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Abstract
The massive parallel architecture enables graphics process-

ing units (GPUs) to boost performance for a wide range of
applications. Initially, GPUs only employ scratchpad mem-
ory as on-chip memory. Recently, to broaden the scope of
applications that can be accelerated by GPUs, GPU vendors
have used caches in conjunction with scratchpad memory as
on-chip memory in the new generations of GPUs. Unfortu-
nately, GPU caches face many performance challenges that
arise due to excessive thread contention for cache resource.
Cache bypassing, where memory requests can selectively by-
pass the cache, is one solution that can help to mitigate the
cache resource contention problem.

In this paper, we propose coordinated static and dynamic
cache bypassing to improve application performance. At
compile-time, we identify the global loads that indicate strong
preferences for caching or bypassing through profiling. For the
rest global loads, our dynamic cache bypassing has the flexibil-
ity to cache only a fraction of threads. In CUDA programming
model, the threads are divided into work units called thread
blocks. Our dynamic bypassing technique modulates the ratio
of thread blocks that cache or bypass at run-time. We choose
to modulate at thread block level in order to avoid the memory
divergence problems. Our approach combines compile-time
analysis that determines the cache or bypass preferences for
global loads with run-time management that adjusts the ratio
of thread blocks that cache or bypass. Our coordinated static
and dynamic cache bypassing technique achieves up to 2.28X
(average 1.32X) performance speedup for a variety of GPU
applications.

1. Introduction
In recent years, we have witnessed the success of Graphics
Processing Units (GPUs) employed for performance acceler-
ation. The emergence of CUDA and OpenCL programming
models enables easy utilization of GPUs. This has led to a
corresponding proliferation of applications that are ported to
GPUs. To achieve high performance, GPU programmers tend
to launch a large number of threads to drive the parallel re-
sources on GPUs. However, massive thread level parallelism
does not always ensure good performance. Recent studies
show that the performance of GPU applications are often lim-
ited by the memory subsystem [14, 23], especially for general
purpose codes with irregular memory access patterns. Thus,

the need for on-chip memory and data locality optimization
for GPUs is increasingly urgent.

Initially, GPUs only employ scratchpad memory as their
on-chip memory. However, scratchpad memory is highly
constrained in its capabilities. To use scratchpad memory,
programmers have to determine its data allocation at design
or compile time. It is not appropriate for the applications with
diverse access patterns, which naturally prefer cache instead
of scratchpad memory. Hence, to address a wider range of
workloads, recent GPU architectures have introduced caches
together with scratchpad memory as the on-chip memory. For
example, state-of-the-art NVIDIA Kepler architecture has both
L1 data cache and scratchpad memory and allows an option
for the users to configure their sizes.

In reality, however, GPU applications are often unable to
effectively utilize the caches. The large number of threads
in GPU applications tend to issue a large number of memory
requests in a near short period. This leads to high cache
contention and thus low cache hit rate. We examined all the
applications in Rodinia [5] and Parboil [41] benchmark suites.
For a typical 16KB L1 data cache, the L1 data cache hit rate
is only about 27.1% on average. Furthermore, the massive
thread level parallelism and low L1 data cache hit rate also
cause serious congestion in memory requests service and other
cache related resources such as miss status holding registers
(MSHRs), leading to pipeline stall. Hence, in many cases
GPU caches may even hurt the performance [18].

In this paper, we propose coordinated static (compile-time)
and dynamic (run-time) cache bypassing to improve the GPU
application performance. Cache bypassing, where the mem-
ory requests can selectively bypass the cache, is effective to
mitigate the cache contention and related pipeline stall. At
compile-time, we first classify the global load instructions
based on their localities through profiling. For the global load
instructions that indicate strong preferences (either very good
or bad localities), we choose to cache or bypass them for all the
threads. For the rest of global load instructions, we choose to
bypass them for a fraction of threads and balance the caching
and bypassing at run-time.

In CUDA programming model, threads are organized into
groups called thread blocks.1 The threads within a thread block
can synchronize among themselves through barriers and share
data through scratchpad memory. We choose to modulate the

1Thread block in CUDA is equivalent to work-group in OpenCL.
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Figure 1: GPU Architecture and Cache Bypassing on CPUs and GPUs.

threads that cache or bypass at thread block level at run-time
to avoid the memory divergence problem [32]. More clearly,
among the set of active thread blocks (e.g., the thread blocks
execute simultaneously), we choose a subset of them to bypass
the cache and let the rest of active thread blocks use cache. By
allowing a subset of thread blocks to use the cache, it helps to
reduce the cache contention and pipeline stall as the number
of memory requests to the cache is reduced. Meanwhile, the
data localities for the thread blocks that access the cache can
still be exploited. Note that we do not penalize the thread
level parallelism in order to reduce the cache contention and
pipeline stall. By doing this, we maintain massive threading
for high throughput.

This paper makes the following contributions.
• We propose a coordinated static and dynamic cache by-

passing optimization framework for GPUs. It employs
compile-time techniques to provide global locality hints
to the hardware, and employs the hardware to dynamically
adjust the ratio of thread blocks that use cache.

• We propose profiling-based static analysis that classifies the
global loads into three categories based on their localities
and encode the classification into the load instructions at
compile-time.

• We develop run-time management techniques that modulate
the ratio of thread blocks that use or bypass the cache.
We evaluate our technique using a wide range of applica-

tions from Rodinia [5], Polybench [15], MapReduce [16], and
Parboil [41]. Compared to always turning cache on, our co-
ordinated bypassing achieves up to 2.28X (geometric mean
is 1.32X) performance speedup for 16KB cache. Compared
to the state-of-the-art bypassing techniques [46] and [19], our
technique increases the performance speedup from 1.11X
and 1.17X to 1.32X. We also compare our technique with
the state-of-the-art two-level thread scheduling policy [34],
cache-aware thread parallelism management technique [23],

and cache-conscious wavefront scheduling (CCWS) tech-
nique [39]. Experiments demonstrate that our technique in-
creases the speedup from 1.04X, 1.09X, and 1.15X to 1.32X.

The rest of the paper is organized as follows. Section 2
describes the background on GPU architecture and cache by-
passing interfaces. Section 3 presents the coordinated cache
bypassing framework and motivation. Section 4 and Section 5
detail the implementations of static and dynamic cache by-
passing components, respectively. Section 6 discusses the
experimental results. Section 7 and 8 describe the related
work and conclusion.

2. Background

2.1. GPU Architecture

GPUs are composed hierarchically. A GPU is composed of
multiple Streaming Multiprocessors (SM). Multiple Streaming
Processors (SP), registers, scratchpad memory (a.k.a shared
memory), and L1 data cache are grouped together into a SM.
SMs coordinate the single-instruction multiple-data (SIMD)
style execution of all of the SPs.2 Figure 1 (a) describes our
target GPU architecture.

The threads of a GPU application are first organized into
groups called thread blocks. The threads in a thread block can
share data through shared memory and synchronize among
each other using barrier instructions. When a kernel launches,
a thread block as a whole is assigned to one SM for execution.
The number of threads that can simultaneously execute on one
SM is limited by the available resource of an SM [1]. When
all the threads in a thread block complete execution, the thread
block is committed and a new thread block is dispatched to
the corresponding SM.

2We use NVIDA and CUDA terminology in this paper, but our techniques
are common to other architectures and OpenCL programming models.
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Each thread block is further organized into warps, with each
warp having 32 threads. The threads within a warp have to
execute in a SIMD manner. Hence, the performance of the
application might be affected if the threads in a warp exhibit
different control or memory behavior. More clearly, if the
threads in a warp take different paths at a conditional branch,
the execution of the paths will be serialized, leading to resource
idle and thus performance degradation [10]. Similarly, if the
memory requests issued by a warp have different memory
latencies, the warp has to stall until the longest memory request
completes [32, 33].

2.2. Cache Bypassing

Cache bypassing has been shown to be effective in mitigating
cache contention and thrashing for general purpose proces-
sors [22, 43]. Recently, GPU architectures such as NVIDIA
Fermi and Kepler start to incorporate cache bypassing for the
same reason. However, cache bypassing interfaces are imple-
mented differently on the two platforms due to their distinct
architecture differences.

Figure 1 (b) and (c) give the implementations of cache
bypassing on modern CPUs and GPUs, respectively. On CPUs,
L1 cache hit rate is often high and thus L1 cache is looked up
for every memory request. Cache bypassing is mainly used
for last-level cache (LLC) in recent studies [8, 11, 24, 44].
More clearly, depending on the localities of the data, cache
bypassing can selectively choose to allocate it on LLC or
bypass LLC. As shown in Figure 1 (b), the requested data
from memory is allocated to the L1 cache only and the L2
cache is bypassed. Hence, cache bypassing on CPUs is used
at the data allocation stage.

The large number of parallel threads on GPUs leads to
low per-thread cache capacity and serious cache contention.
Hence, the L1 cache hit rates of GPU applications are low. As
a result, L1 data cache is a good candidate for bypassing. On
GPUs, memory requests can choose to bypass the L1 cache
as shown in Figure 1 (c). Later, the requested data is directly
forwarded to the processors without filling the L1 cache. Such
cache bypassing has been implemented on NVIDIA Fermi
(GTX480, C2050) and Kepler (GTX680, K10) architectures.
In addition, massive threading also causes congestion in cache
miss handling resources such as MSHRs, cache lines, etc. For
example, the current L1 cache miss can not be served if there
is no MSHR entry available as shown in Figure 1 (c). Then,
the pipeline has to be stalled until the requested resource is
available. By forwarding some of the memory requests to L2
cache directly, cache bypassing helps to reduce the resource
congestion and pipeline stall.

Cache bypassing support on the current generations of
GPUs is still rudimentary. For example, on NVIDIA Fermi
and Kepler, programmers can choose to use or bypass cache
entirely for the program by controlling the compilation flags
(-dlcm=ca or -dlcm=cg). However, such coarse-grained so-
lutions do not exploit the entire spectrum of opportunities

CUDA 
Kernel 

Original PTX code 

Compile-time 

ld.global  … 
… 
ld.global … 
… 
ld.global … 

ld.global.cg  … 
… 
ld.global.ca … 
… 
ld.global.cm … 

Modified PTX code 

Run-time 

L2 Cache 

ba block 
0, 1  

bg block 
 2, 3, 4, 5 

L1 Cache 

SM   

Dynamic Cache  
Bypassing 

Static Cache 
Bypassing 

Figure 2: System Overview. Static bypassing classifies global
loads into three categories using tags ca, cg, and
cm. Thread blocks tagged with ba use L1 cache
while thread blocks tagged with bg bypass L1 cache.

provided by caching and bypassing.
Currently, GPUs do not cache global store data in the L1

cache as L1 caches are not coherent for global data. Hence,
global stores update L2 cache directly by invalidating the
matched copies in the L1 cache. Thus, similar to previous
works [18, 19, 46], we only focus on global memory loads.

3. System Overview and Motivation

The coordinated static and dynamic cache bypassing optimiza-
tion framework is implemented based on GPGPU-Sim [4]
(version 3.2.1) compilation and run-time system as illustrated
in Figure 2. The input is the GPU application code in PTX
format, which is the intermediate representation of CUDA
code. The static cache bypassing component analyzes the
PTX code and classifies the memory requests based on their
localities and encodes the classification through instruction set
extension at compile-time. At run-time, the dynamic cache
bypassing component honors the cache or bypass decisions
for the memory requests with strong preferences to cache or
bypass, but has the flexibility to adjust the behavior for the
rest of the memory requests at thread block level.

3.1. Static Cache Bypassing Overview

The memory access patterns used in general purpose codes
are diverse. Some of the accesses may inherently have good
localities such as array[tid % 2], array[bid], where the tid and
bid are the thread and thread block identifer, respectively. In
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Figure 3: Motivation for Coordinated Cache Bypassing using SPV application.

contrast, some of the accesses may inherently have bad locali-
ties such as those used for reading and writing streaming data.
Finally, there are some accesses that have neither good nor
bad localities. We refer them as medium localities accesses.

Static cache bypassing component first detects all the global
load instructions. On our target platform, the global load
instruction in PTX is in the following format,

ld.global.l1_cache_tag. ..., ...,

where l1_cache_tag field is used to specify the cache option.
Natively, there exists two options for l1_cache_tag: ca and
cg. If a global load is tagged with ca, then all the threads
of the kernel will use the cache when executing the load. If
a global load is tagged with cg, then all the threads of the
kernel will bypass the cache when executing the load. Here,
we extend the global load instructions with a third option,
called cm, for the loads with medium localities. Static cache
bypassing component classifies all the global loads into three
categories: ca, cg, and cm, and encodes the classification into
the global load instruction as shown in Figure 2. We use ca
for the instructions with good locality; cg for the instructions
with bad locality; cm for the instructions with medium locality.
Section 4 provides the implementation details of static cache
bypassing component.

3.2. Dynamic Cache Bypassing Overview

Dynamic cache bypassing component first decodes the clas-
sification for global loads encoded by static cache bypassing
component. For the global loads tagged with ca or cg, it hon-
ors the decision made at compile-time. However, we leave the
cache or bypass decisions for the global loads tagged with cm
to dynamic cache bypassing at run-time. The goal of dynamic
cache bypassing is to strike a balance between caching and
bypassing — let some of the threads bypass the cache to mit-
igate the cache contention and resource congestion, and the
other threads still use the cache to exploit the data localities.

In CUDA programming model, the threads within a warp
are executed in lockstep. If the threads in a warp take different
latencies to fetch data (e.g., cache and bypass differently), then
the warp has to be stalled until the longest memory request
completes. In addition, GPU applications often use barrier

instructions to synchronize the threads in the same thread
block. If the threads take different time to reach the barrier
due to different cache or bypass behaviors, the earlier threads
have to wait for the later threads to move forward together. In
both scenarios, performance will be degraded as the resources
occupied by the waiting threads are idle. Thus, we choose to
modulate the threads that cache or bypass at thread block level
to ensure that the threads in the same thread block have the
same cache or bypass behavior.

To distinguish the cache and bypass thread blocks, each
thread block is assigned with a tag when it is dispatched. We
use tags ba or bg. If a thread block is tagged with ba, then
all the threads in it will use cache when executing the global
loads tagged with cm. If a thread block is tagged with bg,
then all the threads in it will bypass the cache when executing
the global loads tagged with cm. Once a GPU core fetches
a global load, it determines its behavior based on the global
load tag and current thread block tag as illustrated by Table 1.

Table 1: Instruction Behavior

Global Load Block Cache or
Tag Tag Bypass

ca
ba cache
bg cache

cg
ba bypass
bg bypass

cm
ba cache
bg bypass

We use T Bmax to denote the maximum number of thread
blocks that can execute simultaneously on an SM. T Bmax is
determined by the resource usage per thread block and the
available resource of an SM [1]. We use T Bba and T Bbg to
denote the number of active thread blocks that are tagged with
ba and bg at run-time, respectively. Based on the definition,
we have T Bba +T Bbg = T Bmax. 3. Dynamic cache bypassing
component adjusts the T Bbg at run-time and determines the tag
for each thread block. For example, in Figure 2, thread blocks
2, 3, 4, and 5 are tagged with bg and thread blocks 0 and 1 are

3For the last round of thread blocks execution, T Bba +T Bbg ≤ T Bmax
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tagged with ba. Section 5 provides the implementation details
of dynamic cache bypassing component.

3.3. Motivation

We illustrate the benefit of coordinated cache bypassing using
application SPV. Figure 3 (a) shows the L1 cache hit rates
for all the global loads in SPV through profiling. There are
10 global loads in total. Among all the loads, ld8 has very
high cache hit rate (> 99%) and thus we classify it as good
locality load (tag ca). However, ld1, ld2, ld4, ld5, ld7, and
ld10 have very low cache hit rate (< 1%) and thus we classify
them as bad locality loads (tag cg). For the remaining loads
(ld3, ld6, ld9), we classify them as medium locality loads
(tag cm). Figure 3 (b) shows the performance by varying the
T Bbg from 0 to 8 (T bmax is 8 for SPV). The performance is
normalized to the default setting, where all the global loads
use the cache. Clearly, our coordinated cache bypassing has
high potential for performance improvement. For the leftmost
point in Figure 3 (b), where all the global loads use the cache
except the loads tagged with cg (bad locality), it already gives
about 1.1X speedup. By varying the T Bbg, the performance
can be further accelerated to 1.2X speedup (T Bbg = 6). Note
that, in this experiment, we fix the T Bbg throughout the kernel
execution. But in our dynamic cache bypassing, we can adjust
the T Bbg during the kernel execution at run-time.

4. Implementation of Static Bypassing
In this section, we present the implementation details of our
static cache bypassing component. The goal of static cache
bypassing is to classify the global loads into three categories,
good, bad, and medium localities. Intuitively, the global loads
with high cache hit rates have good locality (tag ca), while the
global loads with low cache hit rates have bad locality (tag cg).
The rest of the global loads have medium locality (tag cm).

For a GPU application with N global loads, we use ldi to
denote the ith global load in the program order. Our static
bypassing component first analyzes the PTX code of GPU
kernels and constructs the kernel control flow graph (CFG).
Then, we extend the CFG to load control flow graph (LCFG).
More clearly, in LCFG, each node represents a global load.
A basic block in CFG will be splitted into multiple nodes in
LCFG if it contains multiple loads, each node corresponding
to one load. Then, we connect the splitted nodes with control
flow edges one by one. After that, we replace a basic block
with a dummy node if it does not contain any load.

Next, we annotate LCFG with some important high-level
program information. First, each load is associated with an
access destination, which indicates the data array it loads
from. Second, parallel programs often design cooperative
algorithms between threads through synchronization barriers.
We insert a sync node between two nodes in LCFG if there
exists synchronization between them in the source CUDA
program. Finally, we add one backward edge from the last
node to the first node. This is because in multi-thread GPU
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Figure 4: Annotated Load Control Flow Graph. Loads to the
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programs, a new thread block will be dispatched when a thread
block retires. Figure 4 (a) shows an example of LCFG. In this
example, LCFG contains nine loads that access four different
arrays. It also contains two loops, and one synchronization
barrier between ld8 and ld9.

The data brought into cache by one load may be later refer-
enced by other loads. Using LCFG, we can identify the loads
that have inter-instruction locality. For the applications we
study, there is no aliasing between data arrays. Thus, only the
loads to the same data array may have inter-instruction locality.
More importantly, through empirical experiments, we find that
it is unlikely for two loads to enjoy inter-instruction locality if
there exist loops or synchronization in between. It is because
that loops will issue a large number of loads iteratively and
synchronization requests all the threads in a thread block to
issue the loads before the barrier. In either case, the cache
content might be flushed by the execution of a large number of
loads. Hence, in our analysis, we assume that two loads have
the opportunities for inter-instruction locality if they access
the same data array and there exists at least one path in LCFG
between them that does not have loops and synchronization.

Then, we build inter-instruction locality graph G = (V,E).
The node vi ∈V represents ldi. Nodes vi and v j are connected
via an undirect edge if they have inter-instruction locality op-
portunities. Then, we find all the connected components in
G. The connected components can be obtained using poly-
nomial time breadth first search. Each connected component
is considered as a group. Figure 4 (b) shows the connected
components of the LCFG in Figure 4 (a). In this example, it
divides the loads in LCFG into seven groups.

We use the following metrics to characterize the intra-
instruction locality for each load and inter-instruction locality
for each group (e.g. connected component in G).
• access(i): the number of accesses of ldi.
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• hit(i): the number of L1 cache hits of ldi when ldi has
exclusive use of cache.

• hit(g): the number of L1 cache hits of group g when the
loads in group g have exclusive use of cache.

We obtain these metrics through profiling. More clearly, we
collect access(i) and hit(i) by using ca tag for ldi and cg tags
for the rest of global loads. Similarly, we collect the hit(g) by
using ca tags for the loads in group g and cg tags for the rest
of global loads. This profiling interface has been supported in
recent GPUs such as Kepler GTX680.

Finally, we classify the global loads into three categories.
The global loads classification algorithm is detailed in Al-
gorithm 1. We first build the inter-instruction locality graph
G = (V,E) from LCFG. Then, for each group, we compute
the extra cache hits if the inter-instruction locality of the group
is exploited. Then, for each v ∈ G, we compute the potential
cache hits gained by caching v (line 7). This includes the
hits of v and the average extra cache hits per node. Then,
we use two thresholds HighT hres and LowT hres to divide the
global loads into three categories. In this paper, we empirically
choose 0.7 for HighT hres and 0.3 for LowT hres.

Algorithm 1: Global Loads Classification Algorithm
Build inter-instruction locality graph G(V,E) from LCFG ;1
foreach g ∈ G do2

extra(g) = hit(g)−∑v∈g hit(v)3

end4
foreach v ∈V do5

Let v belong to group g ;6

Hit = hit(v)+ extra(v)
size(g) ;7

if Hit ≥ HighT hres×access(v) then8
L1_cache_tag← ca;9

else if Hit ≤ LowT hres×access(v) then10
L1_cache_tag← cg;11

else12
L1_cache_tag← cm;13

endif14

endfch15

We use profile-based static analysis to characterize the lo-
calities of loads and divide them into three main categories.
Overall, the profiling overhead is very small (see experiment
section). In this work, we use different inputs for profiling and
evaluation. As we will show in the experiments, our profile-
based static analysis can accurately characterize the behavior
of loads. But for the applications that have unpredictable be-
haviors, a more detailed profiling may be necessary. We leave
it as future work.

5. Implementation of Dynamic Bypassing

Dynamic cache bypassing aims to balance the caching and
bypassing at run-time by adjusting the number of active thread
blocks that use cache (T Bba) and the number of active thread

blocks that bypass cache (T Bbg). To achieve this goal, it
leverages online learning. The learning process consists of
three steps as follows,
• Step 1. Set an initial value for T Bbg when the kernel starts

execution.
• Step 2. Start the timer when there are T Bbg active thread

blocks tagged with bg and keep T Bbg unchanged for a sam-
pling period P.
• Step 3. Compare the performance metric of the current

sampling period with that of histories and update T Bbg.
Initially, we set T Bbg = T Bmax. Then, we iteratively execute
step 2 and 3 until all the thread blocks are executed.

In Step 2, we start the timer only when the number of active
thread blocks tagged with bg is the target number (T Bbg). We
use the lifetime of a thread block as the sampling period due
to the discrete nature of grid execution. This also ensures that
a thread block does not change its tag during the execution
and avoids the memory divergence problem due to different
cache or bypass behaviors.

In Step 3, we first define the Cache Hit Stall Score (CHSS)
as the performance metric and then use it in online learning to
adjust T Bbg. CHSS is defined as follows,

CHSS =
Hits ·L2_Latency
Stall ·WarpCount

(1)

More clearly, CHSS is a function of the number of L1 cache
hits (Hits), pipeline stall (Stall) caused by L1 cache conges-
tion, and active warps (WarpCount). L2_Latency is a constant,
which denotes the latency of L2 cache access. Cache bypass-
ing improves performance by mitigating the cache contention
and pipeline stall. CHSS considers both the latency saved by
cache hits (Hits ·L2_Latency) and the latency paid for pipeline
stall (Stall ·WarpCount). Ideally, we want to maximize the
cache hits and minimize the stall together. Thus, we seek a
T Bbg value to make CHSS as large as possible.

In order to do that, we maintain a CHSS table CHSS[],
where CHSS[a] gives the achieved CHSS value for the sam-
pling period where T Bbg = a. At the end of Step 3, CHSS[]
table (entry CHSS[T Bbg]) is updated using the CHSS value
collected for the current period. Then, we determine the T Bbg
for the next sampling period by comparing CHSS[T Bbg] with
its neighbors CHSS[T Bbg +1] and CHSS[T Bbg−1],

T Bbg =

 T Bbg +1, if CHSS[T Bbg +1] is the maximal
T Bbg, if CHSS[T Bbg] is the maximal
T Bbg−1, if CHSS[T Bbg−1] is the maximal

Next, we illustrate how to determine the tags (bg or ba) for
each thread block. When a thread block is dispatched, we first
compute Curbg, the number of active thread blocks that are
tagged with bg. Note that Curbg may be different from the
target T Bbg as thread blocks are dispatched and committed on
the fly. Let us use tag[bid] to denote the tag assigned to thread
block bid (thread block identifier). We determine tag[bid] by
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comparing the Curbg with the target T Bbg as follows,

tag[bid] =
{

bg, if Curbg < T Bbg
ba, otherwise (2)

Figure 5 illustrates the sampling period, T Bbg update and
tag assignment to each thread block using an example. In this
example, we assume T Bmax = 4. Initially, we set T Bbg = 4.
Thus, the first four thread blocks are all tagged with bg. We
start the timer for the first period at t1 as there are exactly 4
thread blocks that are tagged with bg at t1. Before a sampling
period (the lifetime of thread block 3) elapses, thread blocks 0,
1, 2 are committed and thread blocks 4, 5, and 6 are dispatched.
When thread block 4 starts, there are three blocks tagged with
bg (thread blocks 1, 2, 3). Thus, Curbg = 3. Then, according
to Equation 2, the tag of thread block 4 is set to bg. Similarly,
the tags of thread blocks 5 and 6 are set to bg, too. After the
first sampling period, T Bbg is changed to 3. Then, according
to Equation 2, the tag of thread block 7 is set to ba. Steps
2 and 3 are repeated until all the thread blocks are executed.
Note that after the second sampling period, T Bbg is changed
to 2 and we start the timer for the next sampling period at t4
as there are two thread blocks (thread block 11 and 12) tagged
with bg at t4.

Finally, we propose two different approaches with tradeoff
in learning cost and flexility. One is centralized control and
another one is decentralized control as shown in Figure 6. In
centralized control, only SM0 performs online learning and
broadcasts its decision (T Bbg) to the other SMs. All the SMs
modulate the thread blocks in the same way. In decentralized
control, each SM performs learning individually. Given a GPU
application, its thread blocks are dispatched to SMs in a round-
robin manner. SMs may have different workloads as thread
blocks may have different computation and memory behaviors.
Compared to centralized control, decentralized control allows
flexible adjustment for different SMs but at expense of higher
learning cost. We will compare these two approaches in the
experiment section.

Hardware Implementation Overhead. Dynamic cache
bypassing component requires small hardware changes. First,
on GPUs, the number of simultaneously active thread blocks,
T Bmax is limited (e.g. 8). The size of CHSS[] table is T Bmax +
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Figure 6: Centralized control vs decentralized control.

1. Thus, the CHSS[] table only requires 72 bytes. Second, for
each thread block, we only need one extra bit for its tag (ba
or bg). In fact, we only need to allocate extra T Bmax bits per
SM, where each bit represents the tag for one active thread
block. Finally, two extra 4-bit registers are required: one for
Curbg and another one for T Bbg. Curbg is updated when thread
blocks tagged with bg are retired or dispatched.

6. Experiments

We implement our coordinated static and dynamic cache by-
passing optimization framework based on GPGPU-sim [4]
(version 3.2.1) using the configurations in Table 2. We eval-
uate our technique using a wide range of applications. We
have examined all the applications in Parboil [41] and Ro-
dinia [5], and some applications from PolyBench [15] and
MapReduce [16]. Note that the evaluated applications are
also used in the state-of-the-art GPU cache management tech-
niques [19, 23, 34, 39, 46]. In general, applications can be
categorized into two categories: cache sensitive and cache
insensitive applications. For cache insensitive applications,
they have much less number of memory instructions than com-
puting instructions. The details of the applications are shown
in Table 3. For each application, we simulate to the end of its
execution.

Table 2: GPGPU-Sim Configuration

# Compute Units (SM) 15
SM configuration 32 cores, 700MHz

Resource per SM
Max 1536 threads, Max 8 thread
blocks, 48KB shared memory, 32K
registers

Scheduler 2 warp schedulers per SM, RR policy

L1 Data Cache
16/32/48KB, 128B block, LRU re-
placement policy, 32 MSHR entries

L2 Unified Cache
6 banks, 128KB/bank, 16-way, 128B
block

Our static bypassing component characterizes the localities
of loads and categorizes them into three categories, good local-
ity (tag ca), bad locality (tag cg), and medium locality (tag cm)
based on profiling. The profiling overhead is very small for
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Table 3: Application Characteristics

Cache Sensitive Applications
Application Characteristics Profiling Input Evaluation Input

Application Suite abbr.
# ca/cm/cg

Loads
Input Size # inst Input Size # inst

bfs Rodinia [5] BFS 1/7/0 65K nodes 0.9M 1M nodes 41M
backprop Rodinia [5] BKP 5/2/5 32768 36M 65536 72M

cfd Rodinia [5] CFD 1/19/21 193K 120M 0.2M 150M
convolution Polybench [15] CVR 0/10/0 7.9M 47M 9.4M 96M

gemm Polybench [15] GEM 3/0/0 512*512*256 0.7B 512*512*128 0.4B
gram Polybench [15] GRM 0/5/0 128*65536 0.3B 64*65536 0.2B

histogram Parboil [41] HIS 0/17/0 20 15M 10000 15M
hotspot Rodinia [5] HSC 0/0/2 1024 0.44B 512 0.11B
lud-int Rodinia [5] LUI 0/3/0 128 1.3M 256 5.9M
needle1 Rodinia [5] NW1 0/0/18 4096 3.2M 8192 6.4M
needle2 Rodinia [5] NW2 0/0/19 4096 3.2M 8192 6.5M
pvc-map MapReduce [16] PVM 0/7/0 270K 0.4M 1.2M 0.8M
pvc-copy MapReduce [16] PVC 0/3/0 270K 2.2M 1.2M 2.9M

spmv Parboil [41] SPV 0/3/7 2M 5.2M 60M 83M
srad2 Rodinia [5] SRD 4/5/0 1024*2048 37M 2048*2048 74M
ssc-bit MapReduce [16] SSB 0/6/0 256*128 3.7M 512*128 4.6M

ssc-copy MapReduce [16] SSC 0/1/2 256*128 2.8M 512*128 6.2M
stencil Parboil [41] STE 0/0/12 128*128*32 27M 512*512*64 91M

streamcluster Rodinia [5] SCK 0/9/0 32768*65546 77M 65536*65536 0.15B
3d-convolution Polybench [15] 3DC 5/5/1 1024*512*512 20M 512*512*512 20M

Cache Insensitive Applications
cutcp Parboil [41] CUT 0/2/0 405K 0.15B 6.5M 0.6B

gaussian Rodinia [5] GAU 1/3/0 matrix4 6.2K matrix16 6.4K
lbm Parboil [41] LBM 0/0/20 1*4.1M 0.56B 1000*4.1M 0.56B

mri-q Parboil [41] MRQ 0/0/5 32*32*32 0.61B 64*64*64 48B
pathfinder Rodinia [5] PAT 0/0/3 20000*100*20 26M 100000*100*20 0.13B

sad Parboil [41] SAD 1/0/0 50K 5.6M 4M 0.45B
sgemm Parboil [41] SGM 0/0/18 225K 0.1M 15M 4.9B
srad1 Rodinia [5] SRA 1/0/0 256*128 7.6M 520*458 14M
tpacf Parboil [41] TPA 0/6/0 10391 14B 487 4.1B

all the applications. It ranges from a few milliseconds to one
second. We evaluate our technique using different profiling
and evaluation inputs. The inputs used in the experiments are
described in Table 3. As shown, different problem sizes are
used for profiling and evaluation. Table 3 also gives the total
number of global loads and the number of global loads in each
category for every application. Clearly, different applications
have different distributions of global loads. For example, ap-
plication GEM has good localities throughout the program.
Thus, all of its loads are tagged with ca. In contrast, HSC
consistently prefers bypassing and all loads are tagged with
cg. For application CFD, its loads exhibit diverse behaviors
and are divided into multiple categories.

In the following, we perform five sets of experiments to
evaluate our coordinated cache bypassing technique. In Sec-
tion 5, we propose two dynamic cache bypassing mechanisms.
We use the centralized control as the default mechanism in the
experiments. First, we demonstrate the performance benefit
of coordinated cache bypassing for 16KB data cache. Second,

we compare coordinated cache bypassing with the state-of-the-
art bypassing techniques [19, 46], two-level thread schedul-
ing policy [34], cache-aware thread parallelism management
technique [23], and cache-conscious wavefront scheduling
(CCWS) technique [39]. Third, we evaluate coordinated cache
bypassing using different cache sizes. Fourth, we compare
two different dynamic bypassing mechanisms. Finally, we
show how the T Bbg is modulated over time.

6.1. Performance Results

Figure 7 shows the IPC improvement of static cache bypassing
alone, dynamic cache bypassing alone, and coordinated cache
bypassing for cache sensitive applications for 16KB cache.
The baseline is the default setting, where all the global loads
use the L1 data cache. In static cache bypassing alone, all the
loads tagged with cm and ca use the L1 data cache, while the
loads tagged with cg bypass the L1 data cache; the dynamic
component is disabled. In dynamic cache bypassing alone, the
ratio of thread blocks that use or bypass cache are adjusted
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Figure 7: Performance Results for Cache Sensitive Applications on 16KB Cache.
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Figure 8: L1 Cache Hit Rate Improvement (16KB).
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Figure 9: Reduction on Pipeline Stall Caused by L1 Cache
Congestion (16KB).

at run-time for all the loads. In other words, all the loads are
considered as medium locality loads (tag cm). Static alone,
dynamic alone, and coordinated bypassing achieve average
1.13X, 1.28X, and 1.32X performance speedup, respectively.

Static bypassing alone performs well for the applications
that only have loads tagged with cg. For example, all loads
in HSC, NW1, NW2, and STE are tagged with cg. Bypass-
ing these bad locality loads, static bypassing achieves better
performance than the default setting. Applications that have
cm loads desire fine-gained and adaptive dynamic bypassing.
For example, PVC only contains cm loads and it does not
benefit from static bypassing, but dynamic bypassing effec-
tively boosts its performance to 2.28X. We notice that dynamic
bypassing may slightly degrade the performance (3.1% for
BKP, 5.6% for GEM) due to the learning cost. For these two
applications, the initial value used for T Bbg (T Bmax ) is not
optimal, the learning process takes some time to adjust T Bbg.
In general, coordinated cache bypassing combines the benefits
of static and dynamic bypassing. It performs consistently well
for all of the applications.

Coordinated cache bypassing improves performance by mit-
igating the cache contention, pipeline stall, or a combination
of the two. Here, we support this argument with quantitative
experiments. Figure 8 shows the cache hit rate improvement
and Figure 9 shows the pipeline stall reduction due to the
L1 cache congestion for 16KB cache, respectively. Cache
hit rate improvement is calculated as hit_a f ter−hit_be f ore,
where hit_a f ter(hit_be f ore) is the cache hit rate after (be-
fore) coordinated cache bypassing. Overall, coordinated cache
bypassing improves the cache hit rate by 23.6% and reduces
the pipeline stall by 36.5%.

For applications HIS, CVR, STE, PVM, HSC, NW2, and
SSC, cache bypassing can not improve their cache hit rates
as they inherently have poor localities. The performance im-
provements are attributed to the pipeline stall reduction. These
applications have high number of L1 cache misses and every
cache miss requests an entry in the MSHR table as shown
in Figure 1. If there is no free entry in the MSHR table, the
memory stage is stalled. Thus, high number of L1 cache
misses subsequently leads to serious MSHR congestion and
thus pipeline stall. Cache bypassing can effectively alleviate
the MSHR congestion and pipeline stall by forwarding the
memory requests to L2 cache directly.

For applications SPV, BFS, LUI, CFD, SRD, and PVC, their
loads have good or medium localities. However, without cache
bypassing, they suffer from low L1 cache hit rate due to cache
contention. Coordinated cache bypassing reduces cache con-
tention by bypassing the bad locality loads and adjusting the
number of thread blocks that use the L1 data cache. Thus,
for these applications, L1 cache hit rates are effectively im-
proved as shown in Figure 8. As L1 cache hit rates improve,
the number of L1 cache misses are reduced. This may subse-
quently alleviate the MSHR congestion. For application PVC,
its high performance speedup is attributed to both cache hit
improvement and pipeline stall reduction.

We also evaluate coordinated bypassing for the cache insen-
sitive applications in Table 3. Coordinated cache bypassing
only improves the performance by 0.94% for 16KB cache on
average. This is expected as in general cache optimization
techniques have little impact on them.
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Figure 10: Performance Comparison with State-of-the-art Optimization Techniques.

6.2. Comparison to the State-of-the-art Techniques

In this subsection, we compare our technique with the state-
of-the-art GPU cache management techniques.

Instruction-level Bypassing. Instruction-level bypassing
techniques which determine the cache or bypass behavior for
each global load instruction at compile-time are proposed
in [18, 46]. We compare with the heuristic algorithm in [46].
It is shown that the heuristic algorithm gives comparable per-
formance to the optimal algorithm.

Access-level Bypassing. Access-level bypassing triggers
bypassing when cache associativity stall is encountered [19].
In [19], request reordering is used together with cache by-
passing. However, request reordering requires extra hardware
resource (a few KB SRAM). Thus, for a fair comparison, we
only compare with the cache bypassing component.

Two-level Scheduler. A two-level thread scheduler is de-
scribed in [34]. In their technique, the ready warps are di-
vided into different groups. Then, the scheduler prioritizes the
groups by scheduling the warps only from one group until all
the warps in it are stalled.

Optimal-TLP. It is shown that the maximal thread level
parallelism (TLP) may not lead to the best performance due
to the cache contention problem [23]. By allocating fewer
thread blocks, cache contention is reduced and thus perfor-
mance can be improved. We compare with the Optimal-TLP
solution in [23], which is obtained via exhaustively testing all
the possible thread block allocations.

CCWS-Best-SWL. Cache-conscious warp scheduler
(CCWS) is proposed to improve the intra-block cache local-
ity [39]. In [39], two schedulers are proposed: a static optimal
wavefront limiting (SWL) scheduler and a victim cache-based
scheduler. We choose to compare with SWL scheduler as it
gives better performance. We use greedy-then-oldest (GTO)
policy in SWL as shown in [39].

The baseline scheduler is the round-robin scheduler. We use
it with our Coordinated Bypassing, Instruction-level Bypass-
ing, Access-level Bypassing, and Optimal-TLP. For Two-level
Scheduler and CCWS-Best-SWL, we use the scheduling poli-
cies specified above.

Figure 10 shows the normalized IPC for all the techniques.
The baseline setting is the default setting, where all the global

loads use cache. On average, the performance speedups of
Instruction-level Bypassing, Access-level Bypassing, Two-level
scheduler, Optimal-TLP, CCWS-Best-SWL, and Coordinated
Bypassing are 1.11X, 1.17X, 1.04X 1.09X, 1.15X, and 1.32X,
respectively.

Discussion. Instruction-level bypassing is a coarse-grained
technique. It mainly benefits applications that consist of global
loads tagged with ca and cg. However, for the applications
with cm loads such as PVC, SRD, and SCK, there is little
performance improvement. Coordinated approach improves
instruction-level bypassing as it identifies medium locality
loads and allows a fraction of threads to use cache for them.
Access-level bypassing is a fine-grained technique. However,
it lacks of a global view of locality. Such locality oblivious
approach may lead to poor bypassing decision. For example,
Access-level bypassing gives negative performance improve-
ment for BKP and GEM as it chooses to bypass the loads with
good localities. In contrast, Coordinated approach classifies
the loads through compile-time analysis. This guarantees that
it will not bypass the loads with good localities.

Two-level and CCWS-Best-SWL aim to improve intra-block
access locality by either prioritizing the threads or limiting
the number of active warps. Optimal-TLP reduces the cache
contention at the expense of less number of thread blocks.
However, all of them do not analyze the localities of loads.
Thus, they may fail to improve the performance for the ap-
plications with poor localities. For example, all the three
approaches give no gain for application HSC. In contrast, co-
ordinated bypassing relies on static analysis to filter out the
poor localities loads (tagged with cg) and this helps to reduce
the cache contention and related pipeline stall. More impor-
tantly, limiting the number of active warps (CCWS-Best-SWL)
or thread blocks (Optimal-TLP) may lead to low resource uti-
lization and thread level parallelism. For example, for SSC,
Optimal-TLP approach achieves 1.56X speedup by allocating
only one thread block. However, the maximum number of
allowed simultaneous thread blocks for SSC is 8. Thus, only
1/8 of the computing resources are utilized in Optimal-TLP.
On average, the ratio of allocated thread blocks to maximum
thread blocks for Optimal-TLP is 66%, which implies low
computing resources utilization. In contrast, Coordinated ap-
proach does not penalize the thread level parallelism. Using
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Figure 11: Performance Results for Different Size of Caches.

cache for a fraction of threads and let the rest bypass cache,
coordinated bypassing not only reduces the cache contention,
but also maintains the high thread level parallelism of GPU ap-
plications. For application SSC, Coordinated approach gives
2.08X speedup. Finally, as indicated in [23, 39], Optimal-TLP
and CCWS-Best-SWL are used as performance improvement
upper bounds. In reality, they are impractical solutions as they
rely on exhaustive evaluation.

6.3. Sensitivity to Different Size of Caches

Figure 11 shows the performance speedup of coordinated
bypassing for different size of caches. It achieves average
1.32X, 1.21X, and 1.11X speedup for 16KB, 32KB, and 48KB
caches, respectively. We observe that the speedup over the
baseline setting diminishes as the cache size increases. This is
because a larger cache leads to larger per-thread cache capacity
and less cache contention. For example, for applications HSC
and 3DC, their working set can fit into 32KB and 48KB caches,
and thus our coordinate bypassing does not give any speedup
for them.

However, large caches do not solve all the problems. For
example, applications (PVM and SSB) have intrinsic poor
temporal localities and larger caches do not help to improve
the cache hit rate and performance. But cache bypassing
is useful for them as it can help to reduce the pipeline stall.
Furthermore, large caches not only increases the access latency
and power consumption, but also implies less area for other
hardware components given the area limitation. For example,
NVIDIA Fermi and Kepler architectures use unified cache
and shared memory design. In this unified design, cache
size increase means shared memory size decrease. However,
this may hurt the performance as there might be fewer active
thread blocks executing concurrently when the shared memory
size decreases. In contrast, cache bypassing improves the
performance by maintaining the shared memory capacity and
the thread level parallelism.

6.4. Centralized vs Decentralized Control

In Section 5, we propose two dynamic cache bypassing mecha-
nisms. One is centralized control and another one is decentral-

ized control. Centralized control has low learning cost while
decentralized control provides flexibility for different SMs.
We compare these two mechanisms on a typical 16KB L1 data
cache for all the cache sensitive applications. On average,
centralized control performs slightly better than decentralized
control (3.2%) due to its lower learning cost.

6.5. Thread Block Modulation

Figure 12 shows how T Bbg is modulated over time in coordi-
nated bypassing with two examples. Initially, T Bbg is set to
T Bmax. During run-time, T Bbg is dynamically adjusted.
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Figure 12: T Bbg Modulation

7. Related Work
GPUs have been widely adopted to accelerate general-
purposed applications. However, fully utilizing the perfor-
mance potential of GPUs is not a trivial task. Significant hur-
dle lies in the performance tuning. The state-of-the-art of GPU
performance modeling and optimization techniques include
performance modeling [3, 17, 35], control flow divergence
optimizations [7, 9, 32, 37, 38], resource utilization improve-
ment through multitasking [2, 29, 36], data layout transforma-
tions [30, 42], and on-chip memory designs [13, 14, 28].

Among all the optimization techniques, memory system
optimizations are increasingly important as more and more
general purpose applications with diverse and irregular mem-
ory access patterns are ported to GPUs. Thread scheduling
policies are optimized in [12, 20, 34] to preserve the temporal
locality. Thread level parallelism management techniques are
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discussed in [23, 39, 40]. They alleviate memory pressure by
thread/warp throttling. Memory scheduling policy [33] and
data prefetching [21, 27] are also studied in the literature.

Cache bypassing that aims to selectively bypass memory
requests is an effective technique to mitigate the cache con-
tention and cache related resource congestion. Both static [45]
and dynamic approaches [22, 25, 26, 31, 43, 44] are proposed
for general purpose processors. The techniques for CPUs
mainly use cache hit rate as the guidance performance model
for cache bypassing. However, on GPUs, cache hit rate based
models do not always predict the performance well due to the
distinct architecture features including massive parallelism,
resource congestion, and memory divergence [6, 18, 33].

A few recent studies have explored cache bypassing for
GPUs. Instruction-level cache bypassing techniques that ana-
lyze the data access patterns of loads and estimate the memory
traffic at compile-time are proposed in [18, 46]. However,
their techniques only allow global loads to either use cache for
all the threads or bypass cache for all the threads. In contrast,
our coordinated bypassing introduces medium locality loads
and has the flexibility to use cache for a fraction of threads.
A dynamic approach that leverages on requests reordering
and access-level bypassing is described in [19]. Requests re-
ordering buffers the recent accesses and allows rearrangement
in service sequence. Cache bypassing is triggered by cache
associativity stall. However, such cache bypassing ignores
data locality and may bypass the data with potential good
localities. In contrast, our coordinated cache bypassing has a
global view on data locality and this ensures that it will not
bypass the data with good locality. Moreover, our coordinated
cache bypassing can work together with the request reordering
technique in [19]. Recently, Chen et al. [6] propose an adap-
tive cache management technique by combining the protect
distance-based cache bypassing [8] and thread throttling [39]
to improve the cache performance. Similar to our findings,
they also demonstrate that cache bypassing can effectively
mitigate cache pressure with less penalty on thread level paral-
lelism compared to the pure thread throttling technique [39].
In contrast, our coordinated cache bypassing alleviates cache
contention by statically identifying and bypassing the bad lo-
calities loads and dynamically adjust the thread blocks that use
the cache for medium localities loads. Compared to [6], our
coordinated cache bypassing can further improve the thread
level parallelism and thus performance without thread throt-
tling. Finally, their cache hit rate based cache bypassing and
thread throttling technique requires complex hardware exten-
sion while our technique can be implemented with very small
hardware change.

8. Conclusion
GPUs are increasingly important for performance acceleration
due to their tremendous computing power. Recent GPUs
have adopted caches to improve the memory performance for
general purpose applications with irregular memory access

patterns. However, GPU applications often fail to benefit from
caches due to the cache contention and resource congestion
caused by the massive thread parallelism.

In this paper, we propose a coordinated static and dynamic
cache bypassing optimization framework. At compile-time,
coordinated cache bypassing classifies the global loads into
three categories through profiling and encodes the classifi-
cation into instructions. The classification provides global
locality hints to the hardware. At run-time, coordinated cache
bypassing dynamically adjusts the ratio of thread blocks that
use cache to reduce cache contention and pipeline stall. The
experiments demonstrate that coordinated cache bypassing
achieves substantial performance improvement for a vari-
ety of GPU applications. Compared to the state-of-the-art
instruction-level and access-level cache bypassing techniques,
our technique increases the performance speedup from 1.11X
and 1.17X to 1.32X. Compared to the state-of-the-art two-
level thread scheduling policy, cache-aware thread parallelism
management technique, and cache-aware thread scheduling
technique, coordinated cache bypassing increases the perfor-
mance speedup from 1.04X, 1.09X, and 1.15X to 1.32X.
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