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Abstract—In this paper we propose a quantitative approach
to analyze the impact of heterogeneous blocks (H-blocks) on the
FPGA placement quality. The basic idea is to construct synthetic
heterogeneous placement benchmarks with known optimal wire-
length to facilitate the quantitative analysis. To the best of our
knowledge, this is the first work that enables the construction of
wirelength-optimal heterogeneous placement examples. Besides
analyzing the quality of existing placers, we further decompose
the impacts of H-blocks from the architectural aspect and netlist
aspect. Our analysis shows that a heterogeneous design hides
the wirelength degradation by a more compact netlist than
its homogeneous version; however, the heterogeneity results in
a optimality gap of 52% in wirelength, where 25% is from
architectural heterogeneity and 27 % is from netlist heterogeneity.
Therefore, new heterogeneous placement algorithms are needed
to bridge the optimality gap and improve design quality.

I. INTRODUCTION

Modern heterogeneous FPGA architecture contains not on-
ly configurable logic blocks (CLBs) but also heterogeneous
blocks (H-blocks for short), such as: DSPs, BRAMs, etc. The
introduction of H-blocks aims to improve performance and
reduce area and power. Advanced FPGA synthesis algorithms
are crucial for exploiting the heterogeneous resource efficient-
ly, among which placement is an important stage to optimize
the performance and power of on-chip interconnects.

The placement algorithm has been studied for decades.
Basically, it can be divided into three classes: simulated
annealing algorithm (e.g., VPR [1]), partition based algorithm
(e.g., PPFF [2] and Michael et al. [3]), and analytical algorithm
(e.g., HeAP [4] and Lin et al. [5]). More details of these
algorithms can be found in [6] for FPGAs and [7] for ASICs.
Despite the existence of well-developed placement algorithms,
the appearance of H-blocks rise new problems. By far, existing
placers only show their capability to handle H-blocks without
discussing how their algorithms differ from the homogeneous
case, such as VPR. Others do design different method with
heterogeneity awareness. For example, HeAP adapts different
rough legalization strategy for H-blocks. However, it is still
unclear how well the placement algorithm handles the hetero-
geneity.

The heterogeneity mainly comes from two aspects: the
architectural heterogeneity and the netlist heterogeneity. We
observe that for the same homogeneous netlist without H-
blocks, the wirelength quality of placement on homogeneous
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FPGAs differs from the quality of heterogeneous FPGAs. This
impact is named architectural heterogeneity in this paper.
Given the same heterogeneous FPGA, we can synthesize
the RTL design into homogeneous netlist (without H-blocks)
and heterogeneous netlist (with H-blocks), respectively. We
observe that for a netlist with similar number of blocks, the
wirelength quality of heterogeneous netlist differs from the
quality of homogeneous netlists. This impact is named netlist
heterogeneity in this paper. In the following analysis, we
develop a systematic way to separately analyze the impact
from architectural heterogeneity and netlist heterogeneity.

Our evaluation is based on the quantitative analysis: we
first construct a synthetic netlist with known optimal wire-
length. With such netlist, we further design experiments
to quantify the impact from architectural heterogeneity and
netlist heterogeneity respectively. We also evaluate the gap
between existing placers, including VPR and Quartus, and
the synthetic optimal placement. There are multiple previous
works on synthetic benchmark generation. Chang et al. [§]
firstly proposed the idea of generating placement benchmarks
with known optimal wirelength (PEKO). However, the PEKO
benchmarks are based on the assumption that all the blocks
are of equal size and unique type, which is not suitable for
heterogeneous FPGAs. Cong et al. [9] extended the PEKO
idea to examine the optimality of mixed-size ASIC placers.
However, H-blocks in FPGAs are different from macros in
ASICs: macros in ASICs are freely movable, while H-blocks
in FPGAs are only placeable in a limited set of tiles. Papa et al.
[10] constructed benchmarks with structured optimal solutions
that helped identify the issues of existing algorithms. Ward
et al. [11] high-lighted the datapath placement problem, and
constructed two customized designs that performed common
logic functions with manual layouts. Again, all these existing
placement benchmarks target ASIC placers but not FPGA
placers.

In this paper, we make the following contributions:

o We quantify the impact of H-blocks on the wirelength
quality of FPGA placement. Specifically, we can sepa-
rately analyze such impact from two sources: architec-
tural heterogeneity and netlist heterogeneity.

To facilitate the analysis with synthetic hetereogeneous
benchmarks with known optimal wirelength, we propose
an effective one-dimensional search method to generate



such heterogeneous netlists.
We evaluate and analyze the heterogeneous placement
quality, in terms of optimality gap, on popular academic
and industrial FPGA placers.
Our synthetic benchmarks for heterogeneous FPGA
placement will be released in the public domain', avail-
able in VPR format, Altera VQM format [12], and prob-
ably in EDIF format with optimal placement information.
Thus, researchers and developers of heteregeneous FPGA
placers will be able to better understand the quality of
their placers in handling the architectural heterogeneity
and netlist heterogeneity separately.

The remainder of this paper is organized as follows. Section
II qualitatively analyzes the complexity and inefficiency of the
placement algorithm caused by the H-blocks. Before quan-
tifying the impact of heterogeneity, Section III firstly intro-
duces how to generate a synthetic netlist with known optimal
wirelength with our one-dimensional search method. Section
IV designs experiments to separately analyze the architectural
heterogeneity and the netlist heterogeneity. Experimental study
reported in Section V shows that there is still much room
left for the improvement of heterogeneous FPGA placement.
Finally, Section VI gives conclusions and future work.

II. MOTIVATIONS

Based on our observations, the existence of H-blocks ben-
efits the design by reducing the netlist size on one hand, and
makes the placement more complicated on the other hand.
Such observations motivate us to quantify the impact of H-
blocks on the FPGA placement quality.

A. The Hidden Impact due to the Reduced Netlist Size

The H-blocks implement their own functionality in a more
efficient way than CLBs, in terms of delay, area and power.
By synthesizing such functionality into H-blocks, the whole
design is benefit from performance improvement and area
reduction.

For designs with identical functionality, mapping to a het-
erogeneous architecture will result in a more compact netlist.
The statistics in Table II will show that both the number of
logic blocks and the number of nets can reduce by about 30%
compared with its homogeneous implementation. Details for
such heterogeneous and homogeneous synthesis flows will be
described in Section IV.

B. Intuitions of the Difficulties in Heterogeneous Placement

The heterogeneity that complicates the placement problem
mainly comes from two aspects: architectural heterogeneity
and netlist heterogeneity.

The architectural heterogeneity restricts the legal locations
of blocks to their specific tiles. As shown in Figure 1, in the
heterogeneous island-style FPGA, different logic resources are
aligned in tiles on the discrete, fixed locations. For a legal
placement, one type of blocks in the netlist can only be put in

!Please download the synthetic benchmarks from
https://github.com/FPGAStudy/placement/
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the tiles with a corresponding type; tiles with different types
serve as obstacle during placement. Thus, the heterogeneous
tiles make the placement much more complicated compared
with the placement with homogeneous tiles only.

Given the heterogeneous architecture, a portion of logics in
the design may map into H-blocks. Such netlist is a hetero-
geneous netlist, containing more than one type of blocks. The
wirelength of heterogeneous net is affected by different types
of blocks jointly, making the wirelength minimization more
difficult. Such difficulty comes from netlist heterogeneity.

Take the simulated annealing-based (SA) placement al-
gorithm as an example, we will discuss informally how
architectural heterogeneity and netlist heterogeneity degrade
placement quality.

Adopting Monte-Carlo-based sampling, SA optimizes wire-
length by perturbing the locations of blocks with block
movement or swapping. In order to avoid huge degradation
on wirelength, block movement and swapping are restricted
within a small region of (2Rjimit + 1) - (2Ryimit + 1) (shown
in Figure 1), where Rj;m; is called the “range limit”. The
acceptance ratio of block movement is related with both
temperature and movement strategy. According to Lam et.al,
[13], good annealing schdule should decrease the temperature
as fast as possible while maintaining the acceptance ratio at
0.44. This results in R;;m,i: being the size of the entire chip
for the first part of the annealing, shrinking gradually during
the middle stages of the annealing, and finally being 1 logic
block at low temperatures [14].

Because of the architectural heterogeneity, the existence of
H-blocks reduces the number of candidate locations for block
movement or swapping within the range limit. As shown in
Figure 1, the logic block has fewer candidate locations when
there have different type of blocks within the range limit.
Such situation is even more serious as the range limit shrinks,
affecting the acceptance rate at a low temperature. The limited
exploration space will definitely affect the effectiveness of the
simulated annealing.

On the other hand, the wirelength minimization for a
heterogeneous net is more difficult than a homogeneous net.
For example, in Figure 1 the movement distances for DSPs are
larger than CLBs, resulting in higher probability of wirelength
degradation, and thus lower probability of acceptance.
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Fig. 1. Island-style heterogeneous FPGA and different range limits for block
movement from Site;.
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III. SYNTHETIC BENCHMARK GENERATION

In Section II, we qualitatively analyze the issues that the
heterogeity brings in. However, quantitative analysis is still
required to determine the necessity of heterogeneity-aware
placement algorithm. Before quantifying the optimality gap
of wirelength, we will firstly describe how to generate our
synthetic benchmarks with known optimal wirelength.

A. Basic Idea

Since the placement problem is NP-hard, it is impractical to
produce an optimal placement with minimum wirelength for
a realistic design in reasonable time. Instead of obtaining an
optimal placement of a realistic design for analysis, we gen-
erate synthetic benchmarks that reserve some properties from
realistic designs while providing known optimal wirelength by
construction. Common netlist properties for reference include
the number of nets and the number of type-wise pins in each
net.

For example, given the extracted netlist properties from a
realistic design (e.g., there are one homogeneous net netl
and one heterogeneous net net2 in Figure 2(a)) and the
target architecture (in Figure 2(b)), we want to construct a
netlist with known optimal wirelength while preserving these
properties.
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(b) Heterogencous FPGA architecture and optimal rectangles
for cach net,

(c) Final netlist topology with optimal
wirclength (IIPWL) of 8

Fig. 2. Toy benchmark generation.

The netlist generation is done by implementing each net one
by one. A net with optimal wirelength can be constructed by
connecting blocks within one of its optimal rectangles (defined
latter). In Section III-B, We propose the one-dimensional
search method to obtain the optimal rectangles for a given
heterogeneous net. Please note that in terms of wirelength,
each net might have multiple optimal rectangles located at
different tiles. These optimal rectangles are candidates for
net implementation with the minimum half-perimeter wire-
length (HPWL). For example in Figure 2(b), Opt.Rect.1 and
Opt.Rect.2 are optimal rectangles for netl with a minimum
HPWL of 4, assuming the pins are located at the center of
blocks; and Opt.Rect.3 and Opt. Rect.4 are optimal rectangles
for net2 with a minimum HPWL of 4. Then the choice of net
candidates is done with the strategy depicted in Section III-C.
For example, one possible netlist implementation consisting
of netl and net2 is shown in Figure 2(c).
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B. Generate Optimal Rectangles for a Heterogeneous Net

The optimal wirelength of a synthetic net is guaranteed by
construction. In the homogeneous case, the wirelength lower
bound for a net with degree p is quite easy to estimate [8]. If
a net with p pins achieves the lower bound, all the pins are
accommodated in their optimal rectangle with a size of:

p p

[vel ™ TVl

The optimal rectangle for a net n is defined as a rectangle
with minimum half perimeter that can accommodate all types
of blocks in net n. Thus, the minimum HPWL of net n
is calculated by the half-perimeter of the optimal rectangles
enclosing its pins. Formally speaking, we represent an op-
timal rectangle with a 4-tuple (z,y,l;,l,), where (z,y) is
the bottom-left corner (also called the starting point in the
following) and [, (or [,)) is the width (or height) of the optimal
rectangle. Each net might have multiple optimal rectangles,
which are the candidates for synthetic net implementation. The
choice of candidates will be discussed in Section III-C.

However, for heterogeneous nets, different types of blocks
have different geometric size and align in different tiles. There
seems no simple expression like Equation 1 to determine the
optimal rectangle for a heterogeneous net, since the optimal
size is related with locations. With the example in Figure 3,
rectangles with different starting points have different size to
accommodate the logic blocks. The optimal rectangle must be
the minimum one starting from arbitrary locations. Thus, it is
difficult to determine the optimal size with a simple expression
like Equation 1.

To solve this problem, we propose an effective one-
dimensional search method to find the optimal rectangles for
the heterogeneous net n. Firstly we solve a simpler problem
by focusing on the rectangles with the same starting point s;,
and search among these rectangles for the ones with minimum
perimeter to accommodate all types of blocks in the net n. And
then we use the above solver to search among all possible tiles
as the starting point to obtain the globally optimal rectangles.
Please note that not all the tiles on the chip should be searched
and compared. Only those effective tiles are necessary to be
searched. The criteria of effective tile will be defined latter.

The basic idea of the one-dimensional search method is to
enumerate the width or height of rectangle only instead of both
dimensions (width and height). For example, if [, is given, it
is straightforward to compute the corresponding minimum 1.
After each enumeration of [,, we can update the best-known
smallest value of [, +[,, and keep incrementing [, for the next
enumeration until the new [, is larger than the best-known
smallest I, + l,. The search range for the [, is called the
reasonable 1.

Take net2 in Figure 2 (a) as an example, we illustrate
the process of one-dimensional search in Figure 3. Given the
starting point s; or s;, we want to find the rectangle with
minimum half perimeter to accommodate net2. Let [, be the
searching dimension, Table I shows the size of rectangles as

Vol [=lorf—=1- [VP] (1)



l; increases gradually. We stop searching in the [/, dimension
when [ is larger than the best-known smallest [, +1,, (7 when
starting at S; and 6 when starting at .S;). Compared with all
the rectangles, the minimum half perimeter is 6 when taking
s; as the starting point. There are three optimal rectangles for
net2, which are (z;,y;,2,4), (z;,y;,3,3), and (z;,y;,4,2).
The pseudo code of the one-dimensional search algorithm is

also shown in Algorithm 1.
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Fig. 3. Illustration to the one-dimensional search

TABLE 1
RECTANGLES ACHIEVED IN THE SEARCH PROCESS BY TAKING S;(S;)
As AS STARTING POINT

Si

lo 1~3 4 5 6 7

Ly 0o 4 2 2 2
Loty o) 8 7 8 9

S, Rect.1  Rect.2  Rect.3

o 1 2 3 4 5 6

ly 00 4 3 2 2 2
Loty oo 6 [3 6 7 8

Since optimal rectanges have the minimum half-perimeter
compared with other rectangles starting at arbitral tiles, each
net implemented within its optimal rectangle must have min-
imum HPWL. However, in practice, we do not need to
explore all the tiles over the FPGA chip, since modern FPGAs
have column-based structures, and the columns usually have
repeated patterns. We can find a minimum set of tiles that can
represent all the tiles on chip. Such set of tiles is called the
effective tiles. Obviously, exploring within the effective tiles
can still guarantee the optimality. In practice, the number of
effective tiles can be quite small. Take VPR architecture as an
example, the heterogeneous architecture (defined in the XML
file) will tell the starting point of the type-wise tiles and the
intervals. Thus, the tiles within the intervals can represent the
periodical appearance of other tiles. For example, the effective
tiles for the architecture in the Figure 3 have only 2 DSPs
(labeled 7,8) and 6 CLBs (labeled 1~6). With the effective
tiles, the searching space can be greatly reduced.

C. Generate a Heterogeneous Netlist with Known Optimal
Wirelength

Netlist is generated with the flow in Figure 4. The net
set IV containing netlist properties is extracted from realistic
designs. We construct each net N; in set N until it is empty.
The sequence of net implementation is determined by the
number of optimal rectangles each net has. Basically, the
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Algorithm 1 Find the optimal rectangles for a heterogeneous
net
Require:
1) a heterogeneous FPGA
2) the number of type-wise blocks in the net e (labeled
with d(e, x))
Algorithm:
. HPW Lopr = 400
2: OptRects := &
3: for each effective s; do

4: (x;,y;) := the coordinate of s;
5 for each reasonable [, do
6: calculate the minimum [, such that in the rectangle
(@i, yi) — (x; + 1z, y; + 1), the number of blocks of
type ¢ is not less than d(e, t)
if I, +1, < HPW Lopr then
HPW Lopr :=1, + lU
: OptRects:=(z;, i, s, ly)
10: else if I, + 1, == HPW Lopr then
11: OptRects:=OptRects |J (i, ¥s, I, ly)
12: end if
13:  end for
14: end for

15: return OptRects

heterogeneous net containing rare resources (e.g, DSPs, 1Os)
tends to have fewer candidates than the homogeneous net with
only CLBs. A high-degree net is likely to have fewer optimal
rectangles than a low-degree net. In our implementation, Net
with fewer optimal rectangles will be generated first.

With Algorithm 1, we can find the optimal rectangles for
a given net N,. In terms of net implementation candidate,
we simply choose the bottom-left-most R; first. If the input
or output pins of the blocks in R; are used up, we choose
another optimal rectangle R;. If the net cannot find an optimal
rectangle with enough available pin resources, such net will be
thrown away instead of finding a sub-optimal implementation.
The netlist can be constructed when all the nets have been
processed.

Please note that the final netlist properties might be different
from the properties extracted from realistic designs. Since for
each tile, the physical pin number is limited. What’s more,
if the heterogeneity is quite complex, the optimal wirelength
can only obtained at a few number of tiles, making those
tiles become hot spots. Thus, the latter arrived net will be
difficult to find its accommodation because of the exhaust of
pin resources. In this way, our benchmark generation is in a
“best-effort” style.

D. Time Complexity Analysis

A pessimistic estimation for the number of reasonable [, to
be searched at one starting tile is k7", where k is the net degree
and T is the number of block types in the net. The optimal
rectangles can be achieved by searching tiles in the effective
tiles. Supposing the effective tiles lie within the range of T, T,.



Net set S

Optimal Rectangles set R
for net S; (Algorithm 1)

implement S; in R;

Fig. 4. Netlist generation flow

Netlist Generated /
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The searching time spends on one net equals to T, T, kT". The
overall pessimistic estimation of the runtime is O(T, T, kTN ),
where N is the number of nets.

In practice, the runtime can be much smaller than this
estimation, and it is possible to speed up the benchmark
generation by building a lookup table of optimal rectangles
for a specific FPGA architecture.

IV. EXPERIMENTAL FLOW FOR THE QUANTITATIVE
ANALYSIS

In this section we describe the evaluation flow to quantify
wirelength gaps of state-of-the-art placers, including VPR and
Quartus. And we further design experiments to separately
analyze the impacts of architectural heterogeneity and netlist
heterogeneity.

A. Evaluation Flow

There are multiple choices for FPGA synthesis: 1) synthe-
size the RTL design into a homogeneous netlist and map on
a homogeneous FPGA; 2) synthesize the RTL design into a
homogeneous netlist and map on a heterogeneous FPGA; 3)
synthesize the RTL design into a heterogeneous netlist and
map on a heterogeneous FPGA. In this section, we depict
the evaluation flow to calculate wirelength gaps of these
three different choices on the academic placer VPR? and the
industrial placer Quartus’.

As shown in Figure 5, the evaluation flow takes an RTL
design as input and output the wirelength gap of VPR placer
or Quartus placer. The whole flow consists of three steps: 1)
synthesize the RTL design into a homogeneous or heteroge-
neous netlist (as a reference netlist) with front-end synthesis

2We use VPR-5.0 placer because the placement algorithms in VPR-5.0 and
VPR-7.0 do not have significant changes. The architecture we used is defined
in “K4-n12.xml”.

3We use Quartus 12.0 and Cyclone II FPGA device.

flow; 2) given the reference netlist and the target architecture,
we use the Algorithm 1 in Section III to generate a synthetic
benchmark with known optimal wirelength; 3) feed VPR
placer and Quartus placer with the synthetic benchmark and
obtain the wirelength gap towards optimal placement solution.

Synthetic Benchmark
Generator

Real Design

Front-end Synthesis Flow > Reference Netlist

Homogeneous Flow for VPR

Verilog Parser Logic Synthesis Packing Architecture
Quartus ABC TVpack
Synthetic Optimal
Heterogeneous Flow for VPR Benchmark | Wirelength
Verilog Parser Logic Synthesis Ll Packing
ODIN ABC TVpack Performance Evaluation

Synthesis Flow for Quartus

VPR-5.0 Placer
Quartus Placer

‘Wirelength Gap

Logic Synthesis
Quartus map

L Packing
Quartus fit

Homogeneous Netlist

Or Heterogeneous Netlist
Fig. 5. The synthesis flow: (a) homogeneous flow (b) heterogeneous flow

We have customized the setting files of synthesis tools to
eliminate the nosing impacts from these following parts:

« Different optimization efforts of front-end synthesis tools:
ODIN and Quartus. We use ODIN and Quartus to parse
RTL designs into BLIF format targeting heterogeneous
VPR architecture and homogeneous VPR architecture
respectively. The BLIF files are generated without opti-
mization, so that ODIN and Quartus in the front end only
serve as RTL parsers. For example, we turn on the option
of “dump_blif_before_optimization” in Quartus verilog
parsing. The optimization of BLIF netlist is then left to
ABC.

o Placers pay much efforts to optimize critical paths. For
both VPR placer and Quartus placer, we specify the
“wirelength-driven” placement mode. For example, in
VPR, we set the placement to be “bounding-box driven
placement”. And in Quartus, we turn off the timing
optimization with setting “optimize timing off”

¢ Quartus placer does not only placement but also packing.
The synthetic netlist (in VQM format) generated is the
LAB-level netlist. In order to prevent the packer from
disturbing the packing at the BLE-level, we use the
feature of “virtual pin” and “logic lock™ to lock the BLE
blocks within the same “LAB”.

Based on different netlist type and architecture type, our
evaluation flow can be classified into three flows:

o Flow-A: generate a homogeneous netlist with known
optimal wirelength targeting a homogeneous architecture.

o Flow-B: generate a homogeneous netlist with known op-
timal wirelength targeting a heterogeneous architecture.




o Flow-C: generate a heterogeneous netlist with known op-
timal wirelength targeting a heterogeneous architecture.

Please note that the netlist topology may be different for Flow-
A and Flow-B even with the same reference netlist, since
the optimal rectangles are different for different architectures.
These three flows will be used to evaluate the placement
quality of VPR placer and Quartus placer in Section V-A.

B. Separate the Impacts of Architectural and Netlist Hetero-
geneity

For the sake of quantifying the impacts of architectural
and netlist heterogeneity, a direct comparison of performance
using the synthetic benchmarks generated with Flow-A, Flow-
B, and Flow-C cannot work due to the difference of netlist
topology. In order to remove the impact of netlist topology,
we design three cases to separate the impact of architecture’s
heterogeneity from the netlist heterogeneity.

o Case-1: Given the reference netlist, we will use Flow-

A to generate the synthetic netlist with known optimal
wirelength targeting the homogeneous architecture.
Case-2: By adding some heterogeneous tiles, we expand
the homogeneous architecture into a heterogeneous archi-
tecture, while keeping the netlist unchanged. With some
simple computation, we can get an upper-bound of the
optimal wirelength for Case-2.
Case-3: Based on Case-2, some H-blocks blocks will
be added into the homogeneous netlist to generate the
heterogeneous netlist. Similar to Case-2, we can also get
a upper-bound of the optimal wirelength for Case-3.

By comparing the placement results in Case-1 and Case-2,
we can get the amount of impact from architecture hetero-
geneity. While comparing the placement results of Case-2 and
Case-3, we can quantify the impact from netlist heterogeneity
on wirelength.

Fig. 6.

(a) Case-1: placing homogeneous netlist on the homogeneous
architecture. (b) Case-2: transforming the homogeneous architecture to the
heterogeneous architecture. (c) Case-3: transforming the homogeneous netlist
into the heterogeneous netlist.

Using the example depicted in the Figure 6, we further
explain the details. In the Figure 6(a), we have generated
the homogeneous netlist with known optimal wirelength with
Flow-A, which containing a 2-degree net (netl), a 9-degree net
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(net2), and a 4-degree net (net3). The total optimal wirelength
is 7.

Then the heterogeneous tiles (e.g, DSPs) will be inserted
into the homogeneous architecture, as shown in Figure 6 (b).
The number of tiles to be added and where to insert those
tiles are directed by the real heterogeneous FPGA architec-
ture. For example, in the heterogeneous VPR architecture,
the starting point of the heterogeneous tiles and the interval
for periodical appearance are defined in the architecture file.
After transforming the homogeneous architecture into the
heterogeneous architecture, we will calculate the wirelength
for the stretched placement after heterogeneous tile insertion,
which is an upper-bound of the optimal wirelength. As shown
in Figure 6(b), nets spanning the heterogeneous sites are no
longer optimal (i.e. netl and net2 are no longer optimal). So
9 is a upper-bound of the optimal wirelength.

Then we will add some H-blocks into the netlist to transform
it into a heterogeneous netlist. Please note that we only add H-
blocks for those nets, whose wirelength will not be increased
after adding these H-blocks. For example, in Figure 6(c) we
only add H-blocks for net2. Thus, with such constraint, the
upper-bound for the optimal wirelength in Figure 6(c) is same
with wirelength for Figure 6(b). The wirelength upper-bound
is still 9.

With the netlists generated according to these three cases,
we can perform comparisons to separately quantify the impacts
of architectural heterogeneity and netlist heterogeneity. The
statistics will be shown in Section V-B.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

Our synthetic benchmark generator is implemented in C++
and compiled with G++ 4.5.1. The generator runs on Intel
Xeon CPU E5620 Linux work station. Realistic RTL designs
for reference are either from the VPR benchmark suite or from
the QUIP benchmark suite. In order to test the scalability, we
also implement two large designs (fft and ifft) in verilog.

With the flow shown in Figure 5, we synthesize the realistic
RTL designs into the reference netlists. Properties of reference
netlists are depicted in Table II, including the number of nets
(#Net) and the number of blocks (#CLB, #DSP, #LLAB).

The synthetic netlists will reserve the features of these
realistic benchmarks at the best effort. By comparing the
number of net (Diffl) and the number of CLB (Diff2) of
homogeneous netlist and heterogeneous netlist, we can see
that for the same design, synthesizing into a heterogeneous
netlist can save around 30% resource utilization compared to
a homogeneous netlist.

The name of synthetic netlist generated by referring the
specific realistic design is listed in the column of “Syn.name”
in Table II, which will be used in the following experiments.
Please note that both Bench.aX and Bench.bX are homoge-
neous netlists generated from the same realistic designs. How-
ever, they are targeting different architectures, homogeneous
architecture and heterogeneous architecture respectively. Thus,
both the optimal wirelength and netlist topology are different.



TABLE II
PROPERTIES OF REFERENCE NETLISTS FOR VPR

Reference Homogeneous Netlist(10) Heterogeneous Netlist(8) Diff1 Diff2
Benchmark for VPR  #Net  #CLB Syn.name #Net  #CLB #DSP  Syn.name | (#net) (#CLB)
iirl 744 109 Bench.al(bl) 487 70 5 Bench.cl 35% 31%
fir_scu_rtl 777 117 Bench.a2(b2) 544 70 17 Bench.c2 30% 26%
diffeq_f_systemC 2230 310 Bench.a3(b3) 1596 207 4 Bench.c3 28% 32%
oc54_cpu 2182 362 Bench.a4(b4) 1777 301 1 Bench.c4 19% 17%
stereovisionl 18866 2909 Bench.a5(b5) 12100 1583 152 Bench.c5 36% 46%
diffeq_paj_convert 2362 327 Bench.a6(b6)
cf_cordic_v_18 3493 561 Bench.a7(b7)
des_perf 4461 849 Bench.a8(b8)
fft 68841 10704 Bench.a9(b9)
ifft 75873 10712  Bench.alO(b10)
of fir_24 3175 366 25 Bench.c6
stereovision2 32095 3938 564 Bench.c7
paj_top_hier 40231 6075 6 Bench.c8

TABLE III

WIRELENGTH GAP OF VPR PLACER WITH Flowa, Flowb AND Flowc

Hom.Netlist+Hom.Arch. (Flow-A) Hom.Netlist+Het.Arch. (Flow-B) Het.Netlist+Het.Arch. (Flow-C)
Bench. OPT,, VPR, WG Bench. OPT,, VPR, WG Bench. oOpPT,; VPR,; WG
Bench.al 1158 1315 14% Bench.bl 1103 1522 38% | Bench.cl 837 917 9%
Bench.a2 1172 1514 29% | Bench.b2 1197 1592 32% | Bench.c2 988 1299 31%
Bench.a3 3014 3824 27% | Bench.b3 3117 4614 47% | Bench.c3 2196 2945 34%
Bench.a4 3390 4392 30% Bench.b4 3475 4999 43% | Bench.c4 2868 4199 46%
Bench.a5 26426 36086  36% Bench.b5 27684 38447  37% | Bench.c5 15557 25899  66%
Bench.a6 3007 3517 17% | Bench.b6 3246 4100 25% | Bench.c6 4400 6715 53%
Bench.a7 5136 6461 26% | Bench.b7 5321 7280 36% | Bench.c7 50996 98576  93%
Bench.a8 7136 9400 32% | Bench.b8 7011 94438 34% | Bench.c8 62185 95860  54%
Bench.a9 88369 129705 47% | Bench.b9 109412 167498  52% Avg. - - 48%
Bench.al0 88458 155483  76% | Bench.b10 108975 171020 56%
Avg. - - 33% Avg. - - 40%

A. Evaluating the Quality of Existing Placers

With evaluation flows (Flow-A, Flow-B, and Flow-C) in
Section IV-A, we have quantified the quality of VPR placer
and Quartus placer on wirelength. The wirelength gap (WG)
is defined in Equation 2, where WL cqisic 1s the HPWL after
VPR placement or Quartus placement and WLpimal/upperbound
is the optimal or upper-bound wirelength for our synthetic
benchmarks.

WLreaIistic - WLO timal/upperbound
WG = P pp

2

WLoptimal/upperbound

The placement quality of VPR is evaluated with synthetic
benchmarks generated by Flow-A, Flow-B, and Flow-C re-
spectively. WG for each condition is shown in Table III, where
OPTy, is the optimal wirlength and VPR, is the wirelength
of VPR placer. Statistics show that:

o When placing homogeneous netlist on homogeneous ar-
chitecture, WG is around 33%.
When placing homogeneous netlist on heterogeneous
architecture, WG is around 40%.
When placing heterogeneous netlist on heterogeneous
architecture, WG is 48% on average.
The reduction around 30% problem size(in Table II) al-
most shows no advantage when compare the performance
of Flow-B and Flow-C. The benefit of the problem size
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reduction is canceled out by the wirelength degradation
caused by heterogeneity.

Thus, we call for efficient and effective heterogeneity-aware
placer to eliminate the degradation of H-blocks.

For the Quartus placer, we have generated heterogeneous
netlist with Flow-C targeting the Cyclone II FPGA device.
The notation of OPT,, Quartus,;, and WG are optimal
wirelength, wirelength reported by Quartus, and the wirelength
gap respectively. Statistics in the Table IV show that there are
around 116% wirelength gap on average.

TABLE IV
PROPERTIES OF REFERENCE NETLIST FOR QUARTUS AND WIRELENGTH
GAP WITH Flowc

Reference Netlist Property Het.Netlist+Het.Arch.(Flow-C)
Design #Net #LAB #DSP | OPT,; Quartus,, WG
nut_004 111 29 1 267 493 85%
nut_001 502 130 4 1193 2561 115%
fip_risc8 826 218 0 1852 4618 149%
mux8_I128bit 624 112 0 1006 2051 104%
os_blofish 1533 463 0 3360 5041 50%
paj_rav 1620 387 18 3148 5227 66%
cfCordic_vl8 1902 429 0 3117 8213 163%
oc54_cpu 1437 432 3 3609 9011 150%
macl 1352 411 0 3612 8128 125%
des_perf 2270 1006 0 6948 17598 153%
Avg. 116%




B. Quantify the Impacts from Heterogeneity

In order to further separate the impacts between architec-
tural heterogeneity and netlist heterogeneity, we have generat-
ed the synthetic netlists corresponding to the Case-1, Case-2,
and Case-3 in Section IV-B. For each synthetic netlist, we
will give either the optimal wirelength or an upper bound.
These synthetic netlists will feed in the VPR placer to get the
placement wirelength.

The WG for three cases have been shown in Figure 7.
Results show that:

o Architectural heterogeneity alone introduces at least an

extra 25% of WG.

o Netlist heterogeneity by adding only a small number of

DSPs (5.2% of the total number of blocks on average)
can introduce additional 27% WG.

140%
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Fig. 7. Quantify the heterogeneity’s impact on wirelength

VI. CONCLUSION AND FUTURE WORK

To summarize, we construct synthetic benchmarks with
known optimal placement, in terms of wirelength, with the
presence of H-blocks. Specifically, we propose an efficient
one-dimensional search method to generate a heterogeneous
net with known optimal wirelength.

The benchmarking results of the academic FPGA placer
VPR show that: (i) the average optimality gap is 9% to 93% for
heterogeneous placement, compared with the average gap of
14% to 76% for homogenous placement; (ii) the degradation of
wirelength by H-blocks cancel out the benefit of problem size
reduction; (iii) the heterogeneous architecture alone degrades
the placement quality by over 25%; (iv) the heterogeneous
netlist degrades the quality by another 27%.

One potential problem of such analysis is that the bench-
marks are synthetic may not represent the characteristics of the
real-world designs. As a future work, we are going to explore
possible metrics that can measure the “difficulty” of placement
for a given netlist. If the synthetic benchmarks are easier to
place than real-world designs, we have more confidence the
gap analysis results are informative, because the gap that we
obtain is smaller than the actual optimality gap. Otherwise, we
have to resort to other methods to generate benchmarks with
known optimal wirelength that are easier to place.
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