
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015 1387

Instruction Cache Locking Using
Temporal Reuse Profile

Yun Liang, Tulika Mitra, and Lei Ju

Abstract—The performance of most embedded systems is criti-
cally dependent on the average memory access latency. Improving
the cache hit rate can have significant positive impact on the per-
formance of an application. Modern embedded processors often
feature cache locking mechanisms that allow memory blocks to
be locked in the cache under software control. Cache locking was
primarily designed to offer timing predictability for hard real-
time applications. Hence, prior techniques focus on employing
cache locking to improve the worst-case execution time. However,
cache locking can be quite effective in improving the average-
case execution time of general embedded applications as well. In
this paper, we explore static instruction cache locking to improve
the average-case program performance. We introduce temporal
reuse profile (TRP) to accurately and efficiently model the cost
and benefit of locking memory blocks in the cache. We consider
two locking mechanisms, line locking and way locking. For each
locking mechanism, we propose a branch-and-bound algorithm
and a heuristic approach that use the TRP to determine the most
beneficial memory blocks to be locked in the cache. Experimental
results show that the heuristic approach achieves close to the
results of branch-and-bound algorithm and can improve the per-
formance by 12% on average for 4 KB cache across a suite of
real-world benchmarks. Moreover, our heuristic provides sig-
nificant improvement compared to the state-of-the-art locking
algorithm both in terms of performance and efficiency.

Index Terms—Cache, cache locking, performance, temporal
reuse profile (TRP).

I. INTRODUCTION

CACHES have been employed by almost all embed-
ded systems to mitigate the speed disparity between

fast processors and slow memories. Caches can effectively
reduce the number of accesses to main memory, which
require more power consumption and longer delay per access.
Hence, efficient use of caches is of paramount importance for

Manuscript received August 18, 2014; revised November 13, 2014
and January 15, 2015; accepted February 16, 2015. Date of publication
April 2, 2015; date of current version August 18, 2015. This work was
supported in part by the National Natural Science Foundation of China under
Grant 61300005 and Grant 61202015, and in part by the Singapore Ministry
of Education Academic Research Fund Tier 1 under Grant T1-251RES1120.
This paper was recommended by Associate Editor S. Kim.
(Corresponding author: Yun Liang.)

Y. Liang is with the Center for Energy-Efficient Computing and
Applications, School of Electronics Engineering and Computer Science,
Peking University, Beijing 100871, China, and also with Collaborative
Innovation Center of High Performance Computing, NUDT, Changsha
410073, China (e-mail: ericlyun@pku.edu.cn).

T. Mitra is with the Department of Computer Science, National University
of Singapore, Singapore 117417.

L. Ju is with the School of Computer Science and Technology,
Shandong University, Jinan 250101, China.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2015.2418320

embedded systems in terms of both performance and energy
consumption. In this paper, we focus on instruction cache.
Instruction cache is one of the foremost power consuming
and performance determining microarchitectural features of
modern embedded systems as instructions are fetched almost
every clock cycle. For example, instruction cache consumes
about 22% of the power in the Intel processor [1] and 27% of
the power in the ARM processor [2]. In this paper, we focus
on improving the average-case performance of embedded
applications through instruction cache locking.

Most modern embedded processors (e.g., ARM Cortex
series processors) feature with cache locking mechanisms
whereby one or more cache blocks can be locked under soft-
ware control using special lock instructions. Once a memory
block is locked in the cache, it cannot be evicted from the
cache under the replacement policy. Thus, all the subsequent
accesses to the locked memory blocks will be cache hits. Only
when the cache line is unlocked, the corresponding memory
block can be replaced. Cache locking was initially designed
to improve the timing predictability of hard real-time systems.
As the cache content is known statically, the memory access
time of each reference can be determined accurately leading
to tighter worst-case execution time (WCET) analysis. Hence,
most cache locking algorithms proposed in the literature target
to improve the WCET of the application.

In this paper, we explore instruction cache locking to
improve the average-case performance of general embedded
applications. This can be achieved by systematically eliminat-
ing the cache conflict misses through cache locking. For exam-
ple, consider two memory blocks m0 and m1 that are mapped
to the same cache set and the sequence of memory block
accesses is (m0m1)

10. Given a direct mapped cache, all the
memory accesses will be cache misses (20 misses) as m0 and
m1 replace each other from the cache alternatively. However,
if either m0 or m1 is locked in the cache, then the total num-
ber of cache misses can be reduced to 10. Note that locking
a memory block can negatively impact the performance of
the remaining memory blocks mapped to the same set as the
effective cache capacity gets reduced. Therefore, aggressive
full locking does not always ensure good performance.

In this paper, we first introduce temporal reuse profile (TRP)
to accurately capture the data reuses. TRP is significantly more
compact compared to memory traces. Then, we develop cache
locking modeling techniques that can accurately compute the
cost and benefit of locking each memory block. We consider
two locking mechanisms, line locking and way locking. For
each locking mechanism, we propose locking algorithms that

0278-0070 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1388 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015

judiciously select the beneficial memory blocks for locking.
Specifically, we propose a branch-and-bound algorithm and
an efficient heuristic approach.

Anand and Barua [3] have presented an instruction cache
locking heuristic with the same objective. Their experiments
confirm that locking is beneficial in improving the average-
case performance. However, there are two major drawbacks
in their work. First, they propose an iterative approach where
detailed cache simulation is employed in every iteration to
evaluate the cost/benefit of locking the memory blocks. Hence,
the algorithm is quite inefficient specially for large appli-
cations. Moreover, they employ some approximations in the
cost/benefit analysis to reduce the simulation cost leading to
poor locking decisions. We show that our locking improves the
prior work [3] in terms of both performance and efficiency.

We also compare cache locking with a complimentary
technique called procedure placement [4]. The procedure
placement techniques improve instruction cache performance
through procedure reordering such that the conflict misses in
the cache can be reduced. We show that procedure place-
ment followed by cache locking can be an effective strategy
in enhancing the instruction cache performance significantly.

This paper makes the following contributions to the
state-of-the-art of cache optimizations for embedded system.

1) Cache locking modeling techniques based on TRP that
accurately capture the cost and benefit of cache locking.

2) Cache locking algorithms that balance the cost and
benefit of locking and judiciously select the beneficial
memory blocks for locking.

3) Combined cache locking and procedure placement tech-
nique for cache performance improvement.

We demonstrate the advantages of our locking tech-
niques using benchmarks from MiBench and MediaBench
suites. Experiments indicate that for 4 KB cache our tech-
nique improves the performance and power consumption
by 12% and 13% on average, respectively.

II. RELATED WORK

Prior optimization techniques using cache locking mainly
aim to improve the WCET for hard real-time systems.
However, as we will demonstrate in this paper, cache locking
can be quite effective in improving the average-case execu-
tion time for general embedded applications. In the following,
we will summarize the techniques of using cache locking
for improving the timing predictability of hard real-time sys-
tems and the average-case performance of general embedded
systems, and other related cache optimization techniques.

A. Locking for Hard Real-Time Systems

In hard real-time systems, WCET is an important input to
the schedulability analysis of multitasking real-time systems.
Complex architecture features such as caches, are problem-
atic for WCET estimation due to their timing unpredictability.
Static analysis techniques have been widely used to bound the
WCET [5]–[7] for hard real-time systems.

Cache locking improves the timing predictability as the con-
tents of cache are statically known under locking. There exist

two locking mechanisms, static cache locking [8]–[11] and
dynamic cache locking [12]. However, all of the above tech-
niques lock the entire cache. Recently, Ding et al. [13], [14]
demonstrated that by partially locking the cache, WCET
can be improved significantly. In the context of multitasking
real-time systems, cache locking has been used to improve
the processor utilization and tasks schedulability [15]–[18].
Data cache locking algorithms for WCET minimization are
presented in [19]. Their techniques formulate cache miss equa-
tions to model the data reuses. Cache replacement policy is
an important cache design parameter. Reineke et al. [20] ana-
lyzed and compared the timing predictability of different cache
replacement policies.

B. Locking for General Embedded Systems

Cache locking can be effective for improving the average-
case performance for general embedded applications too.

Data cache locking mechanism based on the length of the
reference window for each data access instruction is proposed
in [21]. However, they do not model the cost/benefit of lock-
ing and there is no guarantee of performance improvement.
Anand and Barua [3] proposed an instruction cache lock-
ing algorithm for improving the average-case performance.
However, there are mainly two disadvantages of their tech-
nique. First, Anand and Barau’s approach relies on trace-driven
simulation to evaluate the cost and benefit of cache locking.
However, trace-driven simulation could be very slow, typi-
cally longer than the execution time of the program [22]. More
importantly, in Anand and Barau’s method, two detailed trace
simulations are employed in each iteration where one iteration
locks one memory block in the cache. Such extensive usage
of simulation is not feasible for large applications. Second, in
their method, cache locking benefit is approximated by locking
dummy blocks to keep the number of simulations reasonable.
Thus, the cost and benefit of cache locking are not precisely
calculated in [3].

Liu et al. [23] used instruction cache locking for the same
purpose. In their method, they represent the program using
the probability execution flow tree and formulate optimization
problems based on it. However, they do not consider the cache
mapping function in their locking algorithm. They assume that
any memory block can be locked in any cache set [as if the
cache is a scratchpad memory (SPM)]. After the locking deci-
sions are made, they have to use code placement techniques
at instruction or basic block level to force the locked memory
blocks to be mapped to the appropriate cache sets. However,
this can lead to serious code size blowup, which has not been
addressed.

In this paper, we introduce TRP to model cache behavior.
Previously, reuse distance has been proposed for the same
purpose [24], [25]. Reuse distance is defined as the number
of distinct data accesses between two consecutive references
to the same address and it accurately models the cache behav-
ior of a fully associative cache. However, to precisely model
the effect of cache locking, we need the content instead of
the number (size) of the distinct data accesses between two
consecutive references. Our TRP records both reuse content
and their frequencies.

LIANG et al.: INSTRUCTION CACHE LOCKING USING TRP 1389

C. Other Cache and SPM Optimization Techniques

Caches play an important role for both average- and worst-
case performance. The state-of-the-art average-case cache
optimization techniques focus on design space exploration
of cache parameters [26]–[28], code layout reorganization [4],
cache reconfiguration [29], and cache partitioning [30]. In this
paper, we focus on cache locking. Cache locking is comple-
mentary to the existing cache optimization techniques. For
example, cache locking can work together with cache parti-
tioning for multicores with shared cache [31]. In this paper, we
focus on application specific embedded system, we will com-
bine our cache locking with one of the state-of-the-art code
layout reorganization technique [4] to further improve cache
performance.

SPMs have been used as an alternative to caches for
embedded systems [32], [33]. Both cache locking and SPM
allocation try to improve the performance by carefully select-
ing memory blocks for either locking in the cache or allocation
in the SPM. For SPM, the optimal data allocation always uses
the SPM fully. However, for locking, partial cache locking
is more appealing than full locking as shown [13]. In partial
locking, locking a cache line with a single memory block will
be compared with keeping it unlocked so that more than one
memory block can benefit from it. If the latter wins, the cache
line will not be locked. Our cache locking techniques partially
lock the cache based on careful cost and benefit analysis.

III. CACHE LOCKING PROBLEM

In this section, we define the cache locking problem.
In static cache locking, once a memory block is locked in a
cache line, it can not be evicted from the cache. The instruc-
tions are locked in the cache at the beginning of program
execution and remain locked throughout the program execu-
tion. Note that the mapping of instructions to the cache sets
depend on the code memory layout. Inserting additional code
for cache locking may tamper this layout. To avoid this prob-
lem, we use the trampolines [34] approach. The extra code to
fetch and lock the memory blocks in the cache are inserted
at the end of the program as a trampoline. We leave some
dummy null operation instructions at the entry point of the
program that get replaced by a call to this trampoline after
locking decisions are made. For static cache locking, the cost
of executing the trampoline is very small as it is only executed
once before the program starts.

A. Cache Terminology

A cache memory is defined in terms of four major param-
eters: block or line size L, number of sets K, associativity A
(also known as cache way), and replacement policy. The block
or line size determines the unit of transfer between the main
memory and cache. A cache is divided into K sets. Each cache
set, in turn, is divided into A cache blocks, where A is the asso-
ciativity of the cache. For a direct-mapped cache A = 1, for a
set-associative cache A > 1, and for a fully associative cache
K = 1. In other words, a direct-mapped cache has only one
cache block per set, whereas a fully-associative cache has only
one cache set. Now the cache size is defined as (K × A× L).

A memory block m can be mapped to only one cache set given
by (m modulo K).

For direct mapped caches, there is only one cache block per
cache set. Locking it with a memory block means cache misses
for all the remaining memory blocks mapped to the same cache
set. For set associative caches, the remaining unlocked cache
lines per cache set serve as a set associative cache with reduced
associativity. For set-associative or fully-associative caches,
the replacement policy (e.g., least recently used (LRU), first
in first out (FIFO), etc.) defines the block to be evicted when
a cache set is full. In this paper, we model the cache based
on the LRU replacement policy where the block replaced is
the one that has been unused for the longest time. But as we
will demonstrate in the experiment section, our technique is
effective for other replacement policies, too (e.g., FIFO).

Two locking mechanisms are commonly used in modern
embedded processors—way locking and line locking. In way
locking, particular ways of a set associative cache are selected
for locking and these ways are locked for all the cache sets.
Way-locking is employed by ARM processor series. Compared
to way locking, line locking is a finer grained locking mech-
anism. In line locking, different number of cache lines can
be locked for different cache sets. Line locking is employed
by Intel’s Xcale, ARM9 family, and Blackfin 5xx family
processors. We consider both line locking and way locking
mechanisms in this paper.

Cache misses can be broadly categorized into cold
(compulsory) misses, capacity misses, and conflicts misses.
Cold misses are caused by the first reference to a memory
block. Cache locking eliminates the cold miss, but at the
same time introduces additional overhead to fetch and lock
the memory block at the beginning of program execution
(through the trampoline). Capacity misses are incurred due to
the limited cache size and cannot be mitigated through lock-
ing. Indeed, locking a memory block in the cache reduces the
cache capacity available to the remaining memory blocks and
may negatively impact the cache hit rate. So, cache locking
primarily targets to eliminate conflict misses while minimizing
the negative impact on the unlocked memory blocks.

B. Cache Locking Problem

The goal of our cache locking is to determine the set of
memory blocks to be locked such that the conflict cache misses
are reduced and the program execution latency is improved.

IV. CACHE LOCKING MODELING

In this section, we describe our cache locking modeling
techniques. We rely on TRP to compute the cost and benefit of
cache locking. TRP captures the temporal conflicts of memory
accesses. Thus, using TRP, we can accurately determine the
cache hits and misses. More importantly, TRP is more compact
compared to memory trace and thus enables efficient cache
locking algorithms. In the following, we formally define TRP
and other related terms.

Let T be the memory trace (sequence of memory block
references) generated by executing a program on the target

1390 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015

architecture. We use Mi to denote the set of all the mem-
ory blocks that are mapped to ith cache set Ci. Also given
a memory block m, it is only mapped to a single cache set
(m modulo K). Thus, for any two cache sets Ci, Cj, we have
Mi ∩ Mj = ∅. Therefore, the trace T can be partitioned into
K traces T1, . . . , TK—one corresponding to each cache set.
The trace Ti corresponding to cache set Ci only contains the
memory blocks Mi from the original trace T . Finally, given a
memory block m ∈ Mi, let us define the jth reference of m in
the trace Ti as m[j].

A memory block m benefits from cache locking as all its
references will be cache hits. It is straightforward to quantize
this benefit of cache locking. Let accessm be the total number
of accesses to memory block m. Then by locking m, we will
get accessm cache hits. That is

hitm = accessm if m is locked.

However, locking memory block m ∈ Mi in the cache set
Ci may have negative impact on the other memory blocks
Mi\{m}. Therefore, in order to accurately compute the overall
gain, we have to characterize this negative impact.

Theorem 1: Given two memory blocks m, m′ ∈ Mi, if m[j]
is a cache miss before locking m′, then m[j] will remain a
cache miss after locking m′ in cache set Ci.

Proof: The proof follows directly from the inclusion prop-
erty for LRU replacement policy. The inclusion property states
that after any series of references, a smaller store always con-
tains a subset of the blocks in the larger store. After locking m′,
the number of available cache blocks in the cache set Ci

reduces by one. Clearly, if m[j] (jth reference of m in the
trace) was a cache miss (i.e., not present in the cache set)
originally with more cache blocks, it will be a cache miss
with one less cache block.

Definition 1 [Temporal Conflict Set (TCS)]: Given a mem-
ory reference m[j] (j > 1) in the trace where m ∈ Mi, its
TCSm[j] is defined as the set of unique memory blocks refer-
enced between m[j − 1] and m[j] in Ti. If there is no such
reference, then TCSm[j] = ∅.

For example, in Fig. 1, the TCS of memory block m2 is {m1}
for its second reference and {m0} for its third reference. For a
memory block reference, we determine its cache behavior (hit
or miss) based on its TCS.

Theorem 2: If |TCSm[j]| ≥ A for memory block m ∈ Mi,
then the reference m[j] will be a cache miss.

Proof: The proof follows directly from the definition of
LRU replacement policy. As we bring in A or more unique
memory blocks into the cache set, memory block m will be
replaced from the cache and will incur a cache miss for its
next reference.

Moreover, following Theorems 1 and 2, if |TCSm[j]| ≥ A,
then m[j] is guaranteed to be a cache miss irrespective of
locking other memory blocks in the cache. Therefore, we can
eliminate TCSm[j] from further consideration as far as cache
locking decisions are concerned. Nevertheless, m[j] will be a
cache hit if m is locked. Hence, for each memory block m,
we eliminate its TCSm[j] if |TCSm[j]| ≥ A, but keep its total
number of access, accessm. This will guarantee that we can
accurately compute the total number of cache hits and misses

Fig. 1. TRP from a sequence of memory access for a 2-way set associative
cache. Memory blocks m0, m1, and m2 are mapped to the same cache set.
Cache hits and misses are highlighted.

of the program. For example, in Fig. 1, for memory blocks m0,
m1, and m2, their number of memory accesses are recorded;
the second reference to memory block m1 is a cache miss and
its TCS ({m0, m2}) can be removed.

Let Locki be the set of memory blocks locked in the cache
set Ci. Clearly, |Locki| ≤ A.

Theorem 3: If |TCSm[j]| < A for m ∈ Mi\Locki, then m[j]
will be a cache miss only when |Locki ∪ TCSm[j]| ≥ A.

Proof: As |TCSm[j]| < A, the reference m[j] is a cache hit
before locking. Now as we lock memory blocks into the cache
set Ci, the space available to accommodate the unlocked mem-
ory blocks will reduce. m[j] will be a cache miss when the
number of conflicting blocks and the locked memory blocks
together exceeds the associativity of the cache. That is, m[j]
will be a cache miss when |Locki ∪ TCSm[j]| ≥ A.

For example, in Fig. 1, the second reference of memory
block m2 will be a cache miss if m0 is locked, because
|{m0, m1}| ≥ 2. However, it will remain as a cache hit if m1
is locked.

Let Rm = {TCSm[j] : j > 1, |TCSm[j]| < A}, i.e., Rm is the
set of TCS for the references of m that result in cache hits in
the original cache.

Definition 2 (Temporal Reuse Profile): The TRPm of a
memory block m is defined as a set of 2-tuples {〈s, f (s)〉}
where s ∈ Rm and f (s) denotes the frequency of the TCS s in
the trace.

Fig. 1 shows an example of TRP given a memory trace.
There are three memory blocks in the trace and the number
of accesses for each of them is collected. These three memory
blocks have different TCSs and thus different TRPs.

Given the TRP for a program execution and the locked
memory blocks per cache set Locki : i = 1 . . . K, we can
now accurately compute the number of cache hits/misses for
the entire program. For a memory block m ∈ Mi, is computed
as follows:

{hitm|Locki} =
{∑

∀〈s,f (s)〉∈TRPm|s∪Locki|<A
f (s) if m /∈ Locki

accessm otherwise.
(1)

In other words, if m is locked, then obviously all its accesses
are cache hits; otherwise, we walk through all the possible

LIANG et al.: INSTRUCTION CACHE LOCKING USING TRP 1391

TCS scenarios in the TRP and determine cache hit or miss
based on Theorem 3.

Then, the total number of cache hits for the cache set Ci is

{
hitTi |Locki

} = ∑
m∈Mi

{hitm|Locki} (2)

and the total number of cache hits for the entire program

hitT =
K∑

i=1

{
hitTi |Locki

}
. (3)

V. CACHE LOCKING ALGORITHM

Our cache locking algorithm consists of two phases:
1) profiling and 2) locking.

1) Profiling Phase: The profiling phase creates the TRP for
each memory block in the program. This profiling can
be achieved either by simulating the application or by
executing the application on the target platform with a
representative set of inputs. The simulation or execution
creates the address trace. The TRP is built by a single
pass through the address trace.

2) Locking Phase: The locking phase determines the set of
memory blocks to be locked such that the program exe-
cution latency is minimized. Note that locking the entire
cache, which is similar to the SPM allocation prob-
lem, does not ensure optimal performance. It is because
locking a memory block may have negative impact on
other unlocked memory blocks as the effective cache
capacity is reduced. Our cache locking algorithms par-
tially lock the cache based on cost-benefit analysis. More
importantly, partial cache locking problem is more chal-
lenging as it requires careful cost-benefit analysis to
decide between locking a cache line with a single mem-
ory block versus keeping it unlocked so that more than
one memory blocks can benefit from it [13].

In the following, for each of the locking mechanism
(line locking and way locking), we propose two algo-
rithms to select the memory blocks to be locked. One is a
branch-and-bound algorithm and the other one is a heuristic
algorithm. In line locking, each cache set can be modeled inde-
pendently. Thus, it is possible that different cache sets have
different number of cache lines locked. In way locking, all the
cache sets have to be considered together as the cache ways
are locked for all the cache sets.

A. Line Locking

For line locking mechanism, both branch-and-bound and
heuristic algorithms analyze each cache set individually.

1) Branch-and-Bound Algorithm: Our branch-and-bound
algorithm systematically enumerates all the locking solutions
that are organized to a tree form. Before evaluating the can-
didate solutions of a branch, branch-and-bound algorithm will
compare the branch with the current best solution, and prune
the branch if it can not produce a better solution than the best
one found so far.

Algorithm 1: Branch-and-Bound Algorithm for Line
Locking

1 foreach set Ci in the cache do
2 accessi = |Ti| ;
3 opt_sol := ∅; ;
4 h := {hitTi |∅} ;
5 min_lat := h× hit_lat + (accessi − h)× miss_lat ;
6 sort Mi based on the number of accesses.;
7 search(Mi, ∅);
8 Function(search(M, Lock))

9 if |Lock| = A or M = ∅ then
10 h := {hitTi |Lock};
11 lat := h×hit_lat+(accessi−h)×miss_lat+|Lock|×lock_lat

;
12 if lat < min_lat then
13 opt_sol := Lock;
14 min_lat := lat;
15 return;
16 Let m be the highest frequently accessed block in M;
17 M := M\m; ;
18 /* m is not locked */
19 cur_hit :=∑

m′∈Mi\M{hitm′ |Lock};
20 remain_hit := ComputeHitBound(M, Lock);
21 lat_bound := (cur_hit + remain_hit)× hit_lat + (accessi −

cur_hit − remain_hit)× miss_lat + |Lock| × lock_lat ;
22 if lat_bound < min_lat then
23 search(M, Lock);
24 /* m is locked */
25 Lock := Lock ∪ m; ;
26 cur_hit :=∑

m′∈Mi\M{hitm′ |Lock};
27 remain_hit := ComputeHitBound(M, Lock);
28 lat_bound := (cur_hit + remain_hit)× hit_lat + (accessi −

cur_hit − remain_hit)× miss_lat + |Lock| × lock_lat ;
29 if lat_bound < min_lat then
30 search(M, Lock);

a) Search algorithm: Our branch-and-bound algorithm
is presented in Algorithm 1. Given a set of memory block M
and the current locked list Lock (initially it is empty), the
search function (line 8) in Algorithm 1 returns the set of locked
memory blocks that gives the minimum execution latency. We
sort the memory blocks in a cache set in the descending order
of accesses (line 6). We use miss_lat, hit_lat and lock_lat to
represent the latency of cache miss, cache hit, and locking one
memory block, respectively.

The entire search space can be seen as a binary search tree
as shown in Fig. 2. For each memory block m, we have to
decide whether to lock it or not. Algorithm 1 covers the entire
search space. Fig. 2 shows an example of binary search tree
with five memory blocks. Each level of the tree corresponds
to one memory block. The numbers on the edges represent
locking decisions (i.e., 1 represents locked and 0 represents
unlocked). We obtain a solution when a leaf node is reached
or the entire cache set is locked (line 9). The number of cache
hits is computed based on the cache modeling described in
Section IV and the best solution (the lock list and minimum
execution latency) is kept (lines 13 and 14). The locking
overhead is taken into account when we compute the total
execution latency (lines 11, 21, and 28).

The search function in Algorithm 1 is a recursive function.
It explores the locking decision for one memory block at

1392 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015

Fig. 2. Binary search tree of the branch-and-bound algorithm. There are five
memory blocks in the example and each level corresponds to one memory
block. The numbers on the edge represents locking decisions (i.e., 1 represents
locked and 0 represents unlocked).

every recursion depth. During search, the recursion depth (D)
divides the memory blocks into two categories—the current set
of memory blocks (recursion depth ≤ D) and the remaining
memory blocks for future exploration (recursion depth > D).
At any recursion depth (line 8), M denotes the remaining set
of memory blocks for exploration. Thus, the current set of
memory blocks is Mi\M, where Mi is the set of memory
blocks mapped to the cache set i. We use cur_hit to repre-
sent the cache hits of the current set of memory blocks given
the current lock list. cur_hit is computed as follows:

cur_hit =
∑

m∈Mi\M
{hitm|Lock} (4)

where Lock is the list of locked memory blocks for the current
set of memory blocks (e.g., Lock ⊆ Mi\M).

b) Pruning: To improve the search efficiency, search
function computes the execution latency bound (lat_bound in
lines 21 and 28) at every recursion depth (lines 21 and 28) and
uses it to prune the search space if it is possible. More clearly,
let min_lat be the minimum latency for all the solutions we
have explored. If lat_bound ≥ min_lat, then it is impossible to
find a better solution than the best solution found so far from
the current branch and thus the branch can be safely pruned.

To compute the latency bound, we need to determine the
upper bound of the cache hits for the current set of memory
blocks (Mi\M) and the remaining memory blocks (M), respec-
tively. Let Lock′ be the list of locked memory blocks among
the remaining memory blocks (Lock′ ⊆ M), which gives the
minimum execution latency. Clearly, |Lock ∩ Lock′| = ∅ and
|Lock ∪ Lock′| ≤ A.

Theorem 4: For a memory block m ∈ Mi\M, {hitm|Lock} ≥
{hitm|Lock ∪ Lock′}.

Proof: m ∈ Mi\M and Lock′ ⊆ M, so m /∈ Lock′. Given
a memory reference m[j] of memory block m, there are two
cases.

1) m[j] is a cache miss under the lock list Lock. Then,
according to Theorem 1, m[j] remains as a cache miss.

2) m[j] is a cache hit under the lock list Lock. The inclu-
sion property for LRU replacement policy states that
after any series of references, a smaller store always
contains a subset of the blocks in the larger store. After
locking additional |Lock′| memory blocks, the number
of available cache blocks in the cache set reduces. Thus,

Algorithm 2: Computation of remain_hit

1 Function(ComputeHitBound(M, Lock))

2 foreach memory block m ∈ M do
3 benefitm := accessm − {hitm|Lock} ;
4 Sort M into decreasing order according to benefitm ;
5 remain_hit :=∑

m∈M{hitm|Lock};
6 size := 0 ;
7 foreach memory block m ∈ M do
8 remain_hit := remain_hit + benefitm ;
9 if size ≥ A− |Lock| then

10 break ;
11 size := size+ 1;
12 return remain_hit ;

m[j] might be converted to a cache miss under the new
lock list Lock∪Lock′ due to the smaller cache space.

Therefore, for a memory block m in the current set
(m ∈ Mi\M), {hitm|Lock} is the upper bound of the cache
hits of m when exploring the remaining memory blocks.
Subsequently, cur_hit (4) is the upper bound of the total num-
ber of cache hits for the current set of memory blocks when
exploring the remaining memory blocks M.

For the remaining memory blocks (M), we use remain_hit
to represent its upper bound of the number of cache hits. This
bound is returned by function ComputeHitBound (Algorithm 2
to be described later). We define Hit as the number of cache
hits for the remaining memory blocks M for this case, then

Hit =
∑

m∈Lock′
accessm +

∑
m∈M\Lock′

{
hitm|Lock ∪ Lock′

}
. (5)

Finding Lock′ is the exact problem solved by Algorithm 1.
Here, we attempt to derive an upper bound for Hit without
knowing Lock′. Following Theorem 4, we have:

Hit ≤
∑

m∈Lock′
accessm +

∑
m∈M\Lock′

{hitm|Lock}

=
∑

m∈Lock′
accessm −

∑
m∈Lock′

{hitm|Lock}

+
∑
m∈M

{hitm|Lock}. (6)

For a memory block m ∈ M, we define benefitm as the
additional number of cache hits achieved by locking m

benefitm = accessm − {hitm|Lock}. (7)

By combining (6) and (7), we have

Hit ≤
∑

m∈Lock′
benefitm +

∑
m∈M

{hitm|Lock}. (8)

The locked memory blocks list for the remaining memory
blocks |Lock′| ≤ A − |Lock|. Let M′ ∈ M be the set of top
|A− Lock| memory blocks with the maximum benefit values.
Thus

Hit ≤
∑

m∈M′
benefitm +

∑
m∈M

{hitm|Lock}. (9)

Algorithm 2 presents the computation details of remain_hit
following (9). However, in the worst case, the complexity of

LIANG et al.: INSTRUCTION CACHE LOCKING USING TRP 1393

Algorithm 3: Heuristic Cache Line Locking Algorithm

1 foreach set Ci in the cache do
2 accessi = |Ti| ;
3 Locki := ∅; flag := TRUE;
4 cur_hit := {hitTi |Locki};
5 min_lat := cur_hit×hit_lat+ (accessi−cur_hit)×miss_lat;
6 while flag do
7 benefit := 0;
8 foreach m ∈ Mi\Locki do
9 new_hitm := {hitTi |Locki ∪ {m}};

10 latm := new_hitm × hit_lat + (accessi −
new_hitm)× miss_lat + (|Locki| + 1)× lock_lat ;

11 if (min_lat − latm) > benefit then
12 benefit := min_lat − latm;
13 selected_block := m;
14 if benefit > 0 then
15 Locki := Locki ∪ selected_block;
16 min_lat := min_lat − benefit;
17 else
18 flag := FALSE;
19 if |Locki| = A then
20 flag := FALSE;

branch-and-bound algorithm is as high as that of exhaustive
search. Next, we also propose an efficient heuristic approach.

2) Heuristic Approach: Our heuristic is iterative in nature
and exploits the cache locking modeling techniques described
in Section IV. As each cache set can be modeled indepen-
dently, the iterative algorithm is applied for each cache set
separately. So given a cache set Ci, our goal is to determine
Locki such that the execution latency is minimized.

Initially, we set Locki = ∅ and compute the number of
cache hits in the original cache

cur_hit = {hitTi |∅}.
In each iteration, we go through all the unlocked memory
blocks in the cache set m ∈ Mi\Locki and compute the number
of cache hits and execution latency if m was locked in the
cache

new_hitm = {hitTi |Locki ∪ {m}}
latm = new_hitm × hit_lat+ (accessi − new_hitm)

× miss_lat+ (|Locki| + 1)× Lock_lat (10)

where accessi is the number of references of cache set Ci.
Let

benefit = max
m∈Mi\Locki

(min_lat− latm)

where min_lat is the minimum execution latency for the solu-
tions we have explored. If benefit ≤ 0, then locking any of
the remaining memory blocks would worsen the performance
and we will terminate our iterative algorithm. Otherwise, we
choose the memory block m with the maximum benefit. We
break ties arbitrarily. The algorithm also terminates when
|Locki| = A, i.e., we have locked all the cache blocks in
the cache set. Our cache locking algorithm is detailed in
Algorithm 3.

Algorithm 4: Branch-and-Bound Algorithm for Way Locking

1 cur_sol = ∅ cur_lat = 0 ;
2 foreach set Ci in the cache do
3 cur_hit := {hitTi |∅} ;
4 opt_lat :=

cur_lat+ cur_hit× hit_lat+ (accessi− cur_hit)×miss_lat ;
5 opt_sol = ∅ ;
6 for way← 1 to |A| do
7 cur_lat = 0; cur_sol = ∅ ;
8 foreach set Ci in the cache do
9 sort Mi based on the number of accesses.;

10 min_lat = inf ;
11 < sol, lat > := search(Mi, ∅, way) ;
12 cur_lat := cur_lat + lat;
13 cur_sol := cur_sol ∪ sol;
14 if cur_lat < opt_lat then
15 opt_lat := cur_lat ;
16 opt_sol := cur_sol ;
17 opt_way := way ;

18 function(search(M, Lock, way))

19 if |Lock| = way or M = ∅ then
20 compute latency and update the best solution;
21 return;
22 M := M\m; ;
23 cur_hit :=∑

m′∈Mi\M{hit(m′)|Lock};
24 remain_hit := ComputeHitBound(M, Lock, way);
25 compute lat_bound;
26 if lat_bound < min_lat then
27 search(M, Lock, way);
28 Lock := Lock ∪ m; ;
29 cur_hit :=∑

m′∈Mi\M{hit(m′)|Lock};
30 remain_hit := ComputeHitBound(M, Lock, way);
31 compute lat_bound;
32 if lat_bound < min_lat then
33 search(M, Lock, way);

a) Complexity: Let w the average analysis time of com-
puting the number of cache hits per cache set (2). w depends on
the TRP of the application, cache parameters (e.g., cache size,
associativity), and locked list. The complexity of the heuristic
algorithm is O(w ·Ms ·A ·K), where Ms is the average number
of memory blocks per cache set of the application, A is the
cache associativity, and K is the number of cache sets.

B. Way Locking

In way locking mechanism, a particular number of cache
ways are locked for the entire cache. Thus, all the cache sets
need to be considered together.

1) Branch-and-Bound Algorithm: The branch-and-bound
algorithm for way locking is presented in Algorithm 4.
Initially, it computes the latency without locking any cache
ways (lines 3 and 4). Let way be the number of locked cache
ways. Then, Algorithm 4 walks through all the possible values
for way (1 ≤ way ≤ A) and compares them. For each possible
value for way, it uses branch-and-bound search (search func-
tion at line 11) to find the optimal solution (e.g., way number
of memory blocks that gives the minimal latency) for each
cache set. The search function used in Algorithm 4 is similar
to the search function in Algorithm 1 but with a few differ-
ences. First, the search function in Algorithm 4 is extended

1394 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015

Algorithm 5: Heuristic Way Locking Algorithm

1 cur_sol = ∅ cur_lat = 0 ;
2 foreach set Ci in the cache do
3 Locki := ∅ ;
4 cur_hit := {hitTi |∅} ;
5 opt_lat :=

opt_lat+ cur_hit× hit_lat+ (accessi− cur_hit)×miss_lat ;
6 way := 1; flag := TRUE ;
7 while flag do
8 cur_lat := 0; cur_sol := ∅ ;
9 foreach set Ci in the cache do

10 min_lat = inf;
11 foreach m ∈ Mi\Locki do
12 new_hitm := {hitTi |Locki ∪ {m}};
13 latm := new_hitm × hit_lat + (accessi −

new_hitm)× miss_lat + (|Locki| + 1)× lock_lat ;
14 if (latm < min_lat) then
15 min_lat := lat_m ;
16 selected_block := m;
17 cur_lat := cur_lat + min_lat ;
18 Lock_i := Locki ∪ selected_block ;
19 cur_sol := cur_sol ∪ selected_block ;
20 benefit := opt_lat − cur_lat;
21 if benefit > 0 then
22 opt_lat := cur_lat;
23 opt_sol := cur_sol ;
24 else
25 flag := FALSE;
26 if way = A then
27 flag := FALSE;
28 way := way+ 1;

with an extra argument way (line 11), the target number of
locked cache ways. The search process will be terminated if
the locked cache lines is equivalent to the target way value.
Second, when the ComputeHitBound function (Algorithm 2)
is called in the search function, only way number of mem-
ory blocks can be locked. Finally, Algorithm 4 sums the total
latency for all the cache sets and determines the best way value
(lines 6–17).

2) Heuristic Approach: We also propose an efficient heuris-
tic algorithm for way locking. Our heuristic way locking
algorithm detailed in Algorithm 5 is iterative in nature. For
each iteration, Algorithm 5 selects the memory block with
the minimum latency from the remaining unlocked memory
blocks for each cache set. Then, it sums the total latency for
all the cache sets. Algorithm 5 stops to increase the number of
locked cache ways until either the total latency of the current
iteration (way) is larger than the previous iteration (way− 1)
or the entire cache is locked. Similar to the line locking, the
complexity of the heuristic algorithm is O(w ·Ms · A · K).

C. Code Layout

The performance of the cache locking algorithm critically
depends on the code memory layout. In the discussion so far,
we have assumed that we start with the “natural” code lay-
out. However, instruction cache performance can be improved
throughout procedure placement—reordering procedures so
that cache conflicts are reduced [4]. Clearly, procedure place-
ment and cache locking are complementary approaches. In the

experiments, we will evaluate the effects of cache locking, pro-
cedure placement, and a combined approach. For procedure
placement, we choose temporal block profile (TBP) [4]—a
state-of-the-art procedure placement technique. In TBP, the
memory block conflicts among procedures are modeled using
temporal relationship (i.e., which procedures and memory
blocks are referenced between two consecutive accesses to
another memory block). Then, the TBP is used along with
the cache configuration and procedure sizes to estimate the
cost/benefit of procedure placement and determine the pro-
cedure locations. Compared to previous procedure placement
techniques, TBP achieves higher cache miss improvement
thanks to its accurate modeling [4].

D. Discussion

In this paper, we focus on the static locking where the
locking routine is executed only once at the beginning of
the program and remains unchanged. In the experiments, we
will demonstrate that our static locking achieves substan-
tial improvement for the widely used embedded applications.
However, static locking may not be effective for large pro-
grams where a large number of memory blocks compete
for limited cache resource. For these applications, we can
use dynamic cache locking to overcome the cache space
limitation through time multiplexing. More clearly, we can
partition the program into regions based on the program phase
behavior [12], [23] and use our static locking algorithms for
each region. However, for dynamic cache locking, the lock-
ing overhead and code layout change due to the insertions of
locking routines have to be taken into account.

We use instruction cache to demonstrate the benefit of cache
locking. Instruction cache is important for embedded sys-
tems as instructions are fetched every clock cycle. But our
techniques are equally applicable to data caches. Given the
instruction access trace, our algorithms determine the locked
memory blocks. Similarly, our techniques can be used for data
caches provided with the data access trace. In order to do this,
we can execute the program on the target architecture and
generate the entire memory trace and each memory access is
associated with its type (instruction or data).

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

We select benchmarks from MiBench and MediaBench
for evaluation purpose. The benchmarks and their charac-
teristics are shown in Table I. We conduct our experiments
using SimpleScalar framework [35]. We evaluate our tech-
niques with different cache parameters. We vary the cache
size (2, 4, 8, and 16 KB) and cache associativity (1, 2, 4, 8),
but keep the block size constant (32 bytes). The extra code to
fetch and lock memory blocks are inserted at the end of the
program as a trampoline. Thus, it will not affect the original
program layout. As we are modeling the instruction cache, we
assume a simple in-order processor with unit-latency for all the
data memory references. The cache hit latency is 1 cycle and
the cache miss penalty is 100 cycles. We assume 150 cycles

LIANG et al.: INSTRUCTION CACHE LOCKING USING TRP 1395

TABLE I
CHARACTERISTICS OF BENCHMARKS

Fig. 3. Performance improvement over cache without locking for various cache configurations.

for locking and unlocking a memory block. The code size of
each program is shown in the last column of Table I.

We generate the instruction trace of each benchmark using
sim-profile, a functional simulator. Given the address trace and
the cache configuration, we can easily create the TRP. We use
multiple different inputs to evaluate our techniques. Table I
gives the trace size of inputs 1 and 2. The TRP size of input
1 for 4 and 8 KB caches are also shown in Table I. For each
cache configuration, its TRP size is significantly more compact
compared to the address trace (KB versus MB or GB). The TRP
size depends on the cache configuration because the number
of cache hits varies for different cache configurations and TRP
only records the cache hits as only cache hits are affected by
locking. The TRP size also depends on the TCS, which might
be different for different cache configurations. We observe that
for the same size cache, most likely the size of TRP increases
with the associativity. For the same size of cache, when the
associativity (the number of cache ways) increases, the number
of cache sets will reduce to keep the cache size constant. Thus,
there are more memory blocks mapped to each cache set for
the highly associative caches. Memory blocks mapped to the
same cache set will conflict with each other. Hence, the TCS
will be more complicated for the highly associative caches.
This explains why TRP size increases with the associativity.
Similar findings have been observed for 2 and 16 KB caches,
which are shown due to space limitation.

We propose two locking mechanisms: 1) line locking
and 2) way locking. For each locking mechanism, we pro-
pose two algorithms: a branch-and-bound algorithm and a
heuristic algorithm. In the following, we perform two sets

of experiments to evaluate our technique. First, we present
the performance and power consumption improvement of our
heuristic line locking technique in Section VI-B. Second, we
compare different locking mechanisms, locking algorithms,
code memory layouts, and cache replacement policies in
Section VI-C.

B. Performance Results

We use heuristic line locking as our default locking tech-
nique. Here, we first evaluate its performance and energy
consumption improvement. In Section VI-C, we compare line
and way locking mechanisms. For each cache size, we vary
the associativity from 1 to 8. However, for any cache size, the
performance and energy improvement for direct mapped cache
is minimal. This is expected as only one block is available per
cache set and locking that block implies cache misses for all
the remaining memory blocks mapped to the same cache set.
Hence, in the following, we focus on the high associativity
caches (2-, 4-, and 8-way).

1) Performance Improvement: Fig. 3 shows the perfor-
mance (e.g., cycles) improvement for various cache sizes
(2, 4, and 8 KB). For each cache size, we vary the associa-
tivity from 2 to 8. Some benchmarks (e.g., adpcmd, sha, etc.)
do not gain considerable performance improvement because
the absolute cache misses for them are small. Thus, the
improvement in cache misses will not contribute much to
the overall performance improvement. But for the benchmarks
with high number of cache misses (e.g., blowfish, gsm, etc.),
cache locking achieves substantial performance improvement.

1396 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015

Fig. 4. Energy consumption improvement over cache without locking for various cache configurations.

Fig. 5. Evaluations with more than two inputs for Rijndael and Dijkstra.

Overall, we obtain 10% improvement on average for 2 KB
cache, 12% improvement on average for 4 KB cache, and
11% improvement on average for 8 KB cache.

2) Energy Consumption Improvement: Fig. 4 shows the
memory hierarchy energy consumption improvement for var-
ious cache sizes (2, 4, and 8 KB). For each cache size, we
vary the associativity from 2 to 8. For different cache config-
urations, the energy consumed per cache access is different.
We model the energy consumption of different cache configu-
rations using the CACTI [36] model for 0.13 µm technology.
As for the energy consumption of one access to memory, it
is assumed to be 200 times of energy consumption of cache
hit [29]. We obtain 11% improvement on average for 2 KB
cache, 13% improvement on average for 4 KB cache, and
12% improvement on average for 8 KB cache.

3) Large Caches: We also evaluate our techniques using
16 KB cache. On average, we obtain 7% and 9% improve-
ment for performance and energy consumption, respectively.
Compared to smaller caches (2, 4, and 8 KB), the improvement
of large cache (16 KB) is smaller. This is because the number
of cache misses decreases given a larger cache, which means
there are less opportunities for cache locking to improve.

4) Evaluation With Two Inputs: Our locking algorithm has
two phases: 1) profiling and 2) locking phases as described in
Section V. In the profiling phase, it builds the TRP based on
a set of representative inputs. However, in reality, it might be
difficult to identify representative inputs for various programs.
For the above experiments, we use the same input for profiling
and evaluation (input 1 in Table I). Here, we evaluate the our
technique (heuristic) when the profiling and evaluation inputs
are different. More clearly, we build the TRP and determine
the memory blocks to lock using input 1 and then evaluate the
performance improvement using input 2. Overall, we still obtain
high performance improvement. We obtain 10% improvement
on average for 2 KB cache, 11% improvement on average for

4 KB cache, 10% improvement on average for 8 KB cache,
and 6% improvement on average for 16 KB cache.

5) Evaluation With More Than Two Inputs: We also evalu-
ated our technique (heuristic) using more than two input sets.
We use benchmarks Rijndael and Dijkstra as examples. For
each benchmark, we use four different inputs and the inputs
are obtained from the Midatasets [37]. Then, for each input,
we use it as the profiling input and evaluate across all the
four inputs. The results are shown in Fig. 5. The performance
improvement shown in Fig. 5 is the average performance
improvement across all the cache configurations. For bench-
marks with predictable behavior like Rijndael, there is very
little variation across different inputs. Thus, for these appli-
cations, any input can be a representative input. On the other
hand, for benchmarks with dynamic behavior like Dijkstra, dif-
ferent inputs can lead to different performance improvement.
This is because different inputs may exercise different program
paths. But we still get significant performance improvement
compared to the cache without locking for all test inputs.
Moreover, given a test input, the variation across different
profile inputs is small (except for input 1). Nevertheless, for
such dynamic applications, multiple different input sets should
be chosen carefully to increase the likelihood of covering
all the input-dependent branches and accurately create the
representative inputs. We leave this as future work.

6) Partial Locking Results: Our cache locking is guided by
careful cost-benefit analysis. On one hand, if it is beneficial
to lock one memory block so that its cache misses are con-
verted to cache hits, then our cache locking solution will lock
it. On the other hand, if it is beneficial to keep a cache line
unlocked so that multiple memory blocks can benefit from it,
then our cache locking solution will not lock it. Through judi-
cious cost-benefit analysis, our technique only partially locks
the cache. Table II gives the percentage of cache lines locked
in the cache for different cache configurations. As shown,

LIANG et al.: INSTRUCTION CACHE LOCKING USING TRP 1397

TABLE II
PERCENTAGE OF LOCKED CACHE LINES

Fig. 6. Performance improvement comparison of heuristic line and way locking for different cache associativity.

for all the benchmarks, our cache locking algorithm locks only
a fraction of the cache lines.

For most of the benchmarks and cache configurations, the
percentage of the locked cache lines increases with the asso-
ciativity for the same size cache. Higher associativity cache
provides more opportunities for cache locking as more TCSs
can fit into it. However, this is not always true (e.g., Bitcnts in
8 KB cache and Mpeg2dec in 2 KB cache). For higher asso-
ciativity caches, their TCSs tend to be more complex as the
number of cache sets is reduced and there are more memory
blocks mapped to each cache set. When TCSs become com-
plex, locking one memory block may result in cache misses
for other memory blocks. For example, for Mpeg2dec in 2 KB
and 8-way cache, it turns out locking any memory block will
cause negative performance improvement. Thus, our locking
algorithm chooses not to lock for this case.

C. Comparison

1) Line Locking Versus Way Locking: There exist two lock-
ing mechanisms: 1) line locking and 2) way locking. In line
locking, different number of cache lines can be locked for
different cache sets. In way locking, same number of cache
lines are locked for all the cache sets. Fig. 6 compares the
performance improvement of line and way locking for the
heuristic algorithms. For different associativity (2-, 4-, and 8-
way), Fig. 6 computes the average performance improvement
across different size caches (2, 4, and 8 KB). We observe
that for the benchmarks that have different memory behaviors
across cache sets (e.g., Dijkstra, qsort), way locking that forces
all the cache sets lock the same number of cache lines performs
worse than line locking. For the benchmarks that have almost

Fig. 7. Performance improvement comparison of heuristic and
branch-and-bound line locking algorithms for different cache associativity.

unique memory behaviors across the cache sets (e.g., Rijndael,
gsm), way locking is as good as line locking. For 2-way
caches, line locking improves performance by 8.6% on average
while way locking improves performance by 6.4% on aver-
age. For 4-way caches, line locking improves performance by
11.4% on average while way locking improves performance
by 9.5% on average. For 8-way caches, line locking improves
performance by 12% on average while way locking improves
performance by 11% on average.

2) Heuristic Versus Branch-and-Bound: For both line lock-
ing and way locking, we propose two algorithms. One is
a branch-and-bound and another is a heuristic. We first
compare the performance improvement of the heuristic and
branch-and-bound algorithms for line locking. Fig. 7 shows
the average performance improvement of 4-way associative
caches across different sizes (2, 4, and 8 KB). As shown,
the heuristic results are very close to the results of branch-
and-bound algorithm. For 2-way set associative caches, the

1398 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015

Fig. 8. Performance improvement comparison of ours and Anand–Barua techniques.

TABLE III
RUNTIME COMPARISON

heuristic solution improves the performance by 8.6% on aver-
age, while the branch-and-bound algorithms improves it by
8.7% on average. For 4-way associative cache, the heuris-
tic achieves 11.4% performance improvement on average,
while the branch-and-bound algorithm returns 11.5% improve-
ment. As for the runtime of the algorithms, the heuristic is
1–273 times faster than the branch-and-bound algorithm for
low associativity caches (≤4). For 8-way associative cache,
the heuristic returns solutions quite fast (Table III), but the
branch-and-bound algorithm fails to terminate within 10 hours
for some big benchmarks.

Similar to line locking, our heuristic results are very close
to the results of branch-and-bound for way locking. For 2-way
set associative caches, the heuristic solution improves the per-
formance by 6.4% on average, while the branch-and-bound
algorithm improves it by 6.5% on average. For 4-way set asso-
ciative caches, the heuristic solution improves the performance
by 9.5% on average, while the branch-and-bound algorithm
improves it by 9.9% on average.

3) Comparison With Anand–Barua Method: We compare
our line locking heuristic with Anand–Barua method [3]—a
state-of-the-art technique in the literature targeting cache
locking for the average-case performance improvement.
Anand–Barua method is based on line locking mechanism.
Their proposal is an iterative simulation-based heuristic and
needs feedback from trace-driven simulator in each iteration.
We implement their algorithm and compare against our line
locking heuristic both in terms of performance and efficiency.

In terms of performance improvement, our approach
generally performs better or at least equal compared to
Anand–Barua’s method for every cache configuration. Fig. 8

shows the average performance improvement for 2-, 4-, and
8-way caches. For each way value, the improvement shown
in Fig. 8 is the average performance improvement across all
cache sizes (2, 4, and 8 KB) as both methods do not gain
much for direct mapped caches. As evident from Fig. 8,
our heuristic achieves higher performance improvement than
Anand–Barua’s method across all the benchmarks and cache
configurations. For the benchmarks blowfish and stringsearch,
the improvement over Anand–Barua’s method are about 20%
for some configurations. This is because our cache modeling
is accurate whereas the cache hits/misses are approximated in
Anand–Barua’s work.

Anand–Barua method invokes cache simulation in each iter-
ation. However, cache simulation can be very slow. In addition,
in their technique, the number of simulations required grows
linearly with the total number of locked memory blocks. When
the number of memory blocks locked is not small, simu-
lation based approach may not be feasible. In contrast, we
only need one round of profiling and the subsequent anal-
ysis relies only on compact TRPs. The runtime comparison
of our heuristic and Anana-Barua’s method is detailed in
Table III. The time presented is the average runtime across all
the tested cache configurations (2, 4, and 8 KB cache). Our
approach is 155–284 times faster compared to Anand–Barua’s
method.

4) Code Memory Layout: As discussed in Section V-C,
procedure placement and instruction cache locking are com-
plementary approaches and cache performance can benefit
significantly through a combination of these two approaches.
Here, we first compare locking and procedure placement [4]
and then combine them together. For procedure placement,
we choose TBP [4]—a state-of-the-art procedure placement
technique. Procedure placement techniques are effective for
applications with substantial number of procedures. Hence,
we compare cache locking and procedure placement using
large applications Jpeg, Lame, and Mpeg2. Fig. 9 compares
the performance improvement of TBP and cache locking. We
note that procedure placement performs very well for direct
mapped caches, while cache locking achieves very small or
no improvement at all. In general, procedure placement is a
good choice for the low associativity caches (1 or 2), while
locking is more suitable for the higher associativity caches
(2, 4, and 8). This is because higher associativity leads to fewer
cache sets leaving little opportunity for procedure reordering.
In contrast, higher associativity provides more opportunities
for cache locking. We also evaluated a combined locking and
layout optimization. We first perform procedure placement for

LIANG et al.: INSTRUCTION CACHE LOCKING USING TRP 1399

Fig. 9. Performance improvement comparison of procedure placement (TBP) and our cache locking. Cache size is 8 K.

Fig. 10. Performance improvement with FIFO replacement policy for various cache configurations.

each benchmark. Then, we apply cache locking based on the
new layout. Fig. 9 shows the performance improvement using
this combined strategy (layout + locking). As shown, layout
combined with locking is an effective technique to improve
cache performance.

5) Impact of Replacement Policy: Our TRP based cache
modeling is developed under the assumption that replacement
policy is LRU. Berg and Hagersten [38] observed that different
replacement policies may have little effect on the miss ratio
for most of the applications, but small differences exist. We
evaluate our techniques for other replacement policies as well.
We try replacement policies FIFO. We first obtain the perfor-
mance without cache locking using FIFO policy. Then, we use
our techniques which employ LRU based TRP cache modeling
to select the memory blocks to lock for each cache set. Finally,
for the modified program (with locking), we obtain the per-
formance using FIFO replacement policy. The performance
improvement with locking (heuristic) over a cache without
locking for FIFO replacement policy is shown in Fig. 10 for
different cache sizes (2, 4, and 8 KB). For each cache size, we
vary the associativity from 1 to 8. We observe that our cache
locking technique is still quite effective for FIFO replacement
policy. Overall, we obtain 9.7% improvement on average for
2 KB cache, 10.7% improvement on average for 4 KB cache,
and 9.0% improvement on average for 8 KB cache.

VII. CONCLUSION

Cache locking was primarily used for improving timing pre-
dictability for hard real-time embedded systems. In this paper,
we argue and demonstrate that cache locking is a quite effec-
tive technique to improve the average-case execution time of
general embedded applications. We first propose TRP to model
the cost and benefit of cache locking precisely and efficiently.
Then, we propose two locking algorithms–a branch-and-bound
algorithm and a heuristic algorithm for line and way locking

mechanisms, respectively. Our locking algorithms partially
lock the cache with beneficial memory blocks and leave the
remaining space for other memory blocks to exploit their data
localities. Experiment results indicate that our heuristic lock-
ing algorithm can improve the performance by 12% on average
for 4 KB cache. In addition, compared to the state-of-the-art
approach, our heuristic is better both in terms of performance
and efficiency.

REFERENCES

[1] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural-level power analysis and optimizations,” in Proc. 27th
Annu. Int. Symp. Comput. Archit., Vancouver, BC, Canada, 2000,
pp. 83–94.

[2] J. Montanaro et al., “A 160-Mhz, 32-b, 0.5-W CMOS RISC
microprocessor,” Digit. Tech. J., vol. 9, no. 1, pp. 49–62, 1997.

[3] K. Anand and R. Barua, “Instruction cache locking inside a binary
rewriter,” in Proc. Int. Conf. Compil. Archit. Syn. Embedded Syst.,
Grenoble, France, 2009, pp. 185–194.

[4] Y. Liang and T. Mitra, “Improved procedure placement for set associa-
tive caches,” in Proc. Int. Conf. Compil. Archit. Syn. Embedded Syst.,
Grenoble, France, 2010, pp. 147–156.

[5] Y.-T. S. Li, S. Malik, and A. Wolfe, “Cache modeling for real-time
software: Beyond direct mapped instruction caches,” in Proc. 17th IEEE
Real-Time Syst. Symp., Los Alamitos, CA, USA, 1996, pp. 254–263.

[6] H. Theiling, C. Ferdinand, and R. Wilhelm, “Fast and precise WCET
prediction by separated cache and path analyses,” Real-Time Syst.,
vol. 18, nos. 2–3, pp. 157–179, 2000.

[7] X. Li, Y. Liang, T. Mitra, and A. Roychoudury, “Chronos: A timing ana-
lyzer for embedded software,” Sci. Comput. Program., vol. 69, nos. 1–3,
pp. 56–67, 2007.

[8] H. Falk, S. Plazar, and H. Theiling, “Compile-time decided instruction
cache locking using worst-case execution paths,” in Proc. 5th IEEE/ACM
Int. Conf. Hardw./Softw. Codesign Syst. Syn., Salzburg, Austria, 2007,
pp. 143–148.

[9] T. Liu, M. Li, and C. Xue, “Minimizing WCET for real-time embedded
systems via static instruction cache locking,” in Proc. IEEE Real-
Time Embedded Technol. Appl. Symp., San Francisco, CA, USA, 2009,
pp. 35–44.

[10] S. Plazar, J. C. Kleinsorge, P. Marwedel, and H. Falk, “WCET-aware
static locking of instruction caches,” in Proc. 10th Int. Symp. Code
Gener. Optim., San Jose, CA, USA, 2012, pp. 44–52.

1400 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015

[11] Y. Liang et al., “Timing analysis of concurrent programs running on
shared cache multi-cores,” Real-Time Syst., vol. 48, no. 6, pp. 638–680,
2012.

[12] A. Arnaud and I. Puaut, “Dynamic instruction cache locking in hard real-
time systems,” in Proc. 14th Int. Conf. Real-Time Netw. Syst., Poitiers,
France, 2006, pp. 1–10.

[13] H. Ding, Y. Liang, and T. Mitra, “WCET-centric partial instruction cache
locking,” in Proc. 49th Annu. Design Autom. Conf., San Francisco, CA,
USA, 2012, pp. 412–420.

[14] H. Ding, Y. Liang, and T. Mitra, “WCET-centric dynamic instruc-
tion cache locking,” in Proc. Conf. Design Autom. Test Europe Conf.
Exhibit. (DATE), Dresden, Germany, 2014, pp. 1–6.

[15] I. Puaut and D. Decotigny, “Low-complexity algorithms for static cache
locking in multitasking hard real-time systems,” in Proc. 23th IEEE
Real-Time Syst. Symp., Austin, TX, USA, 2002, pp. 114–123.

[16] L. C. Aparicio, J. Segarra, C. Rodríguez, and V. Viñals, “Improving
the WCET computation in the presence of a lockable instruction cache
in multitasking real-time systems,” J. Syst. Archit., vol. 57, no. 7,
pp. 695–706, 2011.

[17] T. Liu, M. Li, and C. Xue, “Instruction cache locking for multi-task real-
time embedded systems,” Real-Time Syst., vol. 48, no. 2, pp. 166–197,
2012.

[18] H. Ding, Y. Liang, and T. Mitra, “Integrated instruction cache analy-
sis and locking in multitasking real-time systems,” in Proc. 50th Annu.
Design Autom. Conf., Austin, TX, USA, 2013, pp. 1–10.

[19] X. Vera, B. Lisper, and J. Xue, “Data cache locking for higher program
predictability,” in Proc. ACM SIGMETRICS Int. Conf. Meas. Model.
Comput. Syst., San Diego, CA, USA, 2003, pp. 272–282.

[20] J. Reineke, D. Grund, C. Berg, and R. Wilhelm, “Timing predictability of
cache replacement policies,” Real-Time Syst., vol. 37, no. 2, pp. 99–122,
Nov. 2007.

[21] H. Yang et al., “Improving power efficiency with compiler-assisted cache
replacement,” J. Embedded Comput., vol. 1, no. 4, pp. 487–499, 2005.

[22] R. A. Uhlig and T. N. Mudge, “Trace-driven memory simulation:
A survey,” ACM Comput. Surv., vol. 29, no. 2, pp. 128–170, 1997.

[23] T. Liu, M. Li, and C. J. Xue, “Instruction cache locking for embed-
ded systems using probability profile,” J. Signal Process. Syst., vol. 69,
pp. 173–188, Nov. 2012.

[24] K. Beyls and E. H. D’Hollander, “Reuse distance as a metric for cache
behavior,” in Proc. IASTED Int. Conf. Parallel Distrib. Comput. Syst.,
Richardson, TX, USA, 2001, pp. 617–662.

[25] C. Ding and Y. Zhong, “Predicting whole-program locality through reuse
distance analysis,” ACM SIGPLAN Not., vol. 38, no. 5, pp. 245–257,
2003.

[26] A. Gordon-Ross, F. Vahid, and N. Dutt, “Automatic tuning of two-level
caches to embedded applications,” in Proc. Conf. Design Autom. Test
Europe, vol. 1. Paris, France, 2004, pp. 208–213.

[27] I. Nawinne, J. Schneider, H. Javaid, and S. Parameswaran, “Hardware-
based fast exploration of cache hierarchies in application specific
MPSoCs,” in Proc. Conf. Design Autom. Test Europe, Dresden,
Germany, 2014, pp. 283:1–283:6.

[28] Y. Liang and T. Mitra, “Static analysis for fast and accurate design
space exploration of caches,” in Proc. 6th IEEE/ACM/IFIP Int. Conf.
Hardw./Softw. Codesign Syst. Syn. (CODES+ISSS), Atlanta, GA, USA,
2008, pp. 103–108.

[29] C. Zhang, F. Vahid, and W. Najjar, “A highly configurable cache
architecture for embedded systems,” SIGARCH Comput. Archit. News,
vol. 31, no. 2, pp. 136–146, 2003.

[30] H. Cook et al., “A hardware evaluation of cache partitioning to improve
utilization and energy-efficiency while preserving responsiveness,”
in Proc. 40th Annu. Int. Symp. Comput. Archit. (ISCA), Tel Aviv, Israel,
2013, pp. 308–319.

[31] V. Suhendra and T. Mitra, “Exploring locking & partitioning for pre-
dictable shared caches on multi-cores,” in Proc. 45th Annu. Design
Autom. Conf. (DAC), Anaheim, CA, USA, 2008, pp. 300–303.

[32] L. D. Bathen, N. D. Dutt, D. Shin, and S. Lim, “SPMVisor: Dynamic
scratchpad memory virtualization for secure, low power, and high per-
formance distributed on-chip memories,” in Proc. 7th IEEE/ACM/IFIP
Int. Conf. Hardw./Softw. Codesign Syst. Syn., Taipei, Taiwan, 2011,
pp. 79–88.

[33] M. Verma, L. Wehmeyer, and P. Marwedel, “Dynamic overlay of scratch-
pad memory for energy minimization,” in Proc. 2nd IEEE/ACM/IFIP
Int. Conf. Hardw./Softw. Codesign Syst. Syn., Stockholm, Sweden, 2004,
pp. 104–109.

[34] B. Buck and J. K. Hollingsworth, “An API for runtime code patching,”
Int. J. High Perform. Comput. Appl., vol. 14, no. 4, pp. 317–329, 2000.

[35] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An infrastructure for
computer system modeling,” IEEE Comput., vol. 35, no. 2, pp. 59–67,
Feb. 2002.

[36] J. E. W. Steven and P. J. Norman, “CACTI: An enhanced cache access
and cycle time model,” IEEE J. Solid-State Circuits, vol. 31, no. 5,
pp. 677–688, May 1996.

[37] G. Fursin, J. Cavazos, and O. Temam, “MiDataSets: Creating the condi-
tions for a more realistic evaluation of iterative optimization,” in Proc.
Int. Conf. High Perform. Embedded Archit. Compil. (HiPEAC), Ghent,
Belgium, 2007, pp. 245–260.

[38] E. Berg and E. Hagersten, “StatCache: A probabilistic approach to effi-
cient and accurate data locality analysis,” in Proc. IEEE Int. Symp.
Perform. Anal. Syst. Softw. (ISPASS), Austin, TX, USA, 2004, pp. 20–27.

Yun Liang received the B.S. degree in software
engineering from Tongji University, Shanghai,
China, and the Ph.D. degree in computer sci-
ence from the National University of Singapore,
Singapore, in 2004 and 2010, respectively.

He was a Research Scientist with Advanced
Digital Science Center, University of Illinois
Urbana-Champaign, Urbana, IL, USA, from 2010
to 2012. He has been an Assistant Professor
with the School of Electronics Engineering and
Computer Science, Peking University, Beijing,

China, since 2012. His current research interests include graphics processing
unit architecture and optimization, heterogeneous computing, embedded
system, and high level synthesis.

Dr. Liang was a recipient of the Best Paper Award in
International Symposium on Field-Programmable Custom Computing
Machines (FCCM)’11 and the best paper award nominations in
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS)’08 and Design Automation Conference (DAC)’12.
He serves a Technical Committee Member for Asia South Pacific Design
Automation Conference (ASPDAC), Design Automation and Test in
Europe (DATE), and International Conference on Compilers Architecture and
Synthesis for Embedded Systems (CASES). He is the TPC Subcommittee
Chair for ASPDAC’13.

Tulika Mitra received the Ph.D. degree in computer
science from the State University of New York at
Stony Brook, Stony Brook, NY, USA, in 2000.

She is a Professor of Computer Science with
the School of Computing, National University
of Singapore, Singapore. Her current research
interests include design automation of embed-
ded real-time systems with particular emphasis
on application-specific processors, software timing
analysis/optimizations, heterogeneous multicores,
and energy-aware computing.

Lei Ju received the B.E. and Ph.D. degrees
from the School of Computing, National University
of Singapore, Singapore, in 2005 and 2010,
respectively.

He has been an Associate Professor with the
School of Computer Science and Technology,
Shandong University, Jinan, China, since 2011. His
current research interests include design, analysis,
and optimization of real-time systems and embed-
ded systems. He has authored a number of referred
publications.

Prof. Ju was a recipient of the best paper award nominations in
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS)’08 and RTAS’11. He is currently a member of the
CCF Computer Architecture Technical Committee, and serves as the Technical
Program Committee Member of several international conferences.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

