with different SRAM and STT-
RAM area ratios. The total area is the fixed value of a 64KB
SRAM SPM. For example, the 1:1 area ratio means that the
hybrid SPM has 32KB of SRAM and 128KB of STT-RAM,
while the baseline SPM has 64KB of SRAM. Since STT-
RAM can be made about four times denser than SRAM, these
two SPMs have a similar silicon area. In the experimental
results, we use the EDP optimized STT-RAM design for the
hybrid design. To be consistent with the previous section, we
normalize the simulation results to the ALL-SRAM design.

Figure 3 compares the normalized performance results.
We can see that the 2:1 SRAM:STT-RAM area ratio is the
best, with an average 36% improvement over the baseline.
Figure 4 shows the corresponding energy result with EDP
optimized STT-RAM. We can see that on average the “ALL
STT-RAM” configuration is the best, with 29% less energy.

Figure 3. Normalized performance comparison of various area ratios for

hybrid SPM design. (normalized to ALL-SRAM baseline, with EDP
optimized STT-RAM design).

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

N
or

m
al

iz
ed

 IP
C

Latency opt. EDP opt. Energy opt.

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

N
or

m
al

iz
ed

 E
ne

rg
y

Latency opt. EDP opt. Energy opt.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

N
or

am
liz

ed
 E

xe
cu

tio
n

Ti
m

e

All SRAM 1:3 1:2 1:1 2:1 3:1 All STT-RAM

1246

Figure 4. Normalized energy comparison of various area ratio hybrid SPM
design (normalized to ALL-SRAM baseline, with EDP optimized STT-RAM

design).

Figure 5 shows the corresponding energy-delay product
(EDP) result with EDP optimized STT-RAM. The 2:1
configuration achieves the best results on average, reducing
45% of total energy-delay.

Figure 5. Normalized energy-delay product (EDP) comparison of various

area ratios for hybrid SPM design (normalized to ALL-SRAM baseline, with
EDP optimized STT-RAM design).

There are two reasons why the performance and energy-
efficiency of the hybrid SPM are improved. First, the
allocation scheme allocates the most-read data into STT-RAM
and the most-written data into SRAM. Therefore, we can take
advantage of the efficient read of STT-RAM and reduce the
expensive writes to the STT-RAM. Second, since STT-RAM
has a higher density than SRAM, for the same area, the hybrid
SPM has a larger capacity. Therefore, there are fewer off-chip
memory accesses in the hybrid SPM than in smaller SRAM
SPM. The evaluation results also show that there is no single
hybrid SPM design which can outperform the others in terms
of performance, power, or EDP. It means that a re-
configurable SPM design that can dynamically adapt
configurations and data management has the potential to
further improve STT-RAM SPM design.

V. CONCLUSIONS

STT-RAM has many attractive characteristics, such as low
leakage power and high-density, which make it a promising
universal memory replacement in low-power embedded

systems. In this paper we verified three types of STT-RAM as
scratchpad memory replacements in an embedded system. We
also evaluated the hybrid SPM, which consists of STT-RAM
and SRAM, to leverage the benefit of both SRAM and STT-
RAM. According to our experimental results, the hybrid SPM
architecture can outperform SPMs consisting of either pure
SRAM or pure STT-RAM.

REFERENCES
[1] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,

“Scratchpad memory: design alternative for cache on-chip memory in
embedded systems,” in Proc. CODES, 2002, pp. 73–78.

[2] P. Marwedel, L.Wehmeyer, M. Verma, S. Steinke, and U. Helmig,
“Fast, Predictable and Low Energy Memory References through
Architecture-aware Compilation,” in Proc. ASPDAC, 2004, pp. 4-11.

[3] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie, “Hybrid
Cache Architecture with Disparate Memory Technologies,” in Proc.
ISCA, 2009, pp. 34–45.

[4] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A Novel Architecture of
the 3D Stacked MRAM L2 Cache for CMPs,” in Proc. HPCA, 2008, pp.
239–249.

[5] B. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” in Proc. ISCA, 2009, pp.
2–13.

[6] P. Khalili Amiri, Z. M. Zeng, J. Langer, H. Zhao, G. Rowlands, Y. J.
Chen, I. N. Krivorotov, J. P. Wang, H. W. Jiang, J. A. Katine, Y. Huai,
K. Galatsis, and K. L. Wang, “Switching current reduction using
perpendicular anisotropy in CoFeB-MgO magnetic tunnel junctions,”
Applied Physics Letters, vol. 98, no. 11, pp. 112 507–112 507–3, 2011.

[7] Z. R. Tadisina, A. Natarajarathinam, B. D. Clark, A. L. Highsmith, T.
Mewes, S. Gupta, E. Chen, and S. Wang, “Perpendicular magnetic
tunnel junctions using co-based multilayers,” Journal of Applied
Physics, vol. 107, no. 9, pp. 09C703 –09C703–3, 2010.

[8] C. Xu, D. Niu, X. Zhu, S. H. Kang, M. Nowak, and Y. Xie, “Device-
architecture co-optimization of STT-RAM based memory for low
power embedded systems,” In Proc. ICCAD, 2011, pp. 463-470.

[9] O. Avissar, R. Barua, and D. Stewart, “An optimal memory allocation
scheme for scratch-pad-based embedded systems,” ACM Trans.
Embedded Comput. Syst., vol. 1, no. 1, pp. 6–26, 2002.

[10] J. Cong, H. Huang, C. Liu, and Y. Zou, “A Reuse-Aware Prefetching
Scheme for Scratchpad Memory,”. In Proc. DAC, 2011, pp. 960-965.

[11] M. Verma and P. Marwedel. “Overlay techniques for scratchpad
memories in low power embedded processors,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 14, no. 8, pp. 802–815, 2006.

[12] J. Hu, C. J. Xue, Q. Zhuge, W.-C. Tseng, and E. H.-M. Sha, “Towards
energy efficient hybrid on-chip scratch pad memory with non-volatile
memory,” in Proc. DATE, 2011, pp. 1–6.

[13] S. Udayakumaran and R. Barua, “Compiler-decided dynamic memory
allocation for scratch-pad based embedded systems,” in Proc. CASES,
2003, pp. 276–286.

[14] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A Full
System Simulation Platform,” in IEEE Computer, 2002, pp. 50–58.

[15] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Alameldeen,
K. Moore, M. Hill, and D. Wood, “Multifacet’s General Execution-
Driven Multiprocessor Simulator(GEMS) Toolset,” in Computer
Architecture News, 2005, pp. 92–99.

[16] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in Proc. WWC, 2001, pp. 3–14.

[17] X. Dong, N. P. Jouppi, and Y. Xie, “Pcramsim: System-level
performance, energy, and area modeling for phase-change ram,” in
Proc. ICCAD, 2009, pp. 269-275.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

N
or

am
liz

ed
 E

ne
rg

y

All SRAM 1:3 1:2 1:1 2:1 3:1 All STT-RAM

0.00

0.20

0.40

0.60

0.80

1.00

1.20

N
or

am
liz

ed
 E

DP

All SRAM 1:3 1:2 1:1 2:1 3:1 All STT-RAM

1247

