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ABSTRACT
Iterative stencil algorithms find applications in a wide range
of domains. FPGAs have long been adopted for computa-
tion acceleration due to its advantages of dedicated hard-
ware design. Hence, FPGAs are a compelling alternative
for executing iterative stencil algorithms. However, efficient
implementation of iterative stencil algorithms on FPGAs is
very challenging due to the data dependencies between iter-
ations and elements in the stencil algorithms, programming
hurdle of FPGAs, and large design space.

In this paper, we present a comprehensive framework that
synthesizes iterative stencil algorithms on FPGAs efficiently.
We leverage the OpenCL-to-FPGA toolchain to generate
accelerator automatically and perform design space explo-
ration at the high level. We propose to bridge the neigh-
boring tiles through pipe and enable data sharing among
them to improve computation efficiency. Then, we extend
the equal tile size design to a heterogeneous design with dif-
ferent tile size to balance the computation among different
tiles. We also develop analytical performance models to ex-
plore the complex design space. Experiments using a wide
range of stencil applications demonstrate that on average our
heterogeneous implementations achieve 1.65X performance
speedup but with less hardware resource compared to the
state-of-the-art.

1. INTRODUCTION
Iterative stencil applications are widely employed in a va-

riety of different fields of application, ranging from high-
performance scientific computing, image processing, and med-
ical computing [1, 2, 3]. In general, the stencil algorithms
are iteratively invoked until the desired number of iterations
has been performed. The stencil algorithms are often struc-
tured in a way that each processing step operates on all the
array elements and each array element is updated following
a stencil update function using the neighboring elements.

As technology scaling is nearing the end, the specialized
hardware accelerator is a promising solution to cope with
the continuous demand for high performance and energy ef-
ficiency of stencil algorithms. FPGAs provides hardware
performance with general programmability. Designers can
create dedicated pipelines with parallel processing elements,
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Figure 1: Comparison of Different Designs.
customized bit width, etc. on FGPAs. More importantly,
the FPGA design cost can be reduced by raising the pro-
gramming abstraction from tedious RTL programming to
high-level programming such as C, C++ [4, 5, 6, 7]. There-
fore, there is a rapid increase in popularity of using FPGAs
as accelerators. For example, Microsoft deployed FPGA-
accelerated nodes to accelerate the Bing search service [8];
Baidu uses FPGAs to speed up the deep learning models [9];
JP Morgan uses FPGAs to accelerate risk analysis.

While of benefits of FPGA is clear, it is very challeng-
ing to design an efficient implementation of iterative stencil
algorithms on FPGAs. In general, efficient implementation
requires a thorough understanding of both application algo-
rithm and hardware platform. On the application side, the
stencil algorithms contain strict data dependencies across
iterations and elements. On the hardware side, there ex-
ist different implementation choices exhibiting performance
and hardware area trade-offs.

Iterative stencil algorithms inherently incur large memory
transfer overhead due to the global memory synchronization
after each iteration. To alleviate the global memory synchro-
nization overhead, Nacci et al. [10] recently propose to fuse
multiple iterations together for a tile and compute multiple
tiles in parallel. As shown in Figure 1(a), for a tile compu-
tation, multiple iterations are fused to a cone. This design
helps to reduce the global memory transfer as the interme-
diate data required by the cone can be accommodated on-
chip. To ensure the data dependency, we have to surround
the tile with extra elements required in the stencil pattern
as shown in Figure 1(a). Thus, the actual area of compu-
tation for each tile is greater than the tile size as shown in
Figure 1(b). Since each tile has its own cone, multiple tiles
can be processed in parallel.

The iteration fusion based design is appealing. However,
the overlapped region among neighboring tiles introduce re-
dundant computations as shown in Figure 1(b) and the amount
of the redundant computations increases with the depth of
the cone and dimension of the stencils (e.g. 3D stencil).
Therefore, in reality, the redundant computation may offset
the reduction of global memory transfer and synchroniza-
tion. In this paper, we propose to bridge the neighboring
tiles through pipes and enable data sharing among them
to reduce the redundant computation as illustrated in Fig-
ure 1(c). Each tile performs its own computation and uses
pipes to share the common data with its neighboring tiles.
This greatly reduces the redundant computation and saves



Figure 2: OpenCL programming model mapping to FPGA.

the on-chip resources. To ensure the data dependency, all
the tiles must synchronize at the iteration barrier and thus
the execution time is determined by the slowest tile (e.g.,
the tile at the corner) as it has the largest amount of com-
putation. To solve this problem, we propose to use different
tile size to balance their computation.

We develop an automatic tool flow based on Xilinx OpenCL-
to-FPGA flow for iterative stencil applications. With an
original stencil algorithm written in OpenCL as input, our
framework can transform the OpenCL code to enable the it-
eration fusion, pipe-based data sharing, and heterogeneous
tiling automatically. Our final heterogeneous designs exhibit
a large design space to explore (e.g. cone depth, tile struc-
ture, etc). Hence, we develop analytical performance models
to compare different designs and explore the design space.
By doing this, we can identify the designs with the highest
performance.

This work makes the following contributions,

• We propose a new heterogeneous architecture design
for stencil algorithms to improve performance and save
and FPGA resources.

• We develop an accurate performance model to help de-
termine the optimal parameters of our proposed stencil
accelerator design.

• We propose a framework that automatically optimizes
and synthesizes iterative stencil algorithms onto FP-
GAs and validate our framework using a suite of stencil
algorithms with different dimensions.

Experiments show that compared to the state-of-the-art, our
heterogeneous design achieves on average 1.65X performance
speedup but with less on-chip resources.

2. BACKGROUND AND RELATED WORK
In this section, we introduce OpenCL programming model

to FPGA mapping, iterative stencil algorithm, and related
work.

2.1 OpenCL to FPGA Mapping
OpenCL is a cross-platform programming model which

employs a single-instruction multiple data (SIMD) model
enabling implementation of general purpose programs on
heterogeneous systems. From the perspective of a program-
mer, OpenCL has three levels of hierarchy, which are ND-
Range kernel, work-group, and work-item as shown in Fig-
ure 2. As for the execution, OpenCL host program dynam-

Figure 3: Jacobi-2D pseudo code.

ically invokes the ND-Range kernel to be executed a spe-
cific hardware kernel on FPGA. Multiple work-groups bun-
dled together to form an ND-Range kernel are distributed
to different compute units (CUs). The basic unit of exe-
cution is single work-item, which is executed on process-
ing element (PE) in a pipeline fashion. A group of work-
items is bundled together to form a work-group. OpenCL
uses a relaxed memory consistency model for global mem-
ory within kernel’s workspace. Work-items in a work-group
can be synchronized together through an explicit barrier op-
eration. Within a kernel, the execution order of different
work-groups does not affect the output. The local mem-
ory is shared among the CUs within a kernel and cannot be
directly accessed by the host.

2.2 Iterative Stencil Algorithm
Iterative stencil algorithm is a class of algorithms that it-

eratively update the values of array elements according to
some fixed pattern, called stencil. Algorithms following this
pattern are widely used in scientific simulations [1], image
processing [2] and scientific computations [3]. As we can see
the Jacobi-2D algorithm from Figure 3, the current element
A[i][j] is updated by its neighboring data of the previous
iteration, and then the data are swapped out after each it-
eration to do synchronization.

2.3 Related Work
Performance optimization for iterative stencil algorithms

has been studied for CPUs or GPUs [11, 12, 13, 14]. In these
platforms, tiling is a widely employed technique to improve
data locality in cache or workload balancing on multiple
cores [11, 14]. In order to reduce the off-chip global mem-
ory access overhead, fused iteration is proposed for iterative
stencil algorithms to increase the the on-chip computation
to off-chip memory access ratio [15, 12].

In the context of reconfigurable devices such as FPGAs,
most of the studies on stencil benchmarks are based on hand-
writing RTL code [16, 17]. [16] proposes a sliding-window
based method to reduce BRAM consumption for stencil al-
gorithms. [17] maps stencil algorithms to systolic array.
Both methods, however, cannot alleviate the large off-chip
global memory access overhead. Cong et al. [18] studies on
fully pipelining the global memory access and stencil compu-
tations which require a large amount of reused buffers. To
reduce the buffer size, a stencil-specific microarchitecture
template is proposed.

Recently, the iteration fusion based optimization method
has been used to reduce the off-chip memory access over-
head for stencil [10] and deep neural networks [19]. Nacci
et al. [10] first applied fused iteration fusion optimiztion for
stencil algorithm on FPGA. The work proposes an architec-
ture template-based optimization framework to automati-
cally generate the optimized C code which is then imple-
mented on FPGA by using commercial HLS tools. The ex-
perimental result is promising which achieves an order of



Figure 4: Kernel Execution of Different Designs.

magnitude higher performance for iterative gaussian filter
and Chambolle algorithm [20].

3. HETEROGENEOUS DESIGN
In this section, we propose a heterogeneous architecture

design which employs pipe-based data sharing and workload
balancing techniques to solve the redundant computation
and unbalanced workload problems.

3.1 Pipe-based Data Sharing
Redundant Computation Elimination. In the base-

line design shown in Figure 4(a), each kernel could be ex-
ecuted independently within fused iterations by processing
the redundant data of the neighboring tiles. In our hetero-
geneous design, we propose to use pipe to share the data
near the boundary between adjacent kernels. Pipe is a new
feature introduced in OpenCL 2.0 for passing data between
kernels. As we can see from Figure 1(c), pipes are added
for each adjacent pair of kernels. After the redundant com-
putation is eliminated, the on-chip memory could also be
saved because there is no need to reserve the storage re-
sources for the redundant data. In the OpenCL-to-FPGA
mapping, pipe is implemented as FIFOs which consumes
much fewer on-chip memory resources compared with the
redundant data.

Communication Latency Hiding. Although the re-
dundant computation and on-chip memory have been elimi-
nated, the data communication between adjacent computa-
tion kernels incurs latency overhead. To solve this problem,
we propose a scheduling based strategy to hide the commu-
nication latency. The main idea is to do the interior compu-
tation first while simultaneously waiting for the boundary
data updates. To be more specific, we categorize the ele-
ments in each tile into two groups, independent group and
dependent group depending on whether it requires the data
transferred from adjacent tiles to do the computation. In
the working flow of the computation kernel, the indepen-
dent elements are always given higher priorities. Since the
pipe operations are executed in parallel with the processing
of independent elements, the data sharing overhead can be
partially or completely hidden.

3.2 Workload Balancing
As shown in Figure 4(b), for each fused iteration, the com-

putation kernels compute the tiles simultaneously and must
synchronize (write the data to global memory) before they
move to the next region. Thus, the execution time of each
region is constrained by the slowest kernel. In the equal
tiling scheme, the computation workload could be severely
unbalanced, because the redundant computations between
the adjacent computation kernels are completely eliminated,
the ratio of computation workload of the kernels near the

Table 1: Summary of Analytical Model Parameters.
Model Parameter Definition Obtained
L Execution latency of entire stencil algorithm predicted by model
Nregion Number of regions given an input size source code analysis

Ltile
krnlk

Execution latency of kth kernel krnlk to execute a tile predicted by model

H Number of input stencil iterations source code analysis
h Number of fused iterations determined by model
D Number of input stencil dimensions source code analysis
K Number of kernels working in parallel source code analysis

fk
d Workload balancing factor of kth kernel in the dth dimension determined by model

Wd Length of input stencil array along dth dimension source code analysis

wd Length of tile of along dth dimension source code analysis

∆wd Incremental length of tile along dth dimension per fused iteration source code analysis

Lmem
krnlk

Latency of kth kernel consumed by global memory access within a region predicted by model

Lcomp
krnlk

Latency of kth kernel consumed by computation within a region predicted by model

Llaunch
krnlk

Latency of kth kernel consumed by kernel launches within a region predicted by model

Lread
krnlk

, Lwrite
krnlk

Latency of kth kernel consumed by read from/ write to global memory predicted by model

Sizeread
data , Sizewrite

data Size of data of one work-group to be read from/write to global memory source code analysis
BW Peak bandwidth of global memory off-line profiling
∆s Bit size of transferred data source code analysis

L
iteri
krnlk

latency of kth kernel to complete the computation workload of ith iteration predicted by model

Celement Number of clock cycles per element source code analysis
II Initiation interval of pipeline HLS report
Nunroll loop unrolling number in stencil benchmark source code analysis

L
sharei
krnlk

Latency of kth kernel to transfer all the data through pipes in ith iteration predicted by model

Cpipe number of clock cycles consumed to transfer one data element off-line profiling

boundary to the workload of the inner kernels are highly
skewed. To alleviate the workload unbalancing problem, we
propose to employ a balanced tiling strategy to balance the
amount of workload among different kernels. The main idea
is to employ a heterogeneous tiling method which decreases
the tile size of the kernel near the boundary while increases
the sizes of the rest of tiles.

4. ANALYTICAL MODEL
In order to analyze the benefits and limitations of the

proposed heterogeneous architecture, we build an analyti-
cal performance model. We define the execution latency
in clock cycles of a stencil application as L. We predict L
by modeling the pipe-based data sharing, synchronization,
global memory transfer, and computation. Table 1 lists all
the symbols used in the analytical model.

4.1 Inter-Kernel Synchronization
In general, an entire stencil input is divided into regions.

Each region may contain multiple tiles as shown in Figure 4
depending on the resource constraints and these tiles are
processed in parallel. In our heterogeneous designs, multi-
ple tiles in a region are processed in parallel but need to
synchronize in the end before executing the next iteration
as shown in Figure 4 (b). The synchronization mechanism
ensures that the all the tiles will share the same and up-
dated value. Since each tile processes a different area in the
region, each tile corresponds to an OpenCL kernel code.

The execution time of a region is determined by the slow-
est kernel. Thus, L is calculated as follows,

L = Nregion · K
max
k=1

Ltile
krnlk , (1)

where Nregion is the number of regions given an input
stencil size, K is the number of tiles contained by a region,
and Ltile

krnlk
is the latency of kernel krnlk to execute the kth

tile. Nregion is calculated as follows,

Nregion =
H

h
·

∏D
d=1Wd

K ·
∏D

d=1 wd

, (2)

where H is the total number of iterations of a specific it-
erative stencil algorithm, h is the number of fused iterations
(cone depth), Wd and wd are the length of input stencil ar-
ray and tile along the dth dimension, respectively, and D is
the maximum dimension number of stencil input array.

For simplicity, we define Lmax
krnl = maxK

k=1 L
tile
krnlk

which
can be calculated by summing the latency in memory, com-
putation, and kernel launch of the slowest kernel.

Lmax
krnl = Lmem

krnl + Lcomp
krnl + Llaunch

krnl , (3)



where Lmax
krnl, L

comp
krnl , and Llaunch

krnl are the latencies of the
slowest kernel in global memory access, computation and
kernel launch, respectively.

4.2 Global Memory Transfer
Figure 4 shows that the computations are separated by

global memory transfers for both designs, and thus the to-
tal latency of global memory transfers could be calculated
by adding up the time consumed in loading data from and
writing data back to global memory. Thus, the latency of
global memory transfer is thus calculated as

Lmem
krnl = Lread

krnl + Lwrite
krnl , (4)

where Lread
krnl and Lwrite

krnl are clock cycles in reading from and
writing back to global memory, respectively. The read and
write are done in burst mode for high throughput. The burst
mode is always coupled with barriers, where the data of one
work-group is bundled together to copy from global memory
to local memory and the memory transfer has to complete
before the barriers. In the burst mode, the global memory
accesses are coalesced and this potentially will lead to high
bandwidth utilization. Moreover, when multiple kernels are
working simultaneously, the global memory bandwidth are
evenly shared among different kernels. Thus, we have

Lread
krnl =

Sizereaddata

BW/K
=

∆s ·
∏D

d=1 (wd · fmax
d + ∆wd · h)

BW/K
(5)

Lwrite
krnl =

Sizewrite
data

BW/K
=

∆s ·
∏D

d=1 wd · fmax
d

BW/K
(6)

where Sizereaddata and Sizewrite
data are the size of data in one

region to be read from/write to global memory. BW is the
peak bandwidth between global memory and FPGA, ∆s is
the size of the input data type (e.g. 32-bit for float type),
wd is the length of the tile along the dth dimension, fmax

d

is the balancing factor of the slowest kernel along the dth

dimension, and ∆wd is the incremental length of the tile
along the dth dimension per fused iteration.

4.3 Computation
To predict the execution time of a kernel when execut-

ing a tile, we need to model the fused iterations and the
synchronization between iterations. As shown by Figure 4,
the computation period of a tile contains multiple iterations
and the computation workload decreases when the iteration
increases. Thus, the execution time of a kernel is calculated
by accumulating the execution time of each iteration and
the overhead of data sharing as follows,

Lcomp
krnl = (1 + λiteri

krnl ) ·
h∑

i=1

Literi
krnl , (7)

where Literi
krnl is the latency of the slowest kernel to complete

the computation workload of ith iteration, and λiteri
krnl (0 ≤

λiteri
krnl ≤ 1) represents the proportion of overhead incurred

by data sharing between adjacent tiles. The details about
λiteri
krnl is discussed in the following section. Literi

krnl could be
calculated by multiplying the number of clock cycles per
element of a tile and the number of elements in this iteration
as follows,

Literi
krnl = Celement ·

D∏
d=1

((wd · fmax
d + ∆wd · (h− i)), (8)

where Celement is the number of clock cycles per element.
Celement is determined by the number of processing ele-
ments NPE , which can be controlled by the designers using
loop unrolling #pragma, and the initiation interval of sten-
cil computation pipeline II. Thus, Celement is calculated as
follows,

Celement = II/NPE . (9)

4.4 Inter-tile Data Sharing
We employ pipe in OpenCL to exchange the common data

shared by adjacent tiles as shown in Figure 1 (c) and (d).
Pipe is a new feature introduced in OpenCL 2.0 for passing
data between kernels. In the OpenCL-to-FPGA mapping,
pipe is implemented as FIFOs. Different tiles transfer dif-
ferent amount of data. We first define the following metric,

Lsharei
krnl = Cpipe ·

D∑
j=1

D∏
d=1,d6=j

(wd · fmax
d − ∆wd · (h− i)),

(10)

where Lsharei
krnl is the latency of the slowest kernel to trans-

fer all the data through pipes in ith iteration and Cpipe is
the number of clock cycles consumed to transfer one data
element.

Compared with the computation time, the message pass-
ing latency is relatively small. In practice, we can partially
or completely hide the message passing by overlapping it
with computation (see Section 3.1). Therefore, we intro-
duce λ to represent the overlapping ratio of the message
passing, which is 0 if all the message passing operations are
hidden by the computation and is 1 if none of the message
passing operations are overlapped. Then, we compute λiteri

krnl

as follows,

λiteri
krnl =

0, Lsharei
krnl ≤ Literi

krnl

L
sharei
krnl

−L
iteri
krnl

L
iteri
krnl

, Lsharei
krnl ≥ Literi

krnl

. (11)

5. OPTIMIZATION FRAMEWORK
In this section, we propose an automatic optimization

framework shown in Figure 5 by first introducing how our
performance optimizer finds the optimal parameters of our
proposed heterogeneous designs and then elaborating the
details of the automatic code generation.

5.1 Performance Optimizer
As shown in Figure 5, the performance optimizer is mainly

composed of feature extractor and analytical model. The
feature extractor inside performance optimizer is in charge
of analyzing original stencil operation code and determining
the application-specific stencil configurations (stencil shape,
dimension, operation type). Global memory bandwidth BW
and the number of parallel stencil kernel K are user-defined
parameters and fed to our performance optimizer as inputs.
The initiation interval II of the computation pipeline is ob-
tained by using the FlexCL framework [21].

After extracting required features, all the required param-
eters are sent to the analytical model proposed in Section 4.
To obtain the optimal configuration parameters for our het-
erogeneous design, we enumerate both the number of fused
iterations h and load balancing factor fk

d for heterogeneous
designs to achieve the best performance.



Figure 5: Overview of automatic optimization framework.

5.2 Automatic Code Generator
The automatic code generator has to adapt to application-

specific configurations including dimension of input data,
shape of stencil, type of stencil operation and etc.. For
the OpenCL code of our proposed heterogeneous design, we
split the code into three major parts, (1) stencil bound-
ary, (2) data sharing pipes, (3) and fused stencil opera-
tion. Based on this, we propose an automatic code generator
which could produce these three parts of code respectively
and then merge them together into an OpenCL kernel.

Stencil Boundary Generator. For a specific stencil
computation kernel, the stencil tile boundary varies at dif-
ferent iterations and is dependent on three factors, stencil
shape, current iteration number and tile size. The stencil
shape is obtained by our feature extractor, the tile size is
user-defined value, and the iteration number is set to be
a variable. So, for any stencil benchmark, the proposed
stencil boundary generator could automatically generate a
boundary as a function of stencil shape, tile size, and current
iteration number.

Data Sharing Pipe Generator. The pipes are used to
transfer the boundary data between adjacent kernels. But
the pipe in OpenCL is one-directional, and thus we need to
generate two pipes, read and write pipes, for each bound-
ary of adjacent kernels. The stencil boundary generated by
stencil boundary generator is also used as a reference for
pipe generator to determine whether a data element should
be transferred or not.

Fused Stencil Operation Generator. The original
unoptimized stencil operation code and stencil boundary are
used as input of fused stencil operation generator. First, the
iteration fusion loop is added outside of the original stencil
operation loop, and the loop boundary is provided by the
stencil boundary generator. The data array residing off-chip
global memory is then enhanced to local memory (BRAM)
using the OpenCL local declaration, and the local data
array size is calculated by subtracting the shared data size
from the data size according to the data boundary in the
first level of fused iteration.

5.3 Experiment Setup
Alpha Data ADM-PCIE-7V3 board with a Xilinx Virtex-

7 FPGA and 16GB device memory is used as the platform
to validate our optimization framework. The FPGA board
is connected to a host via PCI-e 3.0 X8 interface. Xilinx
SDAccel 2016.2 is used as the OpenCL toolchain to synthe-
size OpenCL kernels onto FPGA. The operating frequency
of all the benchmarks is set to be 200MHz, and all the bench-
marks used in this work could be successfully synthesized
under this frequency.

The evaluated OpenCL-based stencil benchmarks are from
Polybench [22], Rodinia [23, 24], and Parboil [25] benchmark
suites as shown in Table 2. The benchmarks are distinct in
terms of stencil structures (e.g., dimension, size, etc) and the
ratio of computation to global memory access intensity. For

Table 2: Stencil Benchmark Suite Description.
Benchmark Source Input Size #Iterations

Jacobi-1D Polybench [22] 131072 1024
Jacobi-2D Polybench [22] 2048 × 2048 1024
Jacobi-3D Parboil [25] 1024 × 1024 × 1024 1024

HotSpot-2D Rodinia [23, 24] 4096 × 4096 1000
HotSpot-3D Rodinia [23, 24] 4096 × 4096 × 128 1000
FDTD-2D Polybench [22] 2048 × 2048 500
FDTD-3D Polybench [22] 2048 × 2048 × 2048 500

each benchmark, the execution time on FPGA is measured
using the dynamic profiling tools provided by SDAccel.

5.4 Performance Results
Table 3 presents the performance speedup for all the bench-

marks. For the baseline, we use the best design by exploring
the design space of iteration fusion depth, tile size, and the
number of simultaneous executing tiles (parallelism) [10]. In
order to demonstrate the resource efficiency of our designs,
we constrain them by the hardware size of the baseline [10].
Therefore, for our designs, we only vary the iteration fu-
sion depth and tile size1 but keep the parallelism same to
the baseline. For our design, the optimal iteration depth
and workload balancing factors are identified using our per-
formance model. Overall, the performance speedup for the
proposed Heterogeneous design ranges from 1.19X to 2.05X
(on average 1.65X). Moreover, we can find that for each type
of benchmark (Jacobi, HotSpot, or FDTD), the higher di-
mension the stencil has, the higher performance speedup can
be achieved by our techniques. This is because the redun-
dant computation increases exponentially with the number
of dimensions, which gives larger optimization space for our
techniques.

The performance speedup achieved by our designs lies
in three folds, (1) eliminated redundant computation and
global memory transfers, (2) increased iteration fusion depth,
and (3) more balanced workload distribution. Figure 6 shows
the execution time breakdown of different designs using Jacobi-
2D and Jacobi-3D as case studies. For Jacobi-2D, our de-
signs completely eliminate the redundant computation and
memory transfer time, which are 17% and 6% of the over-
all execution time in the baseline design, respectively. For
Jacobi-3D, our designs save more as the redundancy of the
baseline increases with the dimension of the stencils. The
saved memory storage also enables us to increase the depth
of iteration fusion. As shown in Table 3, the optimal iter-
ation fusion depth increases for all the benchmarks. The
increased fused iteration number also helps to reduce the
global memory transfer time. The workload balancing tech-
nique helps to balance the workload among the tiles and thus
reduce the waiting time due to synchronization barrier. On
average, the workload balancing techniques helps to reduce
9% waiting time.

5.5 Resource Utilization Analysis
Table 3 compares the total resource (FF, LUT, DSP, and

BRAM) utilization of different techniques. Since we use a
uniform parallelism for the designs, the DSPs consumed are
the same. The BRAM utilization is reduced by 8%-25%
for the proposed heterogeneous design. The main contribu-
tion of this reduction comes from the pipe-based data shar-
ing. Although the extra pipes also consume BRAMs, they
still cannot offset the large benefit brought by data shar-
ing. The number of FFs and LUTs are reduced by 8%-24%
for heterogeneous designs. The reduction of FF and LUT

1The tile size shown in Table 3 of the heterogeneous design
is the tile size of the slowest kernel.



Table 3: Experimental Results of Stencil Benchmark Suite.
Benchmark Optimization

Optimization Parameters Total Resource Utilization
Perf.

#Fused Iter. Tile Size Parallelism FF LUT DSP BRAM

Jacobi-1D
Baseline 128 4096 16 54864 79920 80 544 1

Heterogeneous 512 4096 16 43896 62580 80 396 1.19

Jacobi-2D
Baseline 32 128× 128 4× 4 240016 343184 1792 1170 1

Heterogeneous 63 120× 120 4× 4 191276 287955 1792 996 1.58

Jacobi-3D
Baseline 6 16× 32× 32 4× 2× 2 264026 367217 1802 1170 1

Heterogeneous 16 16× 28× 28 4× 2× 2 237846 335951 1802 796 2.05

HotSpot-2D
Baseline 32 256× 256 4× 4 259040 251936 1920 1320 1

Heterogeneous 69 248× 248 4× 4 233375 217197 1920 1081 1.35

HotSpot-3D
Baseline 6 32× 32× 32 4× 2× 2 225259 236664 1747 1260 1

Heterogeneous 16 30× 30× 30 4× 2× 2 199625 207853 1747 1162 1.97

FDTD-2D
Baseline 12 64× 64 4× 4 104247 149457 324 560 1

Heterogeneous 23 60× 60 4× 4 86872 131102 324 427 1.48

FDTD-3D
Baseline 4 16× 32× 16 2× 4× 2 149078 203266 518 952 1

Heterogeneous 10 14× 32× 15 2× 4× 2 137632 176874 518 835 1.90

(a) Jacobi-2D (b) Jacobi-3D

Figure 6: Execution time breakdown.

utilization is directly related to the decreased BRAM con-
sumption because large OpenCL data array implemented on
FPGA needs multiplexers and registers to bundle BRAMs
which requires LUTs and FFs.

5.6 Model Validation
In section 4, we propose a performance model for estimat-

ing execution time of iterative stencil algorithms in terms of
clock cycles. Here, we verify our performance model by vary-
ing the number of the fused iterations as shown in Figure 7.

Overall, the model gives a highly accurate prediction. On
average, the prediction error is 12%. For each benchmark,
the optimal number of fused iterations found by our perfor-
mance model is exactly the same as actual optimal value.
But we notice that performance model underestimates the
actual execution time. The underestimation is mainly due
to the underestimated kernel launch time. In a real imple-
mentation of multiple kernels on FPGA, although multiple
kernels execute in parallel, there exist a delay for the kernel
launch. In other words, the kernels will be launched se-
quentially with a delay between adjacent kernel launches as
shown in Figure 4. We do not model this kernel launch delay,
which leads to the underestimated results. Nevertheless, the
performance model captures the overall performance scaling
trend for all the benchmarks.

6. CONCLUSION
In this paper, we propose an efficient framework that auto-

matically synthesizes highly optimized iterative stencil algo-
rithms on FPGAs. An analytical performance model is built
to perform fast design space exploration at the high level.
A commercial OpenCL-to-FPGA toolchain is leveraged to
generate accelerator design for FPGA. We first propose an
efficient data sharing mechanism by utilizing OpenCL pipes
to improve computation and global memory access efficiency.
We then propose a workload balancing technique to balance
the computation among different tiles. Experiments using a
wide range of iterative stencil applications demonstrate that
our heterogeneous implementations achieve 1.65X perfor-
mance speedup on average but with less hardware resource
compared to the state-of-the-art.
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