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Abstract
The past few years have witnessed an evolutionary

change in the smartphone ecosystem. Smartphones have
gone from closed platforms containing only pre-installed
applications to open platforms hosting a variety of third-
party applications. Unfortunately, this change has also led
to a rapid increase in Abnormal Battery Drain (ABD) prob-
lems that can be caused by software defects or miscon-
figuration. Such issues can drain a fully-charged battery
within a couple of hours, and can potentially affect a sig-
nificant number of users.

This paper presents eDoctor, a practical tool that helps
regular users troubleshoot abnormal battery drain issues
on smartphones. eDoctor leverages the concept of exe-
cution phases to capture an app’s time-varying behavior,
which can then be used to identify an abnormal app. Based
on the result of a diagnosis, eDoctor suggests the most ap-
propriate repair solution to users. To evaluate eDoctor’s
effectiveness, we conducted both in-lab experiments and
a controlled user study with 31 participants and 17 real-
world ABD issues together with 4 injected issues in 19
apps. The experimental results show that eDoctor can suc-
cessfully diagnose 47 out of the 50 use cases while impos-
ing no more than 1.5% of power overhead.

1 Introduction

Smartphones have become pervasive. Canalys re-
ported [12] that 487.7 million smartphones were shipped
in 2011 — marking the first time that smartphone sales
overtook traditional personal computers (including desk-
tops, laptops and tablets).

Configured with more powerful hardware and more
complex software, smartphones consume much more en-
ergy compared to feature phones (low-end cell phones
with limited functionality). Unfortunately, due to limited
energy density and battery size, the improvement pace of
battery technology is much slower compared to Moore’s
Law in the silicon industry [40]. Thus, improving battery
utilization and extending battery life has become one of
the foremost challenges in the smartphone industry.

Fruitful work has been done to reduce energy consump-
tion on smartphones and other general mobile devices,
such as energy measurement [8, 13, 39, 46], modeling and

profiling [18, 36, 46, 52], energy efficient hardware [21,
30], operating systems [7, 10, 15, 29, 42, 49, 50, 51], lo-
cation services [14, 20, 26, 31], displays [5, 17] and net-
working [4, 6, 32, 41, 43]. Previous work has achieved
notable improvements in smartphone battery life, yet the
focus has primarily been on normal usage, i.e., where the
energy used is needed for normal operation.

In this work, we address an under-explored, yet emerg-
ing type of battery problem on smartphones – Abnormal
Battery Drain (ABD).

1.1 Abnormal Battery Drain Issues

ABD refers to abnormally fast draining of a smartphone’s
battery that is not caused by normal resource usage. From
a user’s point of view, the device previously had reason-
able battery life under typical usage, but at some point the
battery unexpectedly started to drain faster than usual. As
a result, whereas users might comfortably and reliably use
their phones for an entire day, with an ABD problem their
batteries might unexpectedly exhaust within hours.

ABD has become a real, emerging problem. When we
randomly sampled 213 real world battery issues from pop-
ular Android forums, we found that 92.4% of them were
revealed to be ABD, while only 7.6% were due to nor-
mal, heavier usage (Section 2). Further, rather than be-
ing isolated cases, many ABD incidents affected a signif-
icant number of users. For instance, the “Facebook for
Android” application (Table 1-a) had a bug that prevented
the phone from entering the sleep mode, thus draining the
battery in as rapidly as 2.5 hours. The estimated number of
its users was more than 12 million at that time [24], among
whom a large portion were likely to have been affected by
this “battery bug”.

The emerging pervasiveness of ABD issues is a collat-
eral consequence of an evolutionary change in the smart-
phone industry. In the last few years, a new ecosystem has
emerged among device manufacturers, system software ar-
chitects, application developers, and wireless service car-
riers. This paradigm shift includes three aspects:

(1) The number of third-party smartphone applications
(or “apps” for short) has grown tremendously (Google
Play: 600,000 apps and 20 billion downloads [47]; App
Store (iOS): 650,000 apps and 30 billion downloads [2]),
however, most app developers are not battery-cautious.
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ID Category App/System Root Cause Resolution

(a) App Bugs Facebook
The 1.3.0 release (Aug. 3rd, 2010) of this app contained a
bug that kept the phone awake.

Downgrade to the previous version.

(b) App Bugs Gallery
The user opened a corrupted picture file in “Gallery”, which
caused the “mediaserver” process to run into an abnormal
state and hog the processor.

Automatically terminate the “medi-
aserver” after the user uses the
“Gallery” app.

(c)
App
Config

WeatherBug
A configuration change made “WeatherBug” check locations
and update weather information more frequently. Heavier us-
age of GPS causes the battery to drain quickly.

Roll back the configuration changes to
less frequent updates.

(d)
App
Config

Android
Browser

The GPS was continually turned on because the browser
was trying to find the location of the user, as requested by
“google.com”.

Go to “google.com” and disable “Al-
low use of device location”.

(e)
System
Bugs

Android
System

A bug in the Wi-Fi device driver on Nexus One caused the
phone to repeatedly enter its suspend state and immediately
wake up, resulting in severe battery drain.

The driver developer has to modify
their code to fix the problem.

(f)
System
Config

Android
System

The user configured the CPU to run at an unnecessarily high
frequency.

Roll back the configuration change.

(g)
Environ-
ment

Android
System

The user’s office building contains several radiology devices,
which interfere with cell signals and thus make the phone
spend more power searching signals.

Turn on Airplane mode when the user
is in the office.

Table 1: Representative ABD examples collected from Android forums.

Smartphone apps used to be primarily made by device
manufacturers, with appropriate training and development
resources. In contrast, smartphone apps are now mostly
developed by third-party or individual developers. They
tend to focus limited resources on app features, on which
purchase decisions are often made, but put less effort on
energy conservation.

(2) The hardware/software configurations and external
environments of smartphones have become diverse, mak-
ing it difficult and expensive to test battery usage under
all circumstances. As a result, many battery-related soft-
ware bugs escape testing, even by professional software
teams, e.g., a bug in Android that affected certain Nexus
One phones, (Table 1-e), and a bug in iOS that caused
a coninuous loop when sychronizing recurring calendar
events [11].

(3) In addition to software defects (e.g., Table 1–a, b,
d and e), ABD issues can also be caused by configuration
changes (e.g., Table 1–c, f) or environmental conditions
(e.g., Table 1–g). In many of such cases, their root causes
are not obvious to ordinary users. Therefore, it would be
beneficial if the smartphone system itself could automati-
cally diagnose ABD issues for users.

1.2 Are Existing Tools Sufficient?

Existing energy profilers, such as Android’s “Battery Us-
age” utility, PowerTutor [52], and Eprof [36, 35], monitor
energy consumption on smartphones. While they provide
some level of assistance to developers or tech-savvy users
in troubleshooting ABD issues, they are insufficient for
broadly addressing ABD issues due to three main reasons:

(1) These tools cannot differentiate normal and abnor-

mal energy consumption. A high energy consuming app
does not necessarily cause ABD. To determine an app is
“normal” or “abnormal”, a user needs to know how much
battery the app is supposed to consume, which is difficult
for typical users, especially since an app’s battery usage
can fluctuate even with normal usage.

(2) The information provided by these tools requires
technical background to understand and take actions on.
Even for tech-savvy users, information form these tools
are not sufficient for identifying the ABD causing event
(e.g., an app upgrade). Knowing causing events is critical
for pinpointing the right root cause and determining the
best resolution.

(3) As mentioned in Section 1.1, sometimes an ABD is-
sue may be caused by the underlying OS, thereby affecting
all apps. In this case, these profiling tools may not be able
to shed much light on the root cause, much less be helpful
to identify a resolution to an ongoing ABD issue.

Apps like JuiceDefender [27] automatically make con-
figuration changes to extend battery life. They help pre-
serve energy during normal usage, but they cannot prevent
or troubleshoot ABD issues.

From a user’s point of view, a highly desirable solu-
tion is to have the smartphone itself troubleshoot ABD is-
sues and suggest solutions with minimum user interven-
tion. Besides helping end users, such systems can also
collect helpful clues for developers to easily debug their
software and fix ABD-related defects in their code.

1.3 Our Contribution

This paper presents eDoctor, a practical tool to help trou-
bleshoot ABD issues on smartphones. eDoctor records re-
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source usage and relevant events, and then uses this infor-
mation to diagnose ABD issues and suggest resolutions.
To be practical, eDoctor meets several objectives, includ-
ing (1) low monitoring overhead (including both perfor-
mance and battery usage), (2) high diagnosis accuracy and
(3) little human involvement.

To identify abnormal app behavior, eDoctor borrows
a concept called “phases” from previous work in the ar-
chitecture community for reducing hardware simulation
time [44, 45]. eDoctor uses phases to capture apps’ time-
varying behaviors. It then identifies suspicious apps that
have significant phase behavior changes. eDoctor also
records events such as app installation and upgrades, con-
figuration changes, etc. It uses this information in combi-
nation with anomaly detection to pinpoint the culprit app
and the causing event, as well as to suggest the best repair
solution.

To evaluate eDoctor, we conducted a controlled user
study and in-lab experiments: (1) User study: we so-
licited 31 Android device users with various configura-
tions and usage patterns. We installed eDoctor and pop-
ular Android apps with real-world ABD issues on their
own smartphones. eDoctor could successfully diagnose 47
out of 50 cases (94%). (2) In-lab experiments: we also
measured the overhead of eDoctor in terms of its energy
consumption, storage consumption and memory footprint.
The results show that eDoctor adds little memory over-
head, and only 1.24 mW of additional power drain (repre-
senting 1.5% of the baseline power draw of an idle phone).

2 Real-world Battery Drain Issues

To understand battery drain issues on smartphones, we
randomly sampled 213 real-world battery drain issues
from three major Android forums: AndroidCentral.com,
AndroidForums.com, and DroidForums.net. To effec-
tively sample the issues from the thousands of battery-
related discussion threads in each forum, we searched a set
of keywords including “battery”, “energy”, “drain”, and
their synonyms, and then randomly picked 213 issues that
were confirmed to be resolved. With the collected issues,
we studied their root cause categories, triggering events
and repair solutions found by users (e.g., removing an app
or adjusting configuration) to get guidelines for eDoctor’s
design.

2.1 Root Cause Categories

We studied the root cause categories and distribution of
the problematic components (Figure 1). We made the fol-
lowing observations.

(1) The majority (92.4%) of the sampled battery life
complaints by users are related to abnormal battery drain,
and only 7.6% are about heavy yet normal battery usage of

Normal Usage 7.6%

Environment
8.2%

Misconfiguration
23.4%

Bugs 53.8%

Others 7.0%

(a) by root cause

Hardware 3.2%

System
Software

39.9%
Apps 47.9%

Others 9.0%

(b) by component

Figure 1: Distribution of 213 real-world battery drain issues
that we randomly sampled. The meaning of Others in each
graph: (a) problems with uncommon root causes such as battery
indicator error; (b) other sources causing battery drains such as
environmental conditions.

some mobile apps. This breakdown indicates that (i) ABD
is an emergent and pervasive problem for smartphones,
and (ii) before trouble-shooting a battery issue, one may
first need to know whether it is indeed caused by some
abnormal problems or if it is simply due to heavy usage
of the device or a particular app. An energy profiler can
give the battery usage of each app, but cannot usually tell
whether the usage is normal or abnormal.

(2) Application issues cause 47.9% of all examined
cases. This observation supports our assertion that app
developers are not energy cautious. About three-quarters
of the app issues have been identified as app bugs and the
remaining are related to configuration. Besides app issues,
other factors such as bugs in the system (22.2%), con-
figuration changes (11.8%) and environmental conditions
(8.2%) can all lead to ABD issues. It would save a user
(even a tech-savvy user) time and effort if a tool can auto-
matically pinpoint the reason for ABD issues and suggest
a repair solution accordingly.

(3) Overusing or misusing certain types of resources
can cause ABD issues. Software bugs and misconfigura-
tion can result in misusing or overusing certain types of
resources, such as GPS, sensors, etc., leading to an ABD
problem. These situations imply that it is beneficial to
monitor and analyze usage on those resources. By doing
so, eDoctor can separate abnormal from normal battery
drains and also suggest detailed repair solutions directly
related those resources.

For many ABD issues, especially those caused by mis-
configuration and system bugs, it is difficult for an energy
profiler to diagnose. For example, enabling background
data transmission may result in high energy consumption
of certain apps that transfer data when running in the back-
ground. Profilers may list these apps as top energy con-
sumer, which mislead users to think they became abnor-
mal and thus remove them.
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Events Cases Appropriate Solution

App Installation 27 Remove app
App Upgrade 11 Revert to the previous version
System Upgrade 28 Wait for new update
Configuration change 15 Adjust configuration
Environmental change 12 Adjust configuration
Others 16 Others
Not remembered 104 -

Table 2: ABD-triggering events and the most appropriate
resolving solutions. “Not remembered” refers to the cases where
users do not remember what they have done that could possibly
cause ABD issues.

2.2 Triggering Events and Resolutions

In general, ABD issues happen only after certain events,
e.g., installing a buggy app, upgrading an existing app
to a buggy version, changing configurations to be more
energy-consuming, entering a weak signal area, etc.
Therefore, knowing such triggering events is critical for
suggesting appropriate repair solutions to users, as shown
in Table 2.

Interestingly, however, in more than 48% of the 213
ABD issues, users did not remember what they had done
previously or what could be the possible ABD-triggering
event. In such cases, manually diagnosing and resolving
the issue becomes difficult. Simply removing a suspicious
app, probably the one reported by energy profiling tools as
a high energy consumer, is not always the most appropri-
ate solution; it can be either overkill or even incorrect.

3 Execution Phases in Smartphone Apps

To identify the problematic app or system for an ABD
issue, it is critical to differentiate abnormal from normal
battery usage. It is natural to immediately focus on the
app that is the top battery consumer as reported by an en-
ergy profiler. Unfortunately, as shown in Figure 2 from
a real case, such approach does not always work because
an app’s rank in the battery consumption report can fluc-
tuate over time. The challenge is that there is no clear dif-
ference between normal and abnormal periods. Thus, en-
ergy profiles and rank are not reliable indicators for trou-
bleshooting ABD issues. Additionally, Figure 2 shows
that changes in battery consumption or rank of an app
are also not accurate indicators for abnormal behaviors for
similar reasons.

To identify abnormal app behaviors, eDoctor borrows
a concept called “phases” from previous work for reduc-
ing hardware simulation time [16, 19, 23, 28, 38, 44, 45].
The previous work has shown that programs execute as a
series of phases, where each phase is very different from
the others while still having a fairly homogeneous behav-
ior between different execution intervals within the same

 

Figure 2: Battery consumption rank of the Android Gallery
app running on a real user’s phone. We recorded the battery
consumption rank of this app reported by the Android “Battery
Usage” utility, once every hour. The first 15 hours is the time
period when the app does not have the battery bug, whereas the
second 15 hours is the period when the bug manifested.

phase. Hardware researchers simulate those representative
phases to evaluate their design instead of the entire execu-
tion [45].

Phase Identification. Inspired by the previous work,
eDoctor uses phases to capture an app’s behavior in terms
of resource usage. The execution of an app is divided into
execution intervals, which are then grouped into phases.
Intervals in the same phase share similar resource usage
patterns. When an app starts to consume energy in an
abnormal way, its behavior usually manifests as new ma-
jor phases that do not appear during normal execution.
Combining such phase information together with relevant
events, such as a configuration change, eDoctor can iden-
tify both the culprit app and triggering event with high ac-
curacy.

Prior hardware simulation work studied architecture re-
lated behaviors (e.g., cache miss ratio), so they captured
phases based on instruction-level information, such as ba-
sic block vector (BBV). However, such fine-grained in-
formation is not suitable for identifying resource usage
phases because it does not directly correlate to resource
usage. Smartphone apps are different from most desktop
or server applications — they are usually relatively sim-
ple and not computationally intensive, but rather I/O in-
tensive, interacting with multiple resources (devices) such
as the display, GPS, various sensors, Wi-Fi, etc. These re-
sources are energy consuming, so mis-using or over-using
these resources leads to ABD issues. Therefore, we can
identify phases by observing how these resources are used
by an app during different execution intervals.

Our first approach starts from a fairly coarse-grain level
by recording only resource types used during each execu-
tion interval. We refer to this method as Resource Type
Vector (RTV). It is based on a simple rationale that differ-
ent execution phases use different resources. For example,
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an email client app uses the network when it receives or
sends emails. But when the user is composing an email,
it uses the processor and display. The RTV scheme uses a
bit vector to capture what resources are used in an execu-
tion interval. Each bit indicates whether a certain resource
type is used in this interval. If two intervals have the same
RTV, they belong to the same phase.

As shown in Figure 3(a) with data collected from the
Facebook app used in a real user’s smartphone, RTV
clearly shows some patterns and phase behaviors: during
different phases, different types of resources are used, and
phases appear multiple times during different intervals. As
the figure shows, the most frequent phase is that only the
CPU is running. In this phase, most of the time the app
is idle. The second most frequent phase has both CPU
and network active, which indicates the app transfers and
processes data.

(a) Phase pattern based on RTV

(b) Phase pattern based on RUV

Figure 3: The phase behavior of the Facebook App in a real
user’s smartphone. In the top part of both figures, the shaded
bars indicate which phase the app is in. In the bottom part of
figure (a), shaded bars indicate the resource is in use. In the bot-
tom part of figure (b), the curves indicate the amount of resource
usage.

Although the RTV scheme is simple, it turns out to be
too coarse-grained. An app may use the same types of re-
sources in two different phases, but their resource usage
rates differ. For example, for an email app, while both
the email updating phase and email reading phase use the
display, CPU and network, the resource usage rates are

different. The former typically has more network traffic.
Therefore, we explored a second scheme — Resource Us-
age Vector (RUV). Each element in a RUV is the amount
of usage of the corresponding resource.

We calculate the usage of a resource by the amount of
the resource normalized by the CPU time. The execution
interval cannot be too small in order to control the mea-
surement overhead, so an app may run for only a frac-
tion of one execution interval. In that case, absolute us-
age numbers cannot precisely represent the usage behav-
ior. CPU time is a good approximation of the amount of
time an app actually runs. Normalizing to CPU time al-
lows us to correlate two intervals that belong to the same
phase, even if the app runs for different amounts of time
in each interval.

If two execution intervals have similar RUVs, they be-
long to the same phase. Similar to previous work [45], we
use the k-means algorithm to cluster intervals into phases.
To find the most suitable k (i.e., the number of clusters to
generate), eDoctor tries different k from 1 to 10 at runtime.
For each k, we evaluate the quality of the clusters by cal-
culating the average inter-cluster distance divided by the
average intra-cluster distance as a score. The higher the
score is, the better the clusters fit the data. Since the best
k is likely to be the largest k it tries, we pick the smallest
k whose score is as high as the 90% of the best score.

Figure 3(b) shows the RUV phase behavior using the
same data. As it shows, RUV captures one more phase
compared to the phases divided by RTV, enabling eDoctor
to further differentiate between low and high network us-
age. More specifically, phase #3 and phase #4 both have
usage of CPU, wakelock and network, but phase #4 has
higher network usage. It provides more fine-grained infor-
mation regarding an application’s phase behavior.

4 eDoctor: Design and Implementation

The objective of eDoctor is to help users diagnose and re-
solve battery drain issues. Even though the information of-
fered by eDoctor can also be used for app developers, our
goal is to help users troubleshoot and/or bypass ABD is-
sues before developers fix their code which as shown may
take months. Therefore, instead of locating root causes
in source code, eDoctor’s diagnosis focuses on identifying
(1) which app causes an ABD issue and (2) which event is
responsible, e.g., the user updated an app to a buggy ver-
sion or made an improper configuration change. Based on
such diagnosis result, eDoctor then suggests appropriate
repair solutions.

There are two major challenges involved in achieving
these objectives. First, it is non-trivial to accurately pin-
point which app and event accounts for the ABD issue.
The causing event may not be the most recent one; in-
stead, it can be followed by many other irrelevant events,
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e.g., the case where the user installed a buggy app and then
made multiple configuration changes. Second, eDoctor it-
self should not incur high battery overhead. It needs to
balance the energy overhead and the amount of informa-
tion needed for accurate diagnosis.

This section presents our design of eDoctor. As an
overview, eDoctor consists of four major components: In-
formation Collector, Data Analyzer, Diagnosis Engine,
and Repair Advisor. The Information Collector runs as
a light weight service to collect resource usage and event
logs. The Data Analyzer performs phase analysis (Sec-
tion 3) on the raw data and stores intermediate results to
facilitate future diagnosis. Off-line analysis is done only
when the phone is idle and connected to external power, in
order to avoid affecting normal usage. When users notice
ABD, they initiate the Diagnosis Engine to find the culprit
app and the causing event. Based on the diagnosis result,
the Repair Advisor provides the most relevant repair sug-
gestions.

eDoctor can be installed as a standalone app. It runs on
most Android phones and it is compatible with all Android
versions since 2.1. A modified Android ROM is optional
to track app-specific configuration changes.

4.1 Information Collector

The Information Collector records three main types of data
in the background: (1) each app’s resource usage, (2) each
app’s energy consumption, and (3) relevant events such as
app installation, configuration, and updates.

Resource usage. eDoctor monitors the following re-
sources for each app: CPU, GPS, sensors (e.g., accelerom-
eter and compass), wakelock (a resource that apps hold to
keep the device on), audio, Wi-Fi, and network. To facili-
tate diagnosis, eDoctor records resource usage in relatively
small time periods (called recording interval). The default
recording interval is five minutes in our implementation.

What resource usage information to store depends on
the phase identification method (Section 3). RTV uses a
bit vector to record whether the resources have been used
in each recording interval. RUV, on the other hand, records
the usage amount of each individual resource, e.g., time in
microseconds, amount of network data in bytes.

In our implementation, eDoctor takes advantage of the
resource usage tracking mechanism in the Android frame-
work. This mechanism keeps a set of data structures in
memory to track resource usage of each app. The resource
usage data are maintained for each individual app, even if
multiple apps run during the same recording interval. The
values recorded are accumulated amounts since the last
time the phone was unplugged from its charger. At the
end of each recording interval, eDoctor reads these val-
ues and calculates the resource usage amounts in the past
recording interval. Figure 4 shows a simplified example of

a resource usage table for an app.
Some resources can be simultaneously accessed by mul-

tiple apps without consuming extra energy. For example,
once a GPS unit is turned on, it gathers location examples,
and it does not consume extra energy if more than one
app requests those examples. eDoctor performs coarse-
grained accounting of such resources; so if N apps ac-
cess such a resource for overlapped T time units, each app
is charged for T time units of resource utilization. Fine-
grained energy profilers like Eprof [35] use a proportional
accounting scheme, such that each app would only be
charged for T/N units of resource utilization. eDoctor’s
uses the coarse-grained schema because its goal is to track
app-specific energy patterns, not overall energy fluctua-
tions of the whole system.

Energy consumption. In addition to resource usage,
eDoctor also records battery consumption of each app in
each recording interval. Energy consumption is used for
two main purposes: (1) to prune apps with small energy
footprints, which are unlikely a cause for ABD, and (2)
to rank suspicious apps according to the consumed energy
of each app. As we use the battery consumption infor-
mation only for such comparative purposes, it is less crit-
ical to have high fidelity measurement. Further, simple
models provide superior performance benefits that are es-
sential to reduce overhead of eDoctor, because it doesn’t
have to track fine-grained information such as energy
state switches. Therefore, we employ an efficient profile-
based energy model instead of expensive state-based en-
ergy models [46, 52].

Each Android device comes with data about power con-
sumption of various hardware components measured by
the manufacture, e.g., the average power consumption of
the processor running at different frequencies and the av-
erage power consumption of the Wi-Fi device being idle or
sending data. eDoctor combines this average power con-
sumption data by the usage data it collects to estimate the
total energy consumption of an app during each recording
interval. This energy model has been used in both industry
(e.g., Android’s “Battery Usage” utility [1]) and academic
research (e.g., ECOSystem [51]).

Events. Events are critical for both diagnosis and re-
pair advisory. eDoctor records two types of events:
(1) configuration changes, and (2) maintenance events
(installation, updates). Such events may be initiated
not only by the users, but also by the underlying sys-
tem automatically. App and system configuration en-
tries and their new values are recorded as key-value
pairs. Since most apps use Android’s facility components
(e.g., SharedPreferences) to manage configurations,
we track app configurations by modifying these common
components. SharedPreferences is a general frame-
work that allows developers to save and retrieve persis-
tent key-value pairs of primitive data types, which is suit-



USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 63

able for managing user preferences. We modified the im-
plementation of the SharedPreferences.Editor inter-
face to let it send a broadcast message to eDoctor when-
ever a preference entry is changed. Each message contains
the name of the app, the preference file name, the prefer-
ence key name and its new value. These messages are
identified with a special key and only eDoctor can receive
them, so they are effectively unicast messages to eDoctor.
One drawback of this approach is that if the developers
implement their own mechanisms to manage preferences,
eDoctor cannot track the changes. This is rare, however.

For system-wide configurations, eDoctor records
changes that may affect battery usage, including chang-
ing CPU frequency, changing display brightness, chang-
ing display timeout, toggling Bluetooth connection, tog-
gling GPS receiver, changing network type (2G/3G/4G),
toggling Wi-Fi connection, toggling Airplane mode
(which turns off wireless communications), toggling
the background data setting, upgrading the system,
and switching firmware. eDoctor records these events
by capturing broadcast messages by the Android sys-
tem. For example, when the Wi-Fi connection sta-
tus changes, the system sends a broadcast message,
WIFI STATE CHANGED ACTION.

To protect user privacy, eDoctor stores the above infor-
mation in its app-specific storage that other apps cannot
access. In addition, it does not transfer the information
outside of the phone; all analysis is done locally.

4.2 Data Analyzer

eDoctor’s Data Analyzer is responsible for parsing all re-
source usage data collected by Information Collector, gen-
erating phase information (Section 3) for each app, and
storing it in a per-app phase table. Since such phase anal-
ysis incurs overhead, it is only performed when the phone
is being charged and the user is not interacting with the
phone.

Every time when invoked, the Data Analyzer processes
all the analysis intervals that haven’t been analyzed. In our
implementation, an analysis interval is one charging cycle,
i.e., the time period between two phone charges. For each
analysis interval, eDoctor identifies execution phases by
using either RTV or RUV as explained in Section 3. To
reduce noise and speed up diagnosis, it only records ma-
jor phases – phases that account for more than 5% of the
app’s total execution time during the last analysis interval.
Phases that appear occasionally are likely to be noise.

Each entry in a phase table represents a major phase.
Each major phase is identified by a unique phase signature.
We use phase signatures to determine which phase a given
new resource vector belongs to. For RTV, we use the RTV
vector directly as the phase signature; for RUV, we use the
center and the radius of the corresponding cluster as the
phase signature (refer to Section 3).

For each major phase, the Data Analyzer keeps track of
its birth timestamp, and its number of appearances and en-
ergy consumption during each analysis interval. The birth
timestamp helps diagnosis by indicating how recently a
suspicious phase is first observed. The Diagnosis Engine
also uses this information to correlate suspicious phases
with triggering events (Section 4.3). For the last two vari-
ables (appearance count and energy consumed), only the
most recent K intervals of data are maintained. Clearly, a
large K allows for detection of issues that are introduced
earlier, but it incurs larger storage and computing over-
head and potential mis-diagnosis. We find K = 7 (about
one week in time) strikes a good balance in the trade-off.

Figure 4 illustrates a simplified version of phase analy-
sis. Based on k-means clustering computation (Section 3),
entries with timestamp 5, 10 and 25 belong to the same
phase (Phase #1 in the Phase Table below), because they
have similar normalized usage patterns even though the
absolute values of their entries differ largely. In addition,
the entries at time 15 and 20 belong to the same phase
(Phase #2), as the app only uses CPU for data processing
(in this simplified example, we assume the values in the
other columns for other resources are all zero). The en-
try at time 30 indicates that the app is not running, so it is
not inserted in the Phase Table. The last entry at time 35
is another new phase (Phase #3) where only wakelock is
held for a long time but the app does not use much other
resources. It is the typical symptom when the developer
forgets to release wakelock.

   




   
   
   

   

















 
 
 


 

 
 
 











   
   











    
    















Figure 4: Phase analysis illustration. The resource usage table
shows seven resource usage records collected by using the RUV
method (before normalizing to CPU time).
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4.3 Diagnosis Engine

When users notice ABD issues, they invoke eDoctor’s Di-
agnosis Engine, which pinpoints the culprit app and the
causing event. It analyzes historical phase tables (calcu-
lated by the Data Analyzer, Section 4.2) and event records
(collected by the Information Collector, Section 4.1), and
correlating them to identify the culprits.

Identifying the culprit app and the causing event is not
trivial. As demonstrated in Section 3, energy profile and
rank are not reliable indicators for diagnosing ABD issues.
Some ABD issues are caused by intensive consumption of
certain resources, e.g., GPS or the processor. However,
the mere fact that a resource is used for a long time does
not necessarily indicate abnormal behavior — an app may
simply be designed to run for a long time. In addition, con-
sidering only recent resource usage is insufficient, since
historical baseline data is needed to identify abnormal be-
havior.

eDoctor’s approach is based on a key observation: most
ABD issues involve a new, energy-heavy execution phase
emerging in a particular app. For example, in the Face-
book bug mentioned in Section 1, a new such phase is
characterized by the wakelock being held for a long time
while other resources are used little in the meantime. This
phase rarely exhibited before the buggy upgrade. We re-
fer to such a phase as a suspicious new phase (SN-Phase),
and any app that contains an SN-Phase as a suspicious app.
The diagnosis process has two major steps: (1) identifying
suspicious apps, and then (2) identifying suspicious caus-
ing events.

Step 1: Identifying suspicious apps. eDoctor first prunes
out apps that consume low energy, because they are un-
likely the root cause of noticeable ABD. We only consider
the top apps that, combined, consumed 90% of the en-
ergy. eDoctor then checks whether there is any recent SN-
Phase. Determining whether a phase is energy-heavy or
not is straightforward (e.g., by computing its energy con-
sumption percentile in the app). But how to define new?
Users may not start diagnosis immediately after an ABD
issue happens. In other words, ABD may start well be-
fore the moment of diagnosis. In consideration of this,
Diagnosis Engine uses a progressive strategy to search for
suspicious apps as follows.

Recall that within an app, each major phase’s informa-
tion is recorded for the K most recent analysis intervals
(i.e., charging cycles), which we notate as τ1, τ2, ..., τK ,
where τ1 is the most recent interval and τK is the oldest
interval. The Diagnosis Engine first assumes that the no-
ticed ABD originally happened in τ1. It thus treats those
phases with birth timestamps falling in τ2 to τK as nor-
mal ones where no ABD occurred. It then checks if τ1 has
any new energy-heavy phase appearing compared to the
previous K − 1 intervals. If it does not find any, it then

assumes the ABD started in τ2 (and may continue in τ1),
thus it checks whether any SN-Phase exists in the most
recent two intervals, τ1 and τ2, compared to the previous
K − 2 intervals. The process goes on until it finally iden-
tifies an SN-Phase or it has exhausted all collected data in
the phase table. For apps that are recently installed, they
may not have much information in previous intervals. In
such cases, any phase that consumes a high level of energy
in recent analysis intervals is still considered to be an SN-
Phase (when there is no previous intervals to compare). As
mentioned before, all apps that contain SN-Phases are then
regarded as suspicious apps. Based on our extensive em-
pirical experiments (Section 5), there are usually at most
2–3 suspects after this step.

eDoctor keeps a week of historical data for each app,
for two main reasons. First, if a new phase appears but
the user has been using the app for a week without ob-
serving battery issues, that new phase is likely to be legit-
imate. Second, storing less data helps control the storage
overhead and computation time of the data analysis (Sec-
tion 4.2).

Step 2: Identifying suspicious causing events. For
each suspicious app, the event that immediately precedes
its SN-Phase is considered the most suspicious in caus-
ing the ABD. The Diagnosis Engine finds it by comparing
the timestamp of the SN-Phase and the timestamps in the
event logs.

Finally, the Diagnosis Engine ranks all suspicious apps
based on the total energy consumed in their SN-Phase(s).
For user convenience, eDoctor reports only the top ranked
suspicious app and causing event for repair advisor. Cer-
tainly, it could also report all suspicious apps to experi-
enced users if necessary.

4.4 Repair Advisor

In addition to providing a diagnosis report about the suspi-
cious apps and causing events, eDoctor also suggests the
most suitable repair solutions based on the symptom and
causing events.
Uninstalling or reverting a problematic app to a pre-
vious version. If a recent update contains an ABD issue,
eDoctor suggests to revert the problematic app back to the
previous version or uninstall the app. Unfortunately, An-
droid does not allow reverting apps directly. A tech-savvy
user can revert an app with command line tools if a pre-
vious version is accessible. A better solution is to revert
apps automatically by backing up prior installation pack-
ages. When Android installs an app, it stores the installa-
tion package on the phone temporarily, but it keeps only
the last installed version of the package. If we back up
prior versions, we can allow users to install prior versions.
eDoctor has implemented a prototype and proved the fea-
sibility of this approach.
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Terminating apps after use. If the user wants to keep
using the problematic version of the culprit app, eDoctor
suggests temporary repair solutions in certain scenarios.
One of the most common symptoms of energy bugs is that
an app continues to consume resources even after the user
stops using the app. In this case, eDoctor suggests users to
manually terminate the problematic app every time after
closing it, so it will not run in the background. As this
can be troublesome, a better solution is to have eDoctor
automatically terminate the problematic app.
Reverting configuration changes. If a recent configura-
tion change causes an ABD issue, eDoctor presents users
the identified configuration entry, together with its current
and old values. It relies on the user to revert the config-
uration back to the old setting. User-level apps do not
have permission to directly change configuration values.
However, if implemented in the Android framework, it is
possible to automatically fix configuration issues.

We leave the implementation and evaluation of auto-
matic repair to future work.

5 Evaluation

To assess the effectiveness and performance overhead of
eDoctor, we used real-world ABD issues to conduct both
in-lab experiments and a controlled user study.

5.1 Effectiveness (User Study)

We wanted to evaluate eDoctor on real user phones, where
ABD issues were mixed with normal usage of phones and
apps. Thus, we recruited 31 Android users via campus-
wide mailing lists in two major universities - University
of California at San Diego (USA) and Peking University
(China). These users had 26 different devices with 11 dif-
ferent Android versions and various configurations and us-
age patterns.

A real user study would ask participants to troubleshoot
naturally occurring ABD issues. However, such a study
might take several months and require a large number of
participants to generate sufficient data points. Thus, we
conducted a more controlled experiment. We emulated
real-world scenarios where a user performed an ABD-
triggering event (e.g., installing a buggy app or miscon-
figuring a setting), used the phone for some time, noticed
rapid battery drain, and then started diagnosis. The whole
study took 7–10 days for each participant.

ABD issues were hard to reproduce due to their depen-
dency on specific versions of hardware and software. We
finally reproduced 17 real-world ABD issues. We also
generated 4 synthetic issues by modifying open-source
Android apps (Table 3). We selected only popular apps
that had a significant number of users; these apps also had
heterogeneous patterns of user interactivity and resource

utilization. Thus, we believe that our user study provides
a relatively diverse and realistic sample.

For ABD issues caused by software bugs, we prepared
two versions of a target app: one with a real-world ABD
issue and the other without (i.e., either already fixed or not
yet defective). We took similar steps with ABD-triggering
configuration changes. Next, we randomly assigned each
ABD issue from Table 3 to 1–5 participants, giving us 50
cases in total. In each case, we asked the user to follow
three steps: (1) Use the given app (normal version) for at
least 5 days. Meanwhile, participants should use their own
apps as usual. (2) Switch the app to the defective version,
or change the configuration to the incorrect one. To make
it easy for participants to do this, we designed custom soft-
ware that performed the switch with a single click. (3) Use
the defective app until ABD is apparent, and then invoke
eDoctor to diagnose the problem. In total, we collected
6,274 hours of real-world resource usage data. We used
this data to evaluate eDoctor’s diagnostic effectiveness, as
well as its energy, storage, and memory overhead.

5.1.1 Diagnosis Result

Figure 5 shows eDoctor’s effectiveness. Overall, eDoctor
with RUV accurately diagnosed 47 of the 50 cases (94%
accuracy). eDoctor misdiagnosed three cases. These three
ABD issues were experienced by multiple users. eDoctor
misdiagnosed these issues for some participants, but suc-
cessfully diagnosed the issues for other users.

Figure 5: Diagnosis results. “Overall Case” shows the diag-
nosed cases among all 50 ABD cases. “Resource Overuse” and
“Other” show breakdown of two types of ABD cases.

There were two reasons for misdiagnosis. First, some
ABD issues occurred without an obvious change in the
app’s phase behavior. For example, at initialization time,
one user configured the “Weather Bug” app to frequently
update its weather data. High-frequency updates cause
ABD, but for this user, the “Weather Bug” app started in
the ABD state, so eDoctor could not detect anomalies in
the app’s behavior after the user upgraded to the defective
version. eDoctor misdiagnosed ABD with the “K9Mail”
app for a similar reason.

eDoctor can also misdiagnose ABD if it lacks sufficient
longitudinal data for an ABD-causing app. For exam-
ple, one user ran the non-buggy version of the “Vanilla
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App Name Category Description Downloads Issue Type Issue Description

Anki-Android Education A flash card app 100K+
Bug Resource overuse (Accelerometer)
Config Frequent widget refreshing

BostonBusMap Travel Bus tracking in Boston 50K+
Bug Resource overuse (GPS)
Config Enable continuous updates

Cool Reader∗ Book An eBook reader 1M+ Bug Resource overuse (Wakelock)
Eyes-Free Shell Tools Eyes free access to apps 10K+ Bug Resource overuse (GPS)
Facebook Social Official Facebook app 100M+ Bug Resource overuse (Wakelock)
Gallery Media A 3D gallery app built-in Bug Resource overuse (Accelerometer)
K9Mail Communication An popular email client 1M+ Bug Too many trials
Marine Compass Tools A compass app 100K+ Bug Resource overuse (Magnetic field sensor)
MyTracks Health Route tracking 5M+ Bug Resource overuse (Wakelock and GPS)
Nice Compass Tools A compass app 1K+ Bug Resource overuse (Magnetic field sensor)
NPR News∗ News NPR News client 1M+ Bug Resource overuse (GPS)

OpenGPS Tracker Travel Route tracking 100K+
Bug Resource overuse (GPS)
Config GPS precision

OpenStreetMap Productivity OpenStreetMap viewer 5K+ Bug Resource overuse (GPS)
Replica Island∗ Game An Android game 1M+ Bug Resource overuse (Orientation sensor)
Standup Timer Productivity A timer app 1K+ Bug Resource overuse (Orientation sensor)
Talking Dialer Communication A dialer app 50K+ Bug Resource overuse (Accelerometer)
Vanilla∗ Music A music player 50K+ Bug Resource overuse (Wakelock)
Weather Bug Weather A weather reporter 10M+ Config Frequent update
WHERE Travel Location discovery 1M+ Bug Resource overuse (GPS)

Table 3: Apps and ABD issues used in our experiments. The numbers in the “Downloads” column indicate the number of app
downloads from Google Play, as of May 2012. To save space, we use “K” to present 1,000 and “M” for 1,000,000. “Built-in” means
this app is bundled with some phones. To cover a wider spectrum of resources and usage patterns, we injected four real-world ABD
bugs into apps in popular categories. They are marked with the “∗” symbol. “Resource overuse” indicates a bug that uses a resource
for longer than necessary, e.g., the developer forgets to release a resource after using it or holds a resource for too long.

Player” app for a short amount of time. During this short
time period, the app displayed behaviors that resembled a
wakelock leak (this might have occurred because the user
frequently paused the player). The user soon updated to
the defective version of the player that did have a wake-
lock leak. However, eDoctor did not detect a new phase,
and thus could not flag the application as suspicious. If
eDoctor is deployed to a large number of users, it can learn
an apps phases using many different instances of that app.
eDoctor could then leverage this large data set to identify
even “early onset” ABD issues.

eDoctor is meant to be used as a diagnosis tool instead
of a detection tool. When the user observes a battery drain
and invokes eDoctor, it reports the app that is most likely
to be the root cause. So we focused the evaluation on cor-
rect diagnosis vs. misdiagnosis instead of true positives
vs. false positives.

RTV vs. RUV. As expected, RUV is more accurate than
RTV; the former had an accuracy of 94%, but the latter
only diagnosed 72% of cases correctly. RUV captures
phase characteristics better than RTV, and can detect ab-
normal phases that use the same resources as their nor-
mal counterparts but in abnormal amounts. We also broke
down the 50 cases into two high-level categories: resource
overuse and other cases. RUV performs better than RTV
in both categories. Interestingly, RTV is better at resource
overuse (80.5%) than others (33.3%). The reason is that
resource overuse often involve an app intensively using

only one type of resource.

Figure 6: Energy consumption rank of the culprit app. The
number at the top indicates the number of ABD cases, e.g., in 21
cases the rank is equal to or greater than 4.

Is the culprit app always the biggest energy consumer?
As discussed in Section 1.2, one may wonder if existing
energy profilers can detect ABD simply by identifying the
top energy-consuming apps. Our data explains why this
will not work. As illustrated in Figure 6, only 32% (16)
of the cases have a culprit app that ranked #1 in energy
use. In almost half (21) of the cases, the rank of the cul-
prit app was greater than three. In these cases, the apps
with ABD drained a significant amount of energy; how-
ever, other healthy, concurrently running apps also drew
large amounts of energy (or the user noticed the ABD
before the faulty app could waste a lot of energy). This
demonstrates why existing profiling tools are insufficient
for diagnosing many types of ABD. In addition, users may
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be confused by the top-ranked but healthy apps and make
wrong decisions to uninstall them or stop using them.

How many apps were monitored and how many events
happened? As Figure 7 (a) shows, for at least 60% of
the users, more than 120 apps are installed. The app
counts include pre-installed apps and services that users
were not even aware of. We also found that many energy-
related events happened on the phone during the user study
time period (7–10 days). As Figure 7 (b) shows, 60% of
the users had at least 50 events taking place. As shown,
eDoctor could diagnose culprits among all these events
and monitored apps with high accuracy.

(a) (b)

Figure 7: Distribution of the number of apps and events.

5.1.2 Phase Distribution

To further understand the phase behavior of smartphone
apps, we also examined how many normal phases smart-
phone apps may have. Figure 8 shows the cumulative dis-
tribution of all 1,890 apps that we monitored during the
user study. The most important observation is that, dur-
ing normal execution, most apps have a small number of
major phases. For example, if using RTV (i.e., identify-
ing phases based on resource type), about 80% of the apps
have only 1 major phase in normal use and another 13%
have only 2. If using RUV (i.e., considering resource us-
age amount), apps have more major phases, but 80% of the
apps have at most 4 different phases. Section 3 described
how eDoctor normalizes RUV with respect to CPU time.
Figure 8 depicts the number of phases detected with and
without normalization. As shown, normalization reduces
the number of phases. After normalizing, nearly 75% of
apps have only 1 normal phase.

5.2 Overhead

eDoctor’s Information Collector periodically runs in the
background (by default, once every 5 minutes). In this sec-
tion, we describe eDoctor’s overhead in terms of energy,
storage, and memory.

Battery consumption overhead. We directly measured
eDoctor’s battery consumption on the Nexus One phone.
We used a National Instruments NI USB-6210 DAQ to
measure the voltage and current on the battery and calcu-
late the power consumption of the entire device. As shown

Figure 8: The cumulative distribution of number of phases
across 1,890 apps we monitored on real user phones during
the user study. We only consider the major phases that account
for 80% of the total execution time.

in Figure 9, eDoctor added only 1.5% power overhead to
an idle Nexus One (82.5mW) which had no user interac-
tion but only ran built-in system software with Wi-Fi and
radio signal enabled. eDoctor’s energy overhead should be
even lower—normal user activity will wake the phone up,
allowing eDoctor to “piggyback” on this energy usage and
collect resource statistics in the background. eDoctor’s re-
source collection also has low overhead because eDoctor
leverages Android’s preexisting infrastructure for persis-
tent resource tracking.

Figure 9: eDoctor’s battery consumption overhead for data
collection. Baseline (the first three bars): idle Nexus One phone
with Wi-Fi and radio signal enabled. eDoctor collects all 60 ac-
tive apps’ resource usage on this phone (the fourth bar).

Storage overhead. eDoctor uses storage to collect re-
source utilization data and phase statistics. We measured
this storage overhead by running a phone with eDoctor in-
stalled for 24 hours. eDoctor’s overhead increases with
the number of apps, so we ran experiments with 100, 125,
and 150 installed apps. Table 4 shows that eDoctor con-
sumed at most 3.2 MB per day. By default, eDoctor tracks
one week of information; thus, eDoctor requires at most
22.4 MB of total storage. The storage overhead is even
smaller in reality, because eDoctor does not store resource
data if an app is not running. This is an acceptable over-
head, since modern smartphones contain several gigabytes
of storage space.
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Number of Apps 100 125 150

Data size (24 hours) 1915 KB 2419 KB 2884 KB
Phase information 216 KB 270 KB 324 KB
Total 2131 KB 2689 KB 3208 KB

Table 4: Storage used by eDoctor

Memory Overhead. We used TrepnTM Profiler [3] to
measure eDoctor’s memory overhead. eDoctor’s mem-
ory footprint was only 23.3 – 25.2MB. Memory utiliza-
tion was stable over time because eDoctor only buffers a
small amount of data and periodically stores the data to
persistent storage.

6 Limitations and Discussions

When does eDoctor struggle? eDoctor has poor accu-
racy if the phases related to ABD were also common be-
fore the ABD began. This might happen if an application
was initially started in a broken state (see Section 5.1.1).
eDoctor’s diagnostic accuracy will also suffer if a user
simultaneously installs or reconfigures two apps, one of
which is normal but energy-hungry, and another which
has an ABD bug. In this scenario, eDoctor will regard
both apps as suspect; since eDoctor only reports the high-
est ranked app, misdiagnosis may result. Such a situation
did not arise during our user study, but finding automatic
resolutions for such problems is an area for future work.
Finally, misdiagnosis might also occur if the causal event
occurred so long ago that it no longer resides in eDoctor’s
historical data.

Alternative approaches? While eDoctor leverages phase
behavior to identify abnormal apps, but there are alter-
native approaches. For example, using signal process-
ing techniques, one could detect abnormal energy con-
sumption in the same way that network intrusion detec-
tors identify traffic flows [9]. However, such techniques
often have many false positives. One could also use dy-
namic bug detectors to identify code paths that may lead
to ABD [22][33]. However, they introduce significant
overhead because of the run-time instrumentation, which
makes it hard to deploy directly to users’ smartphones. In
addition, they only work for ABD issues caused by al-
ready known bug patterns. In comparison, eDoctor is light
weight and it can diagnose ABD issues caused by various
types of misconfiguration, bugs and so on.

Is eDoctor limited to Android? Although we imple-
mented eDoctor on Android, its approach is not limited to
any particular platform. We chose Android because of its
openness—we could record resource usage without users
having to jailbreak their phones. We could also modify the
platform to track app-specific configuration changes.

7 Related Work

Energy consumption modeling and measurement.
Carroll et al. [13] measured power consumption of com-
ponents in modern smartphones. Thiagarajan et al. [48]
measured energy used by mobile browsers. Shye et al. [46]
studied how user activities affect battery consumption, and
derived a linear regression based power model. Zhang et
al. [52] presented a power model based on system vari-
ables, e.g., the processor’s frequency, the amount of data
received through the network, and the display brightness.
Recently, Pathak et al. [35, 36] proposed “Eprof”, a tool
that performs fine-grained energy profiling by tracing sys-
tem calls. eDoctor leverages Android’s internal energy us-
age tracker; this tracker has less overhead, but it is suf-
ficiently accurate for eDoctor to effectively rank applica-
tions by their energy usage.

Malware detection by monitoring energy usage. Kim
et al. [25] detects malware that causes sudden battery
drain as a side-effect. Similar to malware detection for
desktops/laptops, this work detects “known” battery-drain
malware by comparing the power signature of each appli-
cation in a smartphone with those known signatures stored
in a malware database. eDoctor focuses on diagnosing
battery-drain caused by unknown software bugs or config-
uration changes that may happen to any smartphone apps.

Energy-efficient smartphone design. Prior work cov-
ers a wide spectrum of system design: processors (Green-
Droid [21]), resource management (ECOSystem [51],
Cinder [42]), file systems (quFiles [49]), page allocation
([29]), I/O interfaces (Co-op I/O [50]), display ([5]), wire-
less networking (PGTP [4], STPM [6], SleepWell [32],
SALSA [41], Bartendr [43]), and high level services (En-
Loc [14], Micro-blog [20], EnTracked [26], A-loc [31]).
These efforts focus on reducing energy usage in normal
circumstances. In comparison, eDoctor troubleshoots ab-
normal battery drain.

Abnormal battery drain studies. Pathak et al. [34] con-
ducted a study on battery issues on Android. Their results
also show that ABD is an emerging problem. Recently,
Pathak et al. [37] studied energy bugs in smartphone apps.
They found many bugs are caused by failing to release
resources and thus preventing a phone from switching to
sleep mode (called “NoSleep” bugs). They also proposed
a detector leveraging a reaching definition data flow anal-
ysis to detect the missed API calls that release resources.
Their work can help developers to detect this specific type
of energy bug in source code. eDoctor is complementary
because (1) eDoctor helps users diagnose ABD issues and
find the appropriate repairs; and (2) eDoctor does not as-
sume that ABD is caused by specific types of bugs. In-
stead, eDoctor can diagnose ABD that arises from a vari-
ety of misconfigurations, bugs and so on.
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8 Conclusions

This paper addresses the emerging abnormal battery drain
(ABD) issue on smartphones. We built a practical tool,
eDoctor, to help users diagnose and repair ABD issues. In
our user study with 21 ABD issues and 31 participants,
eDoctor successfully diagnosed 47 out of 50 cases with
only small battery and storage overhead. We plan to re-
lease eDoctor on Google Play so that it can help real users
while also collecting feedback for further improvement.
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