
Megrez: Parallelizing FPGA Routing with Strictly-Ordered Partitioning

Minghua Shen∗ and Guojie Luo∗†
∗Center for Energy-efficient Computing and Applications, School of EECS, Peking University, China

†Collaborative Innovation Center of High Performance Computing, NUDT, China

Email: {msung, gluo}@pku.edu.cn

I. INTRODUCTION

FPGAs play a crucial role in the space of customizable

accelerators over the next few years. A chief limiting factor is

that FPGA CAD tools are cumbersome and time-consuming

to most application developers. Routing is the most complex

step in FPGA design flow and NP-complete problem. The

PathFinder routing algorithm [1] is in dominant use in FPGA

CAD research. However, PathFinder is sequential in nature

and lengthy in runtime. Parallelization has the potential to

solve the issue but faces non-trivial challenges. In this work

we introduce Megrez that uses strictly-ordered partitioning to

explore the parallelism on GPU. Experimental results show

that Megrez achieves an average of 15.13× speedup on GPU

with negligible influence on the routing quality.

II. METHODOLOGY

The methodology of Megrez consists of two phases: par-

titioning and parallelization. The partitioning phase separates

the nets into multiple subsets while maintaining ordinary net

ordering for same routing quality. In the parallelization phase,

the nets in the same subset are routed in parallel, and the

subsets are routed in serial.

We partition the nets into M subsets s1, s2, ..., sm with

r1, r2, ..., rn nets respectively. Note that r1+r2+...+rn = n,

and the relative ordering for the subsets must be preserved.

Specifically, the nets in the same subset are independent,

and the dependent nets are distributed in different subsets.

And it is completely different from the previous partitioning

methods [2], [3]. The net partitioning can be solved by

dynamic programming in quadratic time. We will analyze the

time complexity of the partitioning below. Table I gives the

related notations.

TABLE I
NOTATIONS FOR THE PARTITIONING PROBLEM

Notation Description
E[j][i] The feasibility indicator whether the nets

rj , rj+1, ..., ri are independent.
C[i] The minimum number of subsets for the nets from

r1 to ri with the strictly-ordered and independent
properties.

Specifically,

E[j][i] =

{
1, independent

+∞, otherwise

The algorithm consists of two stages: the precomputation

stage and the dynamic programming stage. We can pre-

compute the E[j][i] using simple pair-wise testing in worst-

case quadratic time. In practice, even this simple algorithm

terminates fast, because the size of independent subsets is

limited.
Based on the precomputed E[j][i], we can start the dynamic

programming algorithm. The minimal number of strictly-

ordered subsets of the first i nets satisfies

C[i] =

{
1, i = 0

mini−1
j=0{C[j] + E[j + 1][i]}, i ≥ 1

The solution to our problem is C[N]. It is obvious that

computing C[N] takes O(N2), given E[i][j]. Thus, the time

complexity of the overall dynamic programming algorithm is

quadratic.
We use dynamic parallelism to parallelize the FPGA routing

on GPU. The previous work [4] has also demonstrated the

effectiveness of dynamic parallelism with GPU techniques.

We collect the independent nets according to their original

ordering, and make sure that their concurrent routing will not

affect their routing results, comparing to the sequential routing.

With optimal partitioning, we start to route the first subset of

independent nets concurrently and then route the next subset

until all the subsets are processed. It is evident that this subset

can be routed in parallel without affecting the routing results.

III. EVALUATION

The parallel routing method described in this paper is imple-

mented with C++ and CUDA. The experiments are performed

on a Linux server with a 6-core Intel Xeon E5-2620 CPU

at 2.2GHz and 32 GB shared memory, equipped with a Tesla

K40c GPU having 2880 cores in 15 streaming multiprocessors

and 12 GB video memory. The baseline for comparison is the

original VPR 7.0 router [5]. Experimental results show that

Megrez achieves an average speedup of 15.13× on a single

GPU. It effectively maintains deterministic results on different

platforms and always produces the same solutions as the serial

version.

IV. ACKNOWLEDGEMENT

This work is partly supported by National Natural Science

Foundation of China (NSFC) Grant 61520106004.

REFERENCES

[1] L. McMurchie and C. Ebeling. Pathfinder: A negotiation-based
performance-driven router for FPGAs. FPGA 1995.

[2] M. Gort and J. Anderson. Deterministic multi-core parallel routing for
FPGAs. FPL, 2010.

[3] M. Shen and G. Luo. Accelerate FPGA routing with parallel recursive
partitioning. ICCAD 2015.

[4] M. Shen and G. Luo. Corolla: GPU-accelerated FPGA routing based on
subgraph dynamic expansion. FPGA 2017.

[5] J. Rose et al. VPR 7.0: Next generation architecture and CAD system for
FPGAs. TRETS 2014.

2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines

978-1-5386-4037-1/17 $31.00 © 2017 IEEE

DOI 10.1109/FCCM.2017.18

27

