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ABSTRACT

X-ray computed tomography (CT) is an important technique for noninvasive clinical diagnosis and nondestructive
testing. In many applications a number of image processing steps are needed before the image features are
available. One of these processing steps is image segmentation, which generates the edge and the structural
features of the regions of interest. The conventional flow is to first reconstruct images and then apply image
segmentation methods on reconstructed images. In contrast, an emerging technique obtains the tomographic
image and segmentation simultaneously, which is especially useful in the case of limited data. An iterative method
for simultaneous reconstruction and segmentation (SRS) with Mumford-Shah model has been proposed, which
not only regularizes the ill-posed tomographic reconstruction problem, but also produces the image segmentation
at the same time. The Mumford-Shah model is both mathematically and computationally chanllenging. In
this paper, we propose an asynchronous ray-parallel algorithm of the SRS method and accelerate it using field-
programmable gate array (FPGA) devices, which drastically improves the energy efficiency. Experimental results
show that the FPGA implementation achieves a 1.2× speedup with an energy efficiency as great as 58×, over
the GPU implementation.

Keywords: image reconstruction; image segmentation; Mumford-Shah regularization; gamma-convergence;
asynchronous parallelization; FPGA acceleration; hardware pipelining

1. INTRODUCTION

In medical imaging and nondestructive testing, computed tomography is a technique widely used for the de-
termination of the mass density of an object. In X-ray tomography, the sectional image of the object can be
reconstructed from the X-ray absorption when the X-ray beams pass through the object along different angles
and offsets.

In many applications, further processing steps will be performed after image reconstruction. For example,
image segmentation could be used to visually separate healthy tissues from cancerous ones. The conventional
approach is to solve each task separately in sequence: 1) image reconstruction; 2) postprocessing; 3) segmentation.
An obvious drawback is that the measured data is only used once at the first step, and the possible errors (from
noises in the measured data, inappropriate modeling, or inappropriate parameters) are not easily corrected and
will propagate into the later steps. As a consequence, methods that combine the reconstruction and a specific
processing task have become popular.1,2 However, the combined approach is time consuming comparing with
the runtime of the conventional approach.

In this work we are interested in the FPGA acceleration of the SRS method, which is an iterative method
that alternatively optimizes the reconstructed image and the segmentation result. On one hand this approach
regularizes the ill-posedness of X-ray tomography, and on the other hand it computes segmentation directly from
the measured data.
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A runtime profiling shows that there are two computational kernels in this approach, Radon projection and
Radon backprojection. These two kernels are usually executed hundreds of times and consume over 90% of
the total runtime. Assume that the tomography task is to reconstruct an n × n image from k projections
with O(n) samples in each projection, both the projection and the backprojection have a time complexity of
O(kn2) with O(kn2) memory access without data reuse. These kernels are considered both compute-intensive
and memory-intensive.

There have been great efforts on accelerating the kernel of Radon projection and backprojection. The earliest
efforts belong to the ASIC implementations,3,4 which mainly rely on pipelining to improve performance when
the hardware resources were too limited to exploit parallelism. DSPs5,6 are optimized for signal processing
applications, whose performance depends on the proper use of fixed-point arithmetic and the optimization for
cache hits. Heterogeneous multi-core processors (e.g., CBE7 and Xeon Phi8) are also effective, especially when the
memory accesses are optimized for the coprocessor architectures (e.g., the scatter/gather pipeline on Xeon Phi).
Most attentions go for GPU acceleration, far before the introduction of CUDA and OpenCL. The first GPU-
based backprojection was proposed by Cabral et al.9 Along with the increasing functionality and programmability
of massive shader processors inside GPUs, backprojection was implemented using CG10 and DirectX.11 Recent
results include the implementation using CUDA12 and OpenCL.13 Finally, the FPGA acceleration10,14–17 attracts
more and more attention, because of the recent breakthroughs in high-level synthesis as well as its energy efficiency
compared to CPU and GPU. The first FPGA-based backprojection was implemented by Coric et al.,14 which has
a 4-way parallel projection structure with a 6-stage pipeline; an addition tree at the end accumulates the values
for the same pixel, and two on-chip memory banks are used to increase the parallel bandwidth. Recently high-
level synthesis is applied for productive design and optimization. Xu et al.15 show that the ray-by-ray parallelism
is suitable for high-level synthesis and achieves similar performance with the pixel-by-pixel parallelized VHDL
implementation. The Cong group16,17 apply block-based data reuse for 3D images to reduce the memory access
contention and achieve an 85× overall speedup.

Though there have been extensive studies on accelerating projection and backprojection alone on various
platforms, few has considered the application-level acceleration. Obviously it is a nontrivial task, especially on
FPGAs with limited hardware resources and memory bandwidth.

In this paper, we make the following contributions.

• We propose an iterative algorithm with simultaneous reconstruction and segmentation using the Mumford-
Shah model, which can be applied not only to regularize the ill-posed tomographic reconstruction problem,
but also to provide image segmentation.

• We design a pipeline-friendly algorithm, which moves the iterations of the original kernels to the 2nd
outermost iteration. This way, the two big kernels (projection and backprojection) are replaced by a
large number of tiny kernels with pipelining. Though GPUs are usually suitable for such structures, our
experimental results show that FPGA pipelining with duplication outperforms GPUs for this application.

• We propose a new ray-trace algorithm to compute the coefficients in projection and backprojection. Dif-
ferent from previous algorithms which minimize the computation, this algorithm is specifically designed to
implement in hardware to achieve high throughput (an initiation interval of one clock cycle) with negligible
extra computation.

• We parallelize the pipeline with tiny computational kernels and further improve the design with algorithm-
level and inter-module optimizations, achieving a 1.2× speedup over the GPU implementation with 58×
higher energy efficiency.

The paper is organized as follows. Section 2 introduces the SRS problem, and Section 3 proposes an asyn-
chronous ray-parallel algorithm. Section 4 presents the design optimization techniques for FPGAs. Section 5
presents the experimental results.
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2. BACKGROUND AND PROBLEM FORMULATION

The SRS problem is to find an image f and its meaningful segmentation K, given the projection data g (e.g.,
the X-ray attenuation rate collected at the sensors in CT equipment).

The projection data g = Rf† is the Radon transformation of the slice of the object being scanned with true
mass density f†. The Radon transform is defined as

(Rf)(σ, ω) =

∫
〈x,w〉=0

f(σω + x)dx,

where the pair (σ, ω) defines a unique measurement line. Parameter ω is a unit vector perpendicular to the line,
and parameter σ is the distance of the line to the origin. The goal of reconstruction is to solve for an image f
such that Rf = g.

The segmentation is to find a meaningful decomposition of the image domain

Ω = S1 ∪ S2 ∪ · · · ∪ Sl ∪K,

where Si ∈ Ω are disjoint connected open subsets, K is the union of the boundaries of Si in Ω. A meaningful
decomposition has the properties that the image f varies smoothly and/or slowly within each Si, and it varies
discontinuously and/or rapidly across K.

In this work we focus on obtaining the pair (f,K) by minimizing the following Mumford-Shah type function

MS(f,K) = ||Rf − g||2 + α

∫
Ω\K
|∇f |2dx+ β length(K),

where α, β ≥ 0, and ∇f = (∂f/∂x , ∂f/∂y ) is the gradient of f . The objective functional MS(f,K) has three
terms: 1) a least squares term (Frobenius norm), forcing the reconstruction image f to have a projection that
matches the measured data g; 2) a L2-penalty term for the gradient of f , forcing f to be smooth everywhere in
Ω except at the edges K; and 3) a penalty of K’s length, forcing the edges K to be “short”.

In applying the Mumford-Shah regularization, several issues arise. The primary issue comes from the edge
set K because it is discrete and its updates are difficult to trace. Thus, we follow the approach by Ambrosio and
Tortorelli,18 where the edges are approximated by a smooth edge indicator function. We minimize the function

ATε(f, v) = ||Rf − g||2 + α

∫
Ω

v2|∇f |2dx+ β

∫
Ω

(
ε|∇v|2 +

(1− v)2

4ε

)
dx,

for a small constant ε > 0. Here, f is still the image and v is a smooth edge indicator function, whose values
are approximately 0 for the points on the edge set K and 1 on points away from K. For ε → 0 a minimizer
ATε(f, v) is an approximated minimizer of MS(f,K), which is a solution to the SRS problem.

3. ALGORITHM DESCRIPTION

We present two block-coordinate descent methods to solve the SRS problem inn this section. The first method
is an image/edge alternating descent method, which updates a block of image or edge variables at a time; and
the other one is an asynchronous ray-parallel descent method, which updates a block of variables related to a
ray at a time. The latter method performs computations within a small subset of variables, and thus enables an
efficient implementation on FPGAs.
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3.1 General Idea

Although ATε(f, v) is not jointly convex in (f, v), it is convex in f or v separately. Therefore, we can use the
image/edge alternating descent method for the minimization. In the alternating descent method, we compute
the gradient of ATε(f, v) with respect to f and v by

∇fATε(f, v) = 2R>(Rf − g)− 2α div
(
v2∇f

)
,

∇vATε(f, v) = 2α|∇f |2v +
β

2ε
(v − 1)− 2βε∆v,

where div = ∂/∂x + ∂/∂y and ∆ = ∂2
/
∂x2 + ∂2

/
∂y2 .

It is obvious that the projection R and the backprojection R> are the computational bottlenecks. Instead of
applying R and R> on the whole image, we decompose the image into overlapping beams according to the paths
of line integrals in the R operator. For example, if a CT scan uses 768 detectors to measure the attenuation
rates of parallel X-rays from 180 different angles, the image is decomposed into 768 × 180 overlapping beams
with a width of at most three pixels. The central pixels in the beam are related to a specific ray that is involved
in the projection and backprojection, and the two neighboring pixels on both dimensions of the central one are
used by the differential operators.

Each beam is associated with a row in the matrix form of R. We use R(i) to represent the non-zero entries
of Ri, and use f(i) to represent the image pixels related to R(i). We compute the gradient of ATε(f, v) with
respect to f(i) and v(i) by

∇f(i)ATε(f, v) = 2(R(i)f(i) − gi)R(i) − 2α div
(
v2∇f

)
(i)
,

∇v(i)ATε(f, v) = 2α|∇f(i)|2v(i) +
β

2ε
(v(i) − 1)− 2βε∆v(i).

This way, we replace the heavy operations R and R> in a big descent step by a few light operations R(i)

in multiple small descent steps. This algorithmic transformation enables a more efficient implementation on
FPGAs with limited computational and memory resources.

3.2 Image/Edge Alternating Descent

A simplified alternating descent method is demonstrated in Algorithm 1. At the first minimization step in line 4
we keep the edge variable v fixed and minimize ATε(f, v) in f , and then at the second minimization step in line 5
we keep f fixed and minimize ATε(f, v) in v. We repeat this procedure for a number of iterations.

An implementation, similar in computational demand to our simplified version in Algorithm 1, can be found
in Page’s master thesis.19

Most of the computational demand is from R and R>, the discretized form of which can be expressed as

gi =
∑

j rijfj (the discretized projection g = Rf), and,

fj =
∑

i rijgj (the discretized backprojection f = R>g),

where fj is the j-th pixel of the linearized image f1...J , gi is the i-th component of the measured attenuation
rates g1...I , and rij is the contribution coefficient of the j-th pixel to the attenuation of the i-th measurement
line.
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Algorithm 1: Alternating Minimization

Input: measured projection data g
Output: image f , edge indicator v

1 f0 = 0;
2 v0 = 1;
3 for k = 1 to #iterations do
4 fk+1: move along −∇fATε(f , v

k)

starting at fk for #steps;

5 vk+1: move along −∇vATε(f
k+1,v)

starting at vk for #steps;

6 end

Algorithm 2: Ray-Parallel Minimization

Input: measured projection data g
Output: image f , edge indicator v

1 (f0, v0) = (0,1);
2 Initialize stepsize λ;
3 for k = 1 to #iterations do
4 (fk, vk) = (fk−1, vk−1);
5 forall the i-th ray related to Ri do
6 Fetch (f(i), v(i)) from (fk, vk);
7 f(i) = f(i) − λ · ∇f(i)ATε(f(i), v(i));

8 v(i) = v(i) − λ · ∇v(i)ATε(f(i), v(i));

9 Commit (f(i), v(i)) to (fk, vk);

10 end
11 Synchronize;
12 Reduce stepsize λ;

13 end

3.3 Asynchronous Ray-parallel Descent

Based on the same idea of block-coordinate descent method, we propose a ray-parallel descent method in Algo-
rithm 2. Instead of waiting for the complete computation of projection and backprojection before updating the
variables, we shift the updates of partial variables to an earlier step when partial projection and backprojection
are available. Specifically, we update the variable related to each ray whenever the partial descent direction
related to this ray is available.

The computational patterns for a single iteration of Algorithm 1 and Algorithm 2 are shown in Figure 1a
and Figure 1b, respectively, where a is the number of angles for the X-ray projections, m is the resolution of
attenuation rates for a single projection angle, and n is the average length of a measurement line as well as the
resolution of the reconstructed image. The ray-parallel minimization reduces the size of computational kernels,
by decomposing a big trunk of computation in O(a ·m ·n) into O(a ·m) pieces of tiny computation in O(n) time.
In addition, the data locality is increased, such that the partial image and edge variable are updated immediately
after fetched for the partial projection and backprojection. Moreover, the computational steps are all in O(n)
time, so that these steps are efficient for pipelining. The small computational kernel, the good data locality, and
the pipelining-friendly steps are all suitable for FPGA implementations.

Please note that Algorithm 1 and Algorithm 2 are not equivalent. The number of descent steps is also reduced,
because each pixel of f and v has been already updated a times after every ray is processed once. The fetch
and commit of (f(i), v(i)) in line 6 and 9 of Algorithm 2 are lock-free, and thus the results are nondeterministic
when we process p rays in parallel. We can interpret this algorithm as an application of the lock-free parallel
stochastic gradient descent approach by Recht et al.20 As pointed out by Bertsekas and Tsitsiklis21 as well as
Liu et al.,22 this method converges under diminishing relaxations and bounded delay between fetch and commit.

4. FPGA IMPLEMENTATION

FPGA is a reconfigurable integrated circuit. Using commercial off-the-shelf FPGAs has low non-recurring en-
gineering (NRE) cost than manufacturing application-specific integrated circuits. Thus, FPGA is one feasible
way for customized computing. It is energy-efficient to obtain desired performance using FPGAs by pipelining,
module duplication, data prefetching and reuse, etc.

In this Section we present the FPGA implementation of asynchronous ray-parallel algorithm for the SRS
problem. First we describe the structure of the data pipeline, and then we elaborate the design of each pipeline
stage.
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Figure 1: Structure of the block-coordinate descent methods

For every single ray, if we process one single-precision floating-point pixel per clock cycle, the differential
operators read 5 × 2 pixels from f and v per cycle, and the descent steps write 1 × 2 pixels back to f and v
per cycle. The “bandwidth” requirement is 4.8GB/s per ray for a 100MHz clock frequency. We also present our
on-chip data management to enable this data access rate.

The input of the algorithm is the 180× 768 pixels of projection data g, and the outputs include a 512× 512
image f and a 512× 512 edge indicator v.

4.1 Structure of the Data Pipeline

The stages of the data pipeline in Algorithm 2 are balanced, so that it enables an efficient implementation on
FPGAs.

The corresponding hardware architecture is shown in Figure 2. The “top” module is responsible for the outer
iterations. For example, if it repeatedly issues 180 × 768 rays 10 times, it initiates 10 outer iterations for the
optimization.

Figure 2: Hardware architecture of the ray-parallel algorithm

Each ray processing element consists of five stages. The ray-trace stage (Section 4.2) generates the coefficients
of R in runtime, because the matrix is too huge to store in memory. The major computation of the projection
and descent stages (Section 4.3) is now much more light-weight, where the partial projection becomes a simple
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dot product. The fetch and commit stages (Section 4.4) are responsible for exchanging between the centralized
data and a local copy, and we will present our on-chip data management strategy in this subsection.

Under proper on-chip data management, our design supports multiple ray processing elements for asyn-
chronous parallelization. Due to the resource limitation, we implement 4× ray processing elements on FPGAs.

4.2 Module of Ray-Trace Stage

The ray-trace is essentially the task to generate the non-zero coefficients {ri,j} of the operator R.

The ray-trace algorithm in the classic Bresenham algorithm23 and SNARK0924 software package is described
in Algorithm 3, where we assume the image occupies the area [0, n]× [0, n], and the variables are illustrated in
Figure 3. The basic idea is to obtain ri,j and/or ri,j+1 after the variables y and L (as defined in Figure 3) are
incrementally computed.

(a) Case 1: two non-zero intersections (b) Case 2: a single intersection

Figure 3: Illustration of the ray trace algorithm

Algorithm 3: Commonly-used ray trace in
SNARK0924

Input: the i-th ray intersecting the image at
(0, ci) from angle ϕ

Output: the intersection lengths {ri,j} (and
the pixel indices)

1 j = 0;
2 y = ci;
3 for x = 1 to n do
4 L = y − byc+ tanϕ− 1;
5 if L > 0 then
6 ri,j = secϕ− L cscϕ;
7 ri,j+1 = L cscϕ;
8 j = j + 2;

9 end
10 else
11 ri,j = secϕ;
12 j = j + 1;

13 end
14 y = y + tanϕ;

15 end

Algorithm 4: Pipeline-friendly ray trace
with zero padding

Input: the i-th ray intersecting the image at
(0, ci) from angle ϕ

Output: the intersection lengths {ri,j} (and
the pixel indices)

1 j = 0;
2 y = ci;
3 for x = 1 to n do
4 j = 2(x− 1);
5 y = (x− 1) tanϕ+ ci;
6 L = y − byc+ tanϕ− 1;
7 if L > 0 then
8 ri,j = secϕ− L cscϕ;
9 ri,j+1 = L cscϕ;

10 end
11 else
12 ri,j = secϕ;
13 ri,j+1 = 0;

14 end

15 end

This algorithm is efficient for sequential execution that minimizes the total amount of computations, but it
causes dependence that are not suited for the pipelining on FPGAs. Specifically, we do not know whether one or
two non-zero intersection lengths are generated in each iteration. Such dependence will reduce the throughput
of the pipelining execution of the loop. Experiments show that this algorithm can only generate one coefficient
every two cycles.
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To remove the dependence, we propose a ray trace algorithm with zero padding in Algorithm 4, which always
generates two coefficients in each iteration. Although some zero coefficients are generated, different iterations can
be executed independently and we can generate one coefficient every cycle. The average number of coefficients
per ray is 431 from Algorithm 3, and is 614 from Algorithm 4. We increase the overall efficient of the ray-trace
module by about 30%.

We can also add a filter module right after the ray-trace module to eliminate the zero coefficients. This filter
will help when multiple ray processing elements are integrated, because the wait time for the data from the fetch
module can be used for the elimination.

4.3 Module of Projection and Descent Stages

The descent step is in fact a light-weight version of an inner iteration in Algorithm 1, except that it only performs
optimization of a single ray.

The computation R>i (Rif(i) − gi) is still the bottleneck. Reduction operation involves computing the dot
product Rif(i). Based on the fact that the floating-point multiply-add operation on FPGA consume a constant
number of cycles, we can pipeline the reduction operation by introducing extra registers to hold partial dot
products. A toy example assuming a multiply-add operation, which costs three clock cycles, is illustrated in
Figure 4, and three registers are introduced. In this way, we have enough time to consume two elements, and
complete one multiply-add operation every cycle. We only need to sum up all three partial dot products at the
end. Thus, the module of projection stage is able to process one pixel per cycle.

Figure 4: A toy example of pipelined dot product assuming a multiply-add operator consumes three cycles

The remaining pixel-wise computation related to gradient computation and descent movement is relatively
easy to pipeline, and thus the descent module can also process one image pixel in f and one edge indicator pixel
in v per cycle.

4.4 Modules of Fetch and Commit

There are three major memory consumptions in the algorithm: the projection data g (180× 768, 0.5MB), the
image f (512 × 512, 1MB) and the edge indicator v (512 × 512, 1MB). The projection is read-only, and other
two will be frequently updated. In addition, the projection data has a low contention of access, where only one
projection point is needed for each ray. Thus, we put the projection g in the off-chip DRAM, and organize the
image f and the edge indicator v in the on-chip BRAM.

Because a block of on-chip BRAM has only two ports for reading and writing, we partition the centralized
on-chip image f and edge indicator v into 4 × 4 mega-blocks (each with a size of 128 × 128 pixels) to enable
simultaneous access by several ray processing elements. We implement one access queue for each mega-block,
such that the ray processing element with the highest priority will be guaranteed with enough throughput to
optimize one pixel per cycle. The other ray processing elements may have to wait until the mega-block that it
is going to read or write is idle. The 4× 4 mega-blocks enable 2.8 effective ray processing elements to fetch and
commit data simultaneously, when the rays are accessed sequentially (i.e., the parallel rays with the same angle
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Alternating minimization
SSIM = 0.9827
PSNR = 29.3264
MSE = 76.5319

Ray -parallel minimization
SSIM = 0.9816
PSNR = 30.7908
MSE = 54.6263

Figure 5: Comparison of solution qualities

are accessed in the same order as they are measured from the leftmost detector to the rightmost one, and then
the parallel rays with the next angle are accessed in the same way).

Because the differential operators requires a stencil access of five pixels (e.g., fi,j , fi+1,j , fi,j+1, fi−1,j , fi,j−1)
to update one pixel, we perform a cyclic partition for every mega-block in both dimensions with a period of 3.

5. EXPERIMENTAL RESULTS

In this section, we first present the solution quality of the asynchronous ray-parallel algorithm for the SRS
problem. After that, we evaluate the performance, power and energy consumption of the FPGA implementation
of the ray-parallel algorithm, and we also compare it against its CPU and GPU implementations.

5.1 Analysis of the Quality of SRS Solution

In order to evaluate the quality of the reconstructed image, three metrics have been used: the structural similarity
(SSIM) index, the peak signal-to-noice ratio (PSNR), and the mean square error (MSE). SSIM25 is a measure of
structural similarity that compares local patterns of pixel intensities that have been normalized for luminance
and contrast. PSNR is often used to measure the quality between the original image and a compressed one.
MSE, as the average of squared error, has clear physical meanings but it has been proved to be inconsistent with
human eye perception.

We use the Shepp-Logan head phantom to test the quality of reconstruction and segmentation. The visual
difference between the alternating minimization and the ray-parallel minimization are illustrated in Figure 5. The
upper two figures are the reconstruction and the segmentation from the alternating minimization method, and
the lower two figures are from the ray-parallel minimization method. The quantitative comparisons are shown
on the left-hand side, where the metrics of SSIM, PSNR, and MSE, compared with the true original image, are
listed. The two methods only have negligible difference in SSIM, and the ray-parallel method is better in terms
of PSNR and MSE.

5.2 Design Platform and Evaluations

Xilinx Virtex-7 board VC707 is selected to be the target hardware platform in our experiment. Xilinx Vivado
Design Suite 2015.1 is invoked to generate the modules in our design.

In our experiment, the Shepp-Logan phantom26 is used as the test input with an image size of 512 × 512.
The outer iteration number is set to 10.
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5.3 Detailed Performance Analysis

Table 1 shows the execution time (T), power (P) and energy consumption (E) of the alternating minimization
(alt) and the ray-parallel minimization (ray). The performance is defined by 1/T, the energy efficiency is defined
by 1/E, and both are normalized against the smallest value (CPU ×1 (alt) in this case).

The CPU version is compiled by gcc-4.7.2 with options “-O3 -funroll-all-loops -fprefetch-loop-arrays” and
runs on an x86 server with Intel Xeon E5-2430 CPU at 2.20GHz and 32GB memory. The label ×1 indicates a
single-thread implementation, and the label ×8 indicates a 8-thread implementation. The GPU version runs on
an AMD Radeon R7 200 Series GPGPU.

The FPGA (ray) duplicates the ray processing element by 4 times on FPGA, running at a frequency of
100MHz. From the table, we can see that the optimized FPGA (ray) achieves a 9× speedup over CPU ×1 (ray).
GPU has more cores and consumes much more energy than FPGA implementations. The FPGA (ray) achieves
a 1.2× speedup with an energy efficiency as great as 58×, over the GPU (alt).

Table 1: Experimental Results of Different Implementations

Implementation T (s) P (W) E (J) 1/T 1/E
CPU ×1 (alt) 220.0 95 20900 1 1
CPU ×1 (ray) 33.0 95 3135 7 7
CPU ×8 (ray) 6.9 95 656 32 32

GPU (alt) 6.0 236 1416 37 15
GPU (ray) 4.1 236 968 54 22

FPGA (ray) 3.5 4.8 17 63 1244

Table 2 shows the consumption of hardware resources and the utilization rates of the FPGA (ray) implemen-
tation. The utilization rates of LUT and BRAM resources are considerably higher when we use 4 ray processing
elements.

Table 2: Resource utilization of FPGA (ray)

Implementation BRAM 18K DSP48E FF LUT
available 2060 2800 607200 303600

ray processing element (×1) 512 172 20128 25607
data management (1× 1 mega-block) 1024 0 2058 5708

total (1-ray) 1536 (75%) 172 (6%) 22186 (4%) 31315 (10%)
ray processing element (×4) 512 688 81566 103505

data management (4× 4 mega-blocks) 1024 0 46282 121614
total (4-ray) 1536 (75%) 688 (25%) 127848 (21%) 225119 (74%)

6. CONCLUSION

In this paper, we proposed an asynchronous ray-parallel algorithm for the SRS problem with the Mumford-
Shah model and accelerated it on FPGA devices using a high-level-synthesis-based design methodology. The
ray-parallel algorithm is designed for the computational paradigm on FPGAs, and enables an efficient pipelining
implementation. Experimental results show that the FPGA implementation achieves a 1.2× speedup with an
energy efficiency as great as 58×, over the GPU implementation.
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