
Statistical Cache Bypassing for
Non-Volatile Memory

Guangyu Sun,Member, IEEE, Chao Zhang, Student Member, IEEE, Peng Li,Member, IEEE,

Tao Wang,Member, IEEE, and Yiran Chen,Member, IEEE

Abstract—With the increasing data throughput requirement, non-volatile memories, such as STT-RAM, PCM and RRAM, have

become very competitive designs as on-chip caches in chip-multi-processors (CMPs). Since the write operations are more expensive in

an asymmetric-access cache, it is more valuable to justify the data allocation. However, the asymmetric-access property of

non-volatile memory is not well addressed in prior bypassing approaches, which are not energy efficient and induce non-trivial

operation overhead. In this paper, we propose cache-bypassing methods designed for non-volatile memory. The basic method, SBAC,

is based on data locality statistics of the whole cache rather than a signature of each cache line. The multicore extensions, SBAC-C and

SBAC-G, strengthen the SBAC by distinguishing data patterns in CMPs. We observe that the decision-making of SBAC and its

multicore extensions is highly accurate. Experiments show that SBAC can reduce overall energy consumption by 22.3 percent, and

reduce execution time by 8.3 percent on average. The energy consumption is reduced by 21.4 and 23.4 percent for SBAC-C and

SBAC-G. And the performance is improved by 7.8 and 9.6 percent for SBAC-C and SBAC-G in multicore scenario. Compared to prior

approaches, SBAC outperforms and induces trivial design overhead.

Index Terms—Statistics, bypass, asymmetric-access cache, data reuse count

Ç

1 INTRODUCTION

DRIVEN by increasing data throughput requirement in
chip-multi-processors (CMPs), more and more proc-

essing cores are integrated on a single chip. However, since
progress of memory technology is slower than that of logic,
the off-chip bandwidth can no longer fulfill the increasing
requirement of data throughput. Thus, more caches are inte-
grated in a processor to bridge the bandwidth gap. The Intel
Haswell processor released in 2013 is an example: It
employs embedded DRAM (eDRAM) as L4, in addition to
previous three-level SRAM cache hierarchy [10]. Unfortu-
nately, the poor scalability and high leakage consumption
of volatile memory (SRAM and eDRAM) is challenging on-
chip memory design in future.

To overcome those challenges, various non-volatile
memory (NVM) technologies have been extensively stud-
ied to replace SRAM and eDRAM as on-chip caches. These
emerging memory technologies include spin-transfer tor-
que random access memory (STT-RAM), Phase Change
Memory (PCM) and resistive random access memory
(RRAM), etc., [11], [29], [41], [42]. Compared to traditional
memory technologies, they have advantages of good scal-
ability, low standby power, high storage density, and
immunity to particle based soft errors. Prior research has
shown that these emerging memories can be employed as

L2 and L3 caches to improve performance, reduce power
consumption, and even enhance reliability against soft
errors [13], [23], [30], [34]. These NVMs demonstrate signif-
icant potential to bridge the bandwidth gap in future chip-
multi-processors designs.

The cache designs based on these non-volatile memories
are normally called asymmetric-access caches. It means that
the read and write operations to these memories could be
based on different mechanism and have different access
latencies, energy consumptions, and reliability properties.
From architecture perspective, the costs to read or write
data in memory are not equal anymore, and the cost of write
operation may not be ignored anymore. In most NVM
techniques nowadays, the latency and energy consumption
of write can be several times larger than those of read. This
makes it more difficult to move write latency away from
critical path. Low endurance of data programming makes
writing unnecessary data costly: it not only degrades the
performance, but also reduces the lifetime. Thus, the asym-
metry should also be considered in architecture designs.

Most previous studies about asymmetric-access caches
focus on how to mitigate the problems caused by access
asymmetry between read and write operations. For exam-
ple, write halt and PreSET techniques are proposed to hide
long write latency of these asymmetric-access caches or
main memory [26], [31], [33]. The hybrid cache architecture
can improve write performance and reduce write energy at
the same time by placing frequently updated data in the
symmetric-access part (e.g., SRAM) [31], [39]. The replace-
ment policy can also be tailored to reduce write latency or
energy [43] by evicting cache lines with less updated bits.
Wear-leveling and error correction codes are applied in
some levels of asymmetric-access caches to improve their
lifetimes and reliability [16], [32].

� G. Sun, C. Zhang, P. Li, and T.Wang are with the CECA, PekingUniversity,
Beijing 100871, China.
E-mail: {gsun, zhang.chao, wangtao}@pku.edu.cn, penli@cs.ucla.edu.

� Y. Chen is with the ECE, University of Pittsburgh, PA 15261.
E-mail: yic52@pitt.eduyic52@pitt.edu.

Manuscript received 11 Mar. 2015; revised 23 Dec. 2015; accepted 9 Jan.
2016. Date of publication 11 Feb. 2016; date of current version 14 Oct. 2016.
Recommended for acceptance by G. Min.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2016.2529621

IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 11, NOVEMBER 2016 3427

0018-9340� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:

These previous studies, however, still follow a funda-
mental management rule for traditional symmetric cache
design: recently accessed data should be placed in caches closer to
processing cores to reduce data access latency. In fact, such a
rule may be easily violated with asymmetric-access caches.
This conclusion can be observed from results shown in
Fig. 1. In this Figure, some workloads from SPEC2006 are
executed on a i7-like CMP with a three-level cache architec-
ture illustrated in Fig. 6 (detailed configurations can be
found in Table 3). Caches in the cache hierarchy are man-
aged as traditional symmetric-access caches following the
rule mentioned above. In other words, when processing
cores request data from main memory, cache lines contain-
ing requested data are allocated in L3 cache first, then in L2
cache, and finally in L1 cache.

In the first set of results, we remove L2 cache and list
total data access time when data are loaded from L3 cache
to L1 cache directly. The second set of results is for the base-
line case that read and write operations have the same
access latency. In the next three sets of results, the write
operation cost is increased to 2x, 3x, 5x of read operation,
respectively. In order to highlight latency of loading cache
lines from L3 cache to L2 cache, we assume that write back
data from L1 cache can be completely hidden by a perfect
write buffer. It is easy to find that the data access time
increases when the cache become more asymmetric. When
L2 cache write latency is large enough (5x of its read
latency), removing L2 cache may even help improve perfor-
mance. time can be reduced when L2 cache is removed for
some benchmarks. It means that we cannot gain any bene-
fits by moving recently used data from L3 cache to L2 cache.

Previous research has demonstrated that cache bypass-
ing technique is efficient to mitigate cache contamination by
allocating data into a cache selectively. There has been
extensive research about bypassing techniques for tradi-
tional symmetric-access caches [1], [7], [8], [9], [14], [15],
[19], [22], [24], [27], [28], [35], [36], [37], [40]. Lots of schemes
designed for symmetric-access caches show significant ben-
efit to performance improvement. Previous approaches,
however, cannot work efficiently with asymmetric-access
cache. Ignoring the high overhead of write operations leads
to incorrect bypassing decisions. Moreover, the bypassing
decision is cache-line oriented in previous approaches,
where access history of every cache line needs to be tracked.
It induces non-trivial design and run-time operation over-
head. In addition, some bypassing techniques are designed
for specific cache configurations (e.g., exclusive LLC only).

Extensive research has been proposed to mitigate write
issues of asymmetric-cache. For example, write halt and Pre-
SET techniques are proposed to hide long write latency of
these asymmetric-access caches or main memory [26], [31],
[33]. The hybrid cache architecture is explored by allocating
frequently updated data to the symmetric-access cache (e.g.,
SRAM) [31], [39]. The replacement policy can also be tai-
lored [43] by evicting cache lines with less updated bits.

Considering the expensive write operation in asymmetric-
access caches, we think the data’s locality should justify its
cache allocation, or the data should be bypassed. In this
work, we propose a novel bypassing method based on data
reuse statistics. The method is called statistics-based cache
bypassing for asymmetric-access caches (SBAC). The basic
idea is to estimate the run-time locality of data based on statisti-
cal distribution of data reuse numbers so that proper cache bypass-
ing methods are applied. Compared to traditional bypassing
schemes, SBAC considers the read-write asymmetry to
decide whether data should bypass a cache or not.

SBAC makes bypassing decision based on statistics from
the entire cache, rather than partial history of specific data-
block. Consequently, both design and run-time overhead is
significantly reduced. More importantly, the bypassing deci-
sion-making can achieve high accuracy because the statistical
behavior of data is stable and predictable for many applica-
tions (details are discussed in Section 3). The results show that
our method induces trivial design overhead and can achieve
better performance compared to previous approaches. The
contributions of thiswork are summarized as follows:

� We provide theoretical analysis of cost (latency or
energy consumption) for allocating or bypassing
data into an asymmetric-access cache.

� Based on the theoretical principle, we propose a
cache bypassing method, SBAC. It’s easy to apply
and induces trivial design overhead.

� Run-time bypassing prediction technique is emplo-
yed to dynamically adjust bypassing policies.

� We propose core-based and group-based bypassing
techniques to enhance SBAC in multi-core systems,
where datawith different localities aremixed together.

� We discuss the design issues to extend SBAC tar-
geted on performance optimization.

� We further evaluate the proposed techniques by dis-
tinguishing loaded and write-back data.

The rest of this paper is organized as follows. The
background of non-volatile memory is provided in Sec-
tion 2. The theoretical analysis of statistics based cache
bypassing is introduced in Section 3. The architecture and
operation flow of SBAC and its extensions, core-based
and group-based bypassing techniques, are introduced in
Section 4. The issues to extend SBAC for other scenarios
are discussed in Section 5. The experimental results and
discussions are presented in Section 6. The related work
is analyzed in Section 7, followed by conclusions in the
last section.

2 NVM BACKGROUND

In this section, we provide a brief review of various
emerging NVM technologies to understand their asym-
metry between read and write operations. These NVMs

Fig. 1. Comparison of total cache access time with different L2 cache
write latency.

3428 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 11, NOVEMBER 2016

include STT-RAM, PCM, and RRAM. Their cells are
illustrated in Fig. 2.

STT-RAM: The magnetic tunneling junction (MTJ) is
used to store data in a STT-RAM cell [11], [20], shown in
Fig. 2a. MTJ is composed of a layer of tunneling dielectric
(e.g., MgO) sandwiched between two ferromagnetic layers.
These two layers are called “reference layer” and “free
layer”, respectively. It is because the magnetization of refer-
ence layer is fixed and that for free layer can be changed by
programming. When the magnetizations of two ferromag-
netic layers have the same direction, the MTJ is in low resis-
tance state, which can be used to represent bit ‘0’. On the
contrary, the bit ‘1’ is represented with high resistance state
of a MTJ. The read operation is processed by sensing the
resistance of a MTJ. For a write operation, magnetization of
the free layer is changed by the electrical current directly.
Compared to a read operation, the programming current
for a write is higher and longer.

PCM: For a PCM cell in Fig. 2b, the chalcogenide alloy
(e.g., GST) material [2] to store data. Similar to STT-RAM, it
also relies on resistance to represent different bits. And the
reading operations is also achieved by sensing the resis-
tance. The different is that PCM cell changes its states
between the amorphous (high-resistance) and crystalline
(low-resistance) phases of the chalcogenide material. Both
processes are enabled by heating GST materials using an
electrical pulse. In a SET operation, the state changes when
the temperature is above its crystallization temperature. In
a RESET operation, an electrical current pulse is applied
and then cut off shortly to keep it in the amorphous state [4].
Due to the heating process, PCM demonstrates even more
significant asymmetry between read and write operations.

RRAM: A typical cell structure of RRAM is shown in
Fig. 2c. It is normally referred as those NVM technologies
built on the resistance changing mechanisms, other than
PCM and STT-RAM. Data is stored by changing the resis-
tance across a dielectric solid-state material in the RRAM
cell. The dielectric can be made to conduct through a fila-
ment or conduction path formed after application of a suffi-
ciently high voltage. Once the filament is formed, it can be
reset for high resistance by another voltage. RRAM can be
categorized to unipolar switching [12] and bipolar switch-
ing [21]. In unipolar switching, the programming opera-
tions are executed by using the pulses with the same
polarity but different durations or magnitudes. In bipolar
switching, the operations are completed by applying pulses
with opposite voltage polarities.

As a summary, read-write asymmetry is common for
these emerging NVMs. Both latency and energy of a write
operation can be several times higher than those of a read
operation. Thus, compared to traditional memory technolo-
gies, a write operation is more “expensive”. In other words,
it is less efficient to load data in caches made by NVMs. To
this end, bypassing technique becomes necessary for those
NVMs.

3 THEORY BASIS

In this section, we first introduce terminologies and defini-
tions used in this paper. Based on them, we theoretically
explore the benefit of data bypassing according to its
locality.

3.1 Terminologies and Definitions

The terminologies used in this work are consistent with pre-
vious literature [8], [19] and are illustrated in Fig. 3. As
shown in the figure, data A is brought into a cache line by
either a read access or a prefetching operation. The life time
of A in the cache is composed of live time (from allocation
time to the last use) and dead time (from the last use to its
eviction). The total number of accesses (hits) to data after
the allocation is called data reuse count (DRC). The cache line
A in Fig. 3 has a reuse count of five. The first allocation is
called initial placement. The data having no live time
(DRC ¼ 0) is normally called instant dead block.

With DRCs for massive data, we introduce the definition
of DRC probability. Let NDRC¼i denotes the number of data
that have their DRCs equal to i. Then, a DRC probability Pi

is calculated in Equation (1)

Pi ¼ NDRC¼iP1
j¼0 NDRC¼j

: (1)

Fig. 2. Illustration of various non-volatile memory cells. (a) PCM, (b) STT-RAM, (c) RRAM.

Fig. 3. Illustration of data A and related terms [8], [20].

SUN ETAL.: STATISTICALCACHE BYPASSING FOR NON-VOLATILE MEMORY 3429

Other definitions and parameters of read and write oper-
ations to L2 and L3 caches used in this case study are listed
in Table 1.

3.2 Theoretical Energy Saving of Bypassing
We first have a case study on loading data into a cache. Our
goal in this case is to reduce cache access energy. In order to
simplify the discussion, we make some assumptions. First,
there are only read operations to the L2 cache. Second, L3
cache is large enough to allocate the working set. Third, the
cache is non-inclusive, so the data coherence is still kept
even data bypass L2 cache. As shown in Fig. 4, we focus on
the case of loading data from L3 to L2. If data loaded from
the L3 bypass the L2, they are loaded to L1 directly, as illus-
trated with path ❷. Otherwise, data will be loaded into L2
normally, shown with path❶.

We derive the theoretical energy consumption as follows.
Initially, the dataA exists in the L3 only.When the processing
core issues a request to access the data A, it generates cache
miss at both L1 and L2 and finally receives a cache hit in the
L3. If the data are loaded into the L2 without bypassing, the
total access energy to L2 can be calculated in Equation (2)

Ew=o bypass ¼ R3 þW2 þ ðDRC þ 1Þ �R2: (2)

From left to right, the terms on the right side of Equation (2)
represent the energy of reading data from L3, writing data
to L2, sending data from L2 to L1 after initial placement,
and revisiting data for DRC times. Note that the L2 con-
sumes R2tag to detect the initial miss, and consumes R2data to
supply returning data to L1. If data A bypasses the L2, the
total cost will be changed to that in Equation (3)

Ebypass ¼ ðDRC þ 1Þ � ðR2tag þR3Þ: (3)

It means that, for each data access, energy is consumed to
detect a cache miss in L2 (R2tag) and load data from L3 (R3).
Obviously, we can reduce access energy with cache bypass-
ing only when we have Ew=o bypass > Ebypass. Thus, we can

obtain Equation (4) as the condition to enable cache bypass-
ing. It means that the DRC should be large enough to ensure
the benefits of data reuse can amortize the overhead of writ-
ing data into the L2

DRC <
W2 þR2 �R2tag

R3 þR2tag �R2

¼ W2 þR2data

R3 �R2data

:

(4)

Bypass or not? It becomes a new problem for asymmetric-
access cache. Cache can benefit from the data allocation for
symmetric-access cache, whenever there is at least once
reuse of the data in L2. This is because W2 is similar to R2

and several times smaller than R3, for SRAM/eDRAM
caches. For the asymmetric-access cache, however, the W2 is
no longer much smaller than R3. Thus, a higher DRC is
expected to justify the data allocation. In order to achieve

lowest access energy, data with DRC less than dW2þR2data
R3�R2data

e
should bypass L2.

In order to demonstrate the impact of read-write asym-
metry, we compare the DRC requirement of cache bypass-
ing for SRAM and STT-RAM caches. Table 2 shows typical
access energy consumption of caches based on SRAM or
STT-RAM. To symmetric caches, loading data into L2 is
more energy-efficient when DRC is higher than one. While
in asymmetric caches, only very frequently accessed data
with DRC higher than six should be loaded into L2.

3.3 Theory Basis of SBAC

In run-time execution, it is impractical to know exactly all
the DRC values of all cache data before they come into
cache. Thus, making bypass decisions based on future DRC
of data, as shown by the simple method aforementioned, is
not realistic. However, it is possible to filter out the data
with specific DRC with a simple bypassing method. For
example, we can assume the average DRC for unfiltered
data is smaller than one, and make all initial placements
bypass the L2 cache, so only the data with at least one reuse
count can enter L2 cache. We call this simple SBAC as
“initial placement” bypassing. Thus, the key is to ensure the
benefits from dead blocks bypassing can amortize the
bypassing of high DRC data.

The theoretical condition of employing the bypassing can
be derived based on the probabilities of DRCs. And the
probability distribution of DRC in L2 can be represented by
statistics fP0; P1; P2; . . .g (

P1
i¼0 Pi ¼ 1). Without bypassing

technique, the average access energy of these data is noted

TABLE 1
Terminologies and Definitions

Term Definition

DRC Data Reuse Count
Pi Probability ofDRC ¼ i
R2 Read energy of L2 cache
R2tag Energy of reading L2 tag

R2data Energy of reading L2 data
W2 Write energy of L2 cache
R3 Read energy of L3 cache
W3 Write energy of L3 cache
d Bypassing depth
� Bypassing feature
SI Sample Interval of DRC

Fig. 4. SBAC for loading data.

TABLE 2
Typical Energy Consumption for 2 MB L2, and 8

MB L3 (Technology Node: 45 nm)

Cache Type SRAM L2
STT-RAM L3

STT-RAM L2
STT-RAM L3

R2dataðnJÞ 0.066 0.127

W2ðnJÞ 0.051 0.603

R3ðnJÞ 0.246 0.246

dW2þR2data
R3�R2data

e 1 6

3430 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 11, NOVEMBER 2016

as �Ew=o bypass. If initial placements of whole data bypass the

L2 cache, the cache access energy consumption is noted as
�Ebypass. The calculation of these two value is shown in Equa-
tions (5) and (6)

�Ew=o bypass ¼
X1
i¼0

Pi � R3 þW2 þ iþ 1ð Þ �R2½ �f g

¼ P0 � ðR3 þW2 þR2Þ
þ P1 � ðR3 þW2 þ 2�R2Þ þ � � �
þ Pn � R3 þW2 þ ðnþ 1Þ �R2½ � þ � � �

(5)

�Ebypass ¼ P0 � ðR3 þR2tagÞ

þ
X1
i¼1

Pi � 2�R3 þR2tag þW2 þ i�R2

h in o

¼ P0 � ðR3 þR2tagÞ
þ P1 � ð2�R3 þR2tag þW2 þ 1�R2Þ þ � � �
þ Pn � 2�R3 þR2tag þW2 þ n�R2

h i
� � �

(6)

With these two equations, it is easy to understand that
such an “initial placements” bypassing can only reduce
average access energy when Ebypass < Ew=o bypass. After
comparing Equations (5) and (6), we obtain the condition to
trigger an “initial placement” bypassing, described as an
Equation (7)

P0 >
R3 þR2tag �R2

W2 þR3
: (7)

Obviously, whether the bypass benefits can amortize the
overhead comes related with the value of one statistic, P0,
which is the DRC probability of instant dead blocks. This is
the reason why we call our technique as a statistics based
cache bypassing method (SBAC).

In order to have a quantitative comparison, we calculate
the bypass condition for symmetric- and asymmetric-access
caches, respectively. Cache bypassing can gain benefits
when P0 > 60:6 percent for a symmetric-access cache. To
an asymmetric-access cache, however, bypassing condition
is satisfied with a significant lower value (P0 > 14:0 per-
cent). We follow the same parameters in Table 2.

It is easy to understand that the efficiency of “initial
placement” bypassing highly depends on the P0 of real
applications. For example, P0 should be larger than
R3þR2tag�R2

W2þR3
to achieve substantial reduction of energy con-

sumption using bypassing. To demonstrate feasibility of
SBAC, we carefully study DRC distributions of bench-
marks from SPEC2006. As shown in Fig. 5, we list several
typical patterns of P0. For the first two patterns
(Figs. 5a bzip2 and 5b astar) , P0 is stable for most time so
that it is easy to select a bypassing decision. For example,
in the first workload, we can always let data bypass the
initial placement to reduce energy consumption. For the
third and fourth workloads (Figs. 5c bwaves and
5d calculix), the distribution of P0 varies regularly. Thus,
“initial placement” bypassing can also work well if we can
dynamically adapt bypassing decisions according to the
DRC distribution. For the fifth workload (Fig. 5e sjeng),

the P0 is close to the number
R3þR2tag�R2

W2þR3
, so that the benefit

is not significant after bypassing “initial placement”.
For the last workload (Fig. 5f gromacs), the DRC distribu-
tion has serious transient vibration. Thus, it is difficult to
select a proper bypassing decision, and “initial placement”
bypassing may not work efficiently. Fortunately, DRC dis-
tribution is stable and predictable for most workloads.
SBAC works very well for most workloads. More results
can be found in Section 6. Note that we also include miss
rates in these charts (blue dash lines). We can find the
miss rate is not always consistent with the P0, and it’s less
efficient to trigger bypass. Thus, miss rates are not used
as trigger in this work.

3.4 Bypassing Depth

After the “initial placement” bypassing is applied, the origi-
nal data with once reuse count becomes instant dead block
since their first loads are filtered. Thus, it is reasonable to
make these new instant dead blocks bypass L2 to further
reduce access energy consumption. In other words, bypass
the data with DRC < 2. Thus, we introduce the definition
of bypassing depth, which means that data with DRC less
than bypassing depth should bypass the cache. For exam-
ple, when the bypassing depth is set to “1”, only initial
placements are bypassed. The theoretical calculation of
bypassing depth is discussed as follows.

Fig. 5. Several typical distributions ofP0s (solid lines) and correspondingmiss rates (dashed lines). X-axis represents cache accesses in the unit of 10K.

SUN ETAL.: STATISTICALCACHE BYPASSING FOR NON-VOLATILE MEMORY 3431

Similar to the derivation of “initial placement” bypassing
decision, we can calculate the bypassing condition with
“bypassing depth = 2” as in Equation (8)

P1

1� P0
>

R3 þR2tag �R2

W2 þR3
: (8)

And we can further calculate condition for any bypassing
depth d as in the following equation:

Pd�1

1�Pd�2
j¼0 Pj

>
R3 þR2tag �R2

W2 þR3
: (9)

In this work, the � ¼ R3þR2tag�R2

W2þR3
is called bypassing feature of

the system, which is the intrinsic cache attribute. The high
write energy of asymmetric-access caches results in a small
bypassing feature, making bypass more attractive to reduce
energy consumption.

3.5 Bypassing with Both Read and Write Operations

As mentioned before, we have only considered the read
operations in making decisions of bypassing. It’s obvious
not wise to ignore the write ones. However, the theory
becomes more complicated, when both read and write oper-
ations are considered.

We still follow the terminologies and definitions intro-
duced previously, while adding two new ones, Pr and Pw,
to distinguish read and write. The Pr and Pw represent the
average probability for read and write operation to L2
cache. We define the write operation here as the operation
used to write data from upper level of cache. Thus, it does
not count the data refill due to cache miss. In order to calcu-
lation the Pr and Pw, we represent the probability by statis-
tics again. Pr can be calculated by the ratio of read
operations compared with overall operations. Pw is calcu-
lated by the write ones. The numbers of write and read
operation are also from Table 1.

With similar deduction flow (Equation (5) to (9)), we find
that the condition of enabling cache bypassing can still be
achieved by Equation (10). The only difference is the calcu-
lation of the bypassing feature �

Pd�1

1�Pd�2
i¼0 Pi

> �: (10)

The bypassing feature for L2 is calculated in Equa-
tion (11). It involves read and write energy in L2 and L3,
and the probability of read and write operations

� ¼ Pr � ðR2tag þR3 �R2Þ þ Pw � ðW3 �W2Þ
Pr � ðW2 þR3Þ þ Pw � ðW3 þR3Þ : (11)

The � is actually affected by both Pr and Pw. After com-
paring the new bypassing feature with the one only con-
sidering read in Equation (9), we can find the part
conrolled by Pr in Equation (11) is roughly the Equa-
tion (9). And the difference between these two equations is
the Pw part. And when the Pr is 0, the bypassing feature is
only determined by the write cost of L2 and L3 and read
cost of L3. This means if we only consider the write opera-
tion, the bypassing feature value we get will be much

smaller than what we got for read, due to the relatively
large write energy of asymmetric cache.

3.6 Other Practical Issues

In real cases, there are several factors that may affect the the-
oretical bypassing condition.

First, after some data have bypassed the cache, the proba-
bility distribution of DRC may change a little because cache
bypassing can result in different cache replacements. Fortu-
nately, we found that the distribution of DRC almost keeps
the same, since it is calculated statistically based on a great
quantity of data.

Second, the simplification that all requested data are
cached in L3 cache can be inaccurate. Thus, the benefits of
bypassing may be decreased and a higher probability is
required in these equations to trigger a bypassing.

Third, data prefetching need to be treated separately
from normal data access because data prefetched can only
be avoided using “initial placement” bypassing.

Considering these factors, the real bypassing conditions
for different workloads may have deviation from the theo-
retical � introduced in Equation (9). Fortunately, as we have
mentioned, the distribution of DRC is normally quite
biased. It means that theoretical � normally works well.
This is supported by results in Section 6.

4 DESIGN OF SBAC

4.1 Overview

We still use the case of loading data from L3 cache to L2 cache
to describe the architecture design of SBAC. As a pivot to
select proper bypassing decisions, extra components are
needed to monitor and predict the distribution of DRC for
data in the L2 cache. As shown in Fig. 6, one extra bit is added
to each cache line in L2, and two bits are added to each cache
line of L3 to count the DRC of the line. In addition, they are
also used to decide whether cache bypassing is needed. The
extra function between L2 and L3 is called bypassing decision
block (BDB). BDB monitors cache lines transmitted on the
data bus. It can track information of the DRC sent with data
so that probability distribution of DRC is calculated.

As the major component to count the DRC distribution, a
BDB includes three global DRC counters. Three DRC coun-
ters are denoted as N�d�1, N�d, and N�dþ1. They are used to
count the number of DRC greater than d� 1, d, and dþ 1,
respectively. With these DRC counters, we can rewrite con-
ditions in Equation (9) with Equation (12). The opposite con-
dition is calculated in Equation (13). Without calculating the
precise distribution value, we get effective DRC distribution
to make bypassing decisions in Equations (12), (13). Read/
Write energy numbers are used to calculate the �.

Fig. 6. Architecture for cache bypassing.

3432 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 11, NOVEMBER 2016

The bypassing control logic can make decision for
data transferring on the bus. A cache block will bypass
L2 cache if the DRC bit in the L3 cache is smaller than
the bypass depth. The bypass depth transition logic is
employed to calculate runtime bypassing depth. The
bypass depth will be increased by one when Equa-
tion (12) is satisfied, and decreased by one when Equa-
tion (13) is satisfied

N�d �N�dþ1

N�d
> �; (12)

N�d�1 �N�d

N�d�1
< �: (13)

4.2 Operation Flow with Cache Bypassing

Having the SBAC architecture, we describe the flow for dif-
ferent cache operations with an example in Fig. 7. As shown
in the figure, L1, L2, and L3 caches are illustrated with one,
two, and four cache lines. The three DRC counters of BDB
are also shown in the figure. There is one DRC bit for each
cache line in L2 and two bits for each cache line in L3. The
bypassing depth d is set to 2 in this example. The detailed
operation flow is described as follows.

� Step (a): In the initial state, all three DRC counters
are initialized as zero. The DRC bits of each line are
also cleared as zero. We assume there are some ini-
tial data stored in cache lines.

� Step (b): L1 cache requests data C, since the DRC bit
of data C in L3 cache is equal to zero, data C is
bypassed to L1 cache directly because DRC ¼
0 < d ¼ 2. At the same time, the DRC bit of data C
in L3 cache is increased by one.

� Step (c): Similarly, when L1 cache requests data D, it is
alsomoved fromL3 to L1 directly for the same reason.

� Step (d): When L1 cache requests data C again, data
C is bypassed again because we still have
DRC ¼ 1 < d ¼ 2. Then, DRC of data C in L3 cache
is increased to 2. At the same time, the first counter
in BDB is increased by one because it counts the
number of data withDRC � d� 1 ¼ 1.

� Step (e): Similarly, when L1 cache requests data D
again, it is bypassed again. And the first DRC
counter of BDB is increased by one.

� Step (f): When L1 cache requests data C for the third
time, data C is finally loaded to L2 cache because we
have DRC ¼ d now. At the same time, the second
counter in BDB is increased by one. Note that the
DRC bits of data C in L3 cache are saturated now.
They are only reset to zero when data C are evicted
from L3 cache.

� Step (g): Similarly, data D is also loaded to L2 cache
for the third request, and the second counter in BDB
is increased by one.

� Step (h): When data C is first hit in L2 cache, the third
counter in BDB is increased by one because C is
requested for dþ 1 ¼ 3 times in total. At the same
time, its DRC bit in L2 is set to one.

� Step (i): When data C gets hit again with DRC bit
equal to one, the third counter in BDB remains
the same.

4.3 Sensitivity Control

Since the probability distribution of DRC varies during run-
time execution, the bypassing depth should also be updated
periodically to reflect the distribution. The length of each
period, in terms of cache accesses, is called sampling

Fig. 7. An example of cache bypassing flow.

SUN ETAL.: STATISTICALCACHE BYPASSING FOR NON-VOLATILE MEMORY 3433

interval (SI) in this work. At the end of a sampling interval,
the BDB counters are used to calculate the current probabil-
ity distribution of DRC. The distribution is used to predict
the bypassing depth for the next interval.

The choice of sampling interval has an impact on the pre-
diction accuracy of bypassing depth. Since the bypassing
depth is based on DRC, we use the amount of cache accesses
to determine a SI. If the SI is too short, the poor sampled sta-
tistics cannot represent the probability distribution of DRC.
On the other hand, if the SI is too long, it may not capture
the changes of DRC distribution so that the efficiency of
SBAC is degraded. In addition, the size of counters in BDB
is also related to SI.

Experimental results show that the optimal SI varies in
the range of 10k � 100k for different workloads. Thus, we
propose an algorithm to dynamically adjust SI for different
data patterns. The algorithm is described as follows:

� SI is initialized as the lower bound 214.
� After each SI, if the bypassing depth is not changed,

SI is increased by 2�.
� After each SI, if the bypassing depth is changed, SI is

decreased by 2�.
� The higher bound of SI is set to 220. Thus, a 20-bit

counter is needed.

4.4 SBAC for Multi-Programmed Workload

The case becomes more complicated if multiple workloads
are running concurrently. For example, when some pro-
grams are initializing with streaming data and the other are
iterating inside some loops, two different data patterns may
occupy different regions of the cache. Consequently, data in
different regions of the cache can demonstrate various prob-
ability distributions of DRC. If these regions can be sepa-
rated with their own bypassing decision, SBAC can work
efficiently. Otherwise, when DRC for all cache lines are
accumulated together, the efficiency of SBAC is decreased.

For the case that one program is bounded to a specific
core, a possible solution is to calculate DRC distribution of
each core separately. If the core ID is integrated in the cache
tag, it can be leveraged to identify data from each program.
Thus, bypassing decisions may be different for data
requested by different cores. Such an extension of SBAC is
called “core-based SBAC”. Note that extra design overhead
is induced because the number of counters increase propor-
tionally with the number of cores. Unfortunately, for the
processors not supporting core ID in caches, core-based
SBAC cannot work. Consequently, we further propose the
“group-based SBAC”.

The basic idea is to cluster cache lines with similar DRC
distributions into a group so that each group can select
their own bypassing depth. Thus, cache lines in the same
group can work efficiently with SBAC. However, we find
that cache lines with similar DRC distributions may not
locate close to each other physically. A naive partitioning
policy cannot work efficiently. In order to achieve a proper
group partitioning without introducing much design over-
head, we propose “group-based SBAC” as follows.

First of all, a proper group number should be selected
based on two rules: (1) group number should be less than
the total number of bypassing depth to improve grouping

efficiency; (2) group number should be the power of two to
facilitate circuit design. Since the bypassing depth is limited
in the range of 0 � 3 in this work, possible group number
are 2 and 4. To avoid inducing much design overhead, we
set the group number to 2. Thus, an extra “group bit” is
added to each cache line, and the two groups are denoted
with g0 and g1. In addition, to count DRC distribution in
these two groups, an extra set of counters is needed in BDB.

Having two groups, a clustering algorithm is needed to
select cache lines in each group. The algorithm is described
as follows.

- Step-1 At the beginning, one half of cache lines are
selected in g0, and the other half is in g1.

- Step-2 By the end of the first sampling interval, each
group has selected its own bypassing depth based
on their own BDB counters. Then, k cache lines are
selected in g0 and migrated into g1.

- Step-3 By the end of the second SI, the k cache lines

migrated can only be kept in g1 if
N�d�N�dþ1

N�d
increases

in g1. Otherwise, they are migrated back to g0. Then,
we randomly select k cache lines in g1 and migrate
them to g0.

- Step-4 By the end of the third sampling interval,
cache lines migrated in Step-3 are only kept if
N�d�1�N�d

N�d�1
decreases in g0. At the same time, migra-

tion in Step-2 is repeated.
- Step-3 is repeated by the end of any following even

rounds of SI. Step-4 is repeated by the end of any fol-
lowing odd rounds of SI.

On one hand, this algorithm tries to find cache lines with
high DRC in group g0 and migrate them to group g1 in the
even rounds. On the other hand, the cache lines with lower
DRC are moved from group g1 to group g0 in the odd

rounds. Since both the
N�d�N�dþ1

N�d
and

N�d�1�N�d
N�d�1

of each

group are compared by the end of an SI, extra storage is
required in BDB. Moreover, a randomizer based on circuit
noise is needed to select cache lines for migration [17].

The number k has an impact on performance of cluster-
ing algorithm. If k is too large, cache lines with different
DRC distributions may be migrated together so that the
chance of successful migration is low. Thus, a small k is pre-
ferred although the convergence rate of clustering algorithm
is decreased. In this work, we set k to 16.

Although there are many more efficient clustering algo-
rithms, the problem is that they are difficult to be imple-
mented in hardware. The advantage of our group-based
SBAC implementation is simple to be designed with low
overhead. Besides the DRC counters and group bits, we only
need k registers to remember the selected lines for switching.

One drawback is that our clustering may converge very
slowly or may not even converge because cache lines are
randomly selected after each SI. In the worst case, two
groups have the same bypassing depth. It means that group-
based SBAC will work same as the original SBAC design.

5 EXTENDING SBAC FOR OTHER SCENARIOS

We only discuss a simple case study in last two sections. As
we have addressed, SBAC is a method that can be applied

3434 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 11, NOVEMBER 2016

to various configurations and for different optimization
goals. In this section, we discuss how to extend SBAC for
other scenarios.

5.1 Cache Bypassing for Performance Optimization

It is also feasible to apply SBAC to optimize cache perfor-
mance. The basic idea is quite similar to that for energy con-
sumption optimization. For the theory derivation, we need
to replace energy numbers of cache in Equations (1)-(9)
with proper access latency numbers.

Different from energy consumption, the latency of a
write operation cannot be directly added to the total execu-
tion time. For example, the data loaded from L3 cache can
be forwarded to L1 cache at the same time when they are
written into L2 cache. Thus, it is not accurate to calculate �
using write latency directly. Instead, we need to estimate
the time that L2 cache is blocked due to loading data from
L3. The blocking time is related to cache access intensity.
When the access intensity is low, the blocking time may be
well hidden. Previous research [31], [39], [43] pointed out
that the blocking time varies from 0� to 0:6� write latency.

One solution to this problem is to calculate average run-
time blocking time by monitoring the waiting time of read
operations in the miss status holding registers (MSHRs). In
fact, we find a simple but efficient alternative by fixing
blocking time to 0:5� write latency. The reason is in two
folds: (1) the biased DRC distribution can help make SBAC
tolerant to inaccurate blocking time; (2) for the applications
that have a lower blocking time, the access intensity is low
so that the effect of incorrect bypassing decision is not sig-
nificant. This observation is proved by the experimental
results in Section 6.

5.2 Bypassing for Write-Back Data

Cache bypassing for write-back data is different from that
for load data. We use write-back from the L2 cache to the L3
cache as an example, as illustrated in Fig. 8. When a cache
block in L2 is written back, it is evicted from L2 cache no
matter whether it will bypass L3 cache or not. Thus, bypass-
ing depth can only be set to either zero or one. Cache lines
will bypass L3 cache when bypassing depth d ¼ 1 and will
not bypass L3 when d ¼ 0. The method of increasing d from
0 to 1 is similar to that used in the case for data loading. We
need to trace the reuse count of this cache line in L3 before
it is evicted. Note that the cache line can be reused several
times (e.g., there are several private L2 caches). The calcu-
lation of bypassing feature � is similar to the process in Sec-
tion 3 with read and write latency/enery of L3 cache and
the read latency/enery of main memory. If P0 of write back
data is larger than � after a sampling interval, cache bypass-
ing is triggered. Then, write-back cache lines from L2 will
be sent to main memory directly.

Apparently, we cannot use similar method for loading
data to stop bypassing of write-back data because we cannot
trace the reuse count of those cache lines in main memory.
Instead, we use a simple restoration mechanism to over-
come this problem. It works as follows.

� We define a new variable called restoration int-
erval (RI). Restoration interval is initialized as
same as SI.

� When the cache bypassing is triggered, it will be
automatically turned off after it reaches the end of
restoration interval.

� After the next sampling interval, if bypassing is trig-
gered again, the restoration interval is increased by
one SI. Otherwise, if restoration interval is larger
than SI, it is decreased by one SI.

5.3 Private Caches & Data Inclusion

SBAC can be applied to both shared and private caches. For
example, if L2 cache is private for each core and L3 cache is
shared, we need a BDB between each L2 and L3, which is
illustrated in Fig. 9.

For the case study in the last section, the data inclusion is
relaxed by using a non-inclusive cache hierarchy. Our
bypassing scheme, also works for exclusive caches. For
example, we can use the same SBAC architecture in Fig. 6
for exclusive L2 and L3 exclusive caches. The operation
flow is quite similar to that of non-inclusive one. Because
we only trace data reuse count of a cache line in L3 cache
before it is loaded into L2 cache, and the count is reset to
zero when it is written back to L3 cache. Thus, whether the
cache line is kept in L3 after it is loaded to L2 cache do not
affect the bypassing decision.

6 EXPERIMENTAL EVALUATION

In this section, we provide comprehensive evaluation
to demonstrate the efficiency of SBAC for single and
multiple applications under both shared and private L2
configurations.

6.1 Experiment Setup

We implement SBAC in a popular full-system simulator
gem5 [3]. It is configured to model a four-core Haswell like
CMP. Each core is running at 2 GHz frequency. There are
three levels of caches. The IL1/DL1 caches are SRAM based
and the L2 and L3 are configured as asymmetric-access
STT-RAM caches. Other details can be found in Table 3. We
use cache latency and energy parameters from NVSim [6].

Both single and multiple applications workloads are
evaluated. In order to provide a comprehensive evaluation

Fig. 8. SBAC for write-back data.
Fig. 9. SBAC for private L2 caches.

SUN ETAL.: STATISTICALCACHE BYPASSING FOR NON-VOLATILE MEMORY 3435

with diversified distributions of DRC, we examine different
code segments in both single and randomly mixed multi-
programmed benchmarks. Both private and shared L2 con-
figurations are used for experiments of mutli-programmed
workloads. For the single application case, only the private
cache with one core running is evaluated. The simulator
captures all data operations such as loads, stores, and pre-
fetching requests. The one block lookahead (OBL) approach
is employed for prefetching in evaluation. All benchmarks
come from SPEC CPU 2006. We fast forward one billion
instructions at beginning, and execute ten billion instruc-
tions of a single benchmark. Then we construct the multi-
program workloads by mixing the fast forwarded single
programs. The formation of these multi-programs are
shown in Table 4. Energy consumption includes leakage
and dynamic power of entire cache hierarchy, based on
operation statistics.

The labels used in the rest of this section are explained:
(1) Baseline: baseline case without cache bypassing; (2)
SBAC: case using SBAC; (3) SBAC-C: case using core-based
SBAC; (4) SBAC-G: case using group-based SBAC; (5)
Shared: case with shared L2 configuration; (6) Private: case
with private L2 cache. We use the system overall execution
time as performance metric, and overall cache system
energy consumption as energy metric. We normalize the
results to compare with each others.

6.2 DRC Prediction Accuracy

Since the access history of cache is used to decide the
bypass depth in following periods, the performance of
SBAC will rely on the prediction accuracy. We take the

relative match ratio of the run-time made decisions and the
optimal decision after static profiling, as the prediction
accuracy. As shown in Fig. 10, a high prediction accuracy
of 92 percent on average is achieved for single program
benchmarks. The prediction accuracy is about 86 percent
on average for multiprogrammed applications (not shown
due to page limit). Note that a correct bypassing decision
may be obtained even with a mis-prediction, as long as the
bypassing depth is not affected. On the other hand, a cor-
rect prediction of DRC distribution may also lead to an
incorrect decision of cache bypassing due to inaccurate
estimation of read/write energy.

6.3 Evaluation for Single Applications

The results of energy consumption are compared in Fig. 11.
We can find that the reduction of energy is related to the
prediction accuracy generally. With high prediction accu-
racy, SBAC has more potential to bypass useless data pre-
dicted to have low DRC. Incorrect prediction may cause
SBAC to bypass useful data which offsets the benefit of its
right doing. For some benchmarks, however, the energy
reduction is insignificant even with high prediction accu-
racy (e.g., GemsFDTD). The reason is that for some bench-
marks the cache bypassing is not triggered for most of
execution time. On average the reduction of the total cache
energy consumption is about 22:3 percent.

We also evaluate the performance after applying SBAC tar-
geted for energy, as a side-effect of reducing energy consump-
tion. As shown in Fig. 12, the results of performance
improvement are similar to that of energy reduction, but less
significant. On average, the total execution time is reduced by
8:3 percent. The result shows SBAC also improves the perfor-
mance, which agrees with the fact that asymmetric-access
caches shows largerwrite overhead both on energy consump-
tion and time. The reason for the less significant improvement
is two-fold: The energy consumption of each load operation is

TABLE 3
Detailed Simulation Setup

Component Configuration

Processor 4 cores, 2 GHz, 1-way issue
IL1/DL1 32/32 KB, 2-way, 64 B, private, LRU
SRAM L.P.:47.7 mW, R/W Lat.: 2/2cycle, E.:6.2/2.3 pJ
L2 4 � 256 KB, 8-way, 64 B, LRU, L.P.:428 mW
STT-RAM R/W Lat.: 6/36 cycle, E: 0.135/0.603 nJ
L3 8 MB, 16-way, 64 B, share, LRU, L.P.:1851 mW
STT-RAM R/W Lat.: 25/60 cycle, E: 0.246/0.698 nJ

Memory 8 GB, DDR3, 1600 MHz, 120cycle, 12.8 GB/s.

Fig. 10. Prediction accuracy for various single-programmed benchmarks.

Fig. 11. Normalized energy consumption for single applications.

TABLE 4
Multi-Programmed Workloads

Name Benchmarks

mix1 401.bzip2, 410.bwaves, 429.mcf, 434.zeusmp
mix2 401.bzip2, 444.namd, 458.sjeng, 470.lbm
mix3 410.bwaves, 450.soplex, 459.GemsFDTD, 471.omnetpp
mix4 429.mcf, 453.povray, 462.libquantum, 473.astar
mix5 434.zeusmp, 454.calculix, 464.h264ref, 481.wrf
mix6 435.gromacs, 444.namd, 450.soplex, 453.povray
mix7 435.gromacs, 456.hmmer, 465.tonto, 401.bzip2
mix8 454.calculix, 456.hmmer, 458.sjeng, 459.GemsFDTD
mix9 462.libquantum, 464.h264ref, 465.tonto, 470.lbm
mix10 471.omnetpp, 473.astar, 481.wrf, 401.bzip2
mix11 429.mcf, 434.zeusmp, 470.lbm, 410.bwaves
mix12 450.soplex, 454.calculix, 456.hmmer, 458.sjeng
mix13 429.mcf, 470.lbm, 450.soplex, 454.calculix

3436 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 11, NOVEMBER 2016

reflected in total energy, but the loading time could be hidden
by MSHR. The bypassing decisions calculated for optimized
energy consumptionmay not lead to optimized ones in aspect
of time. To improve the performance, we can recalculate the
bypassing feature by cache time numbers. But this may also
hurt the energy performance.

6.4 Evaluation for Multi-programmed Applications

We evaluate energy consumption after applying SBAC to
two cache configurations against their corresponding base-
lines without cache bypassing. We show the normalized
comparison in Fig. 13. The results demonstrate that, for pri-
vate cache configuration, the energy consumption can be
reduced after using SBAC. It is because each workload is
bounded to a dedicated core and the DRC distribution is
estimated separately. On average, SBAC can reduce energy
consumption by 7:5 percent for private L2 cache, but 3:8
percent for shared L2 cache configuration. As addressed
before, mixing data with different patterns from multiple
workloads makes SBAC less efficient.

We also evaluate the results of execution time after using
SBAC and compare them with the baseline. The results of

applying SBAC on data loaded from L3 to L2 are listed in
Fig. 14. We can find that the trends of these results are simi-
lar to those for energy consumption optimization. On aver-
age, the performance is improved by 2:1 and 4:3 percent for
shared and private configured L2 cache.

In order to improve SBAC for multi-programmed work-
loads, we propose core-based and group-based SBAC for
shared L2. The results are shown in Fig. 15. It is easy to find
that energy consumption is further reduced after using
these techniques. Core-based SBAC can further reduce the
energy consumption by about 9:6 percent, because it helps
isolate the interference of data among different workloads,
while shared cache supplies sufficient space. And the
group-based one can further reduce the consumption by
11:9 percent, because it performs better on isolating the
mixed data patterns.

The performance of core-based and group-based SBAC is
similar to those of energy. The results are shown in Fig. 16.
Core-based and group-based SBAC reduce the overall exe-
cution time by 7:8 and 9:6 percent, respectively.

Fig. 13. Normalized energy consumption after using SBAC for two cache
configurations.

Fig. 14. Normalized execution time after using SBAC for two cache
configurations.

Fig. 16. Normalized execution time after using core-based SBAC and
group-based SBAC for shared L2 cache.

Fig. 12. Normalized execution time for single applications.

Fig. 17. Normalized cache energy consumption after using core-based
SBAC and group-based SBAC on write-back data.

Fig. 15. Normalized energy consumption after using core-based SBAC
and group-based SBAC for shared L2 cache.

SUN ETAL.: STATISTICALCACHE BYPASSING FOR NON-VOLATILE MEMORY 3437

From the results in Figs. 13 and 15, we can find out that
SBAC works well on cache bypassing of data loaded from
L3 to L2. Now, we further apply SBAC to data written back
from L2 to L3 and the results are shown in Fig. 17. On aver-
age, energy consumption can be reduced by 21:4 and 23:4
percent after using core-based SBAC and group-based
SBAC, respectively. Unlike timing overhead of write-back
data, which may be hidden for some workloads, energy
consumption of write-back data is added to total energy
consumption directly.

In Fig. 18, we show the results after applying SBAC on
write-back data. On average, the performance can be further
improved by about 1:1 and 3:2 percent for shared and
private L2 caches respectively. The improvement is less sig-
nificant compared to the case for data loaded from L3 to L2.
The reasons is because write-back data is not on critical path
and we simply set 0:5� write latency as average blocking
time. And due to the bypassing of several reused write back
data, themiss of these data cause significant time overhead.

6.5 Comparison with Other Approaches

We compare normalized average cache access latency
between our bypassing scheme and prior approaches for
single application, shown in Fig. 19. Our bypassing scheme
can outperform other approaches in respect of cache access
latency. The main reason is that the asymmetry access oper-
ations are not considered in prior approaches. Note that we
do not provide comparison for cases of energy optimization
and multi-programmed application. It is because most prior
approaches cannot work with these cases. We also compare
design and operation overhead in Table 5. We estimate the
design overhead by extra storage (per line and cache), area
overhead of control logic, and extra cache operations. Area
results are synthesized by Synopsys Design Compiler with
TSMC 45 nm library. It is easy to find that SBAC costs much
less storage, area, and operations.

7 RELATED WORK

Most studies about asymmetric-access caches focus on
how to mitigate the problems caused by write operations.
For example, write halt and PreSET techniques are pro-
posed to hide long write latency of these asymmetric-
access caches or main memory [26], [31], [33]. The hybrid
cache architecture places frequently updated data in the
symmetric-access cache (e.g., SRAM) [31], [39]. The
replacement policy can also be tailored by evicting cache
lines with less updated bits [43]. Wear-leveling and error
correction codes can be applied in last level asymmetric-
access caches to improve their lifetimes and reliabil-
ity [16], [32]. We can find that there lacks cache bypassing
techniques for asymmetric-access caches.

Prior works for symmetric-access cache bypassing can be
categorized into either static or dynamic approaches. Static
approaches normally rely on profiling-guided compiler to
identify cache lines, which should be avoided for place-
ment [5], [40]. But the static methods may work uneffi-
ciently if the program rely largely on user input. Most of
dynamic methods need to maintain a signature-like Cs
requests [1], [7], [9], [14], [15], [19], [22], [24], [27], [28], [35],
[36], [37]. Some traditional cache bypassing decisions can be
made based on the program counter (PC) of the load
instruction [7], [9], [37] or on the memory address of the
access [14], [15], [27], [28]. A memory address based
approach works well if the same memory address has simi-
lar locality behavior, while a PC-based approach can help

Fig. 18. Normalized execution time after using core-based SBAC and
group-based SBAC on write-back data.

Fig. 19. Comparison of performance between our bypassing scheme
and other approaches.

TABLE 5
Design Overhead Comparison

Approaches Multiprogram
Support

Storage Overhead (bits) Area
Overhead (mm2)

Operation Overhead

per line global

DBP [23] No - 2 M 102.78 2-level table lookup/update
IATAC [1] No 31 288 293.63 6b comp + 31b update + 16-entry CAM lookup/update
IGDR [36] No - 42.5 K 4:12� 104 5 table lookup/update
LvP [20] No 17 40 K 62.27 5b comp + 17b update + 1 table lookup/update
AIP [20] No 21 40 K 30.34 5b comp + 21b update + 1 table lookup/update
DBRB [19] Yes - 13.75 K 40.28 15b comp + 15b update + 3 table lookup/update
BIA [8] Yes 3/L2+2/L3 1.8 K 192.6 5b update + 16-entry CAM lookup/update
SBAC Yes 1/L2+2/L3 73 36.16 3b update + 2b comp + 1 counter update
SBAC-C Yes 1/L2+2/L3 146 144.64 3b update + 2b comp + 1 counter update
SBAC-G Yes 3/L2+2/L3 292 222.32 3b update+2b comp+1 counter update

3438 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 11, NOVEMBER 2016

when the data access patterns have a different locality
behavior in different code segments. Abella et al. proposed
IATAC [1], to predict dead cache lines by measuring a cache
line’s timing. Lai et al. proposed DBP [22], to predict dead
blocks based on addresses of the last few accesses. Takagi
and Hiraki [35] proposed IGDR to collect access interval dis-
tributions, but it is costly to implement in hardware. Khar-
butli and Solihin proposed LvP and AIP to make bypassing
decisions, using hybrid PC and address information [19].
Instead of using the individual access signature, Instruction
Sequence History Signature and cache bursts can be traced to
predict the behavior of grouped cache references [25], [38].
Such signatures are more regular than that of an individual
cache request. Khan and et al. introduced DBRB to use sta-
tistical sampling of PCs of a small number of cache sets
using partial tags to reduce overhead [18].

Recently, a bypassing algorithm based on statistical
sampling of operation count, called BIA, is proposed for
exclusive last level caches [8]. We differentiate this algo-
rithm from other studies because its bypassing decision is
made without using any signature-like structures. The
percentages of dead blocks in different data categories
are traced to judge the bypassing. Although this bypass-
ing algorithm is statistics based, its high frequency of
updating bypassing decisions causes considerable over-
head. The algorithm only works for write back operations
to last level cache. On the contrary, our scheme over-
comes these shortages.

8 CONCLUSIONS

Emerging asymmetric-access caches are competitive for
design of future cache hierarchy. Traditional cache
bypassing techniques are not efficient for these asymmet-
ric-access caches. In this work, we propose the statistics
based cache bypassing method named SBAC. With the
help of a theoretical model, we analyze the benefits of
cache bypassing. Then, proper bypassing decisions are
made based on DRC probability. In addition, we propose
core-based and group-based SBAC to improve working
efficiency of SBAC for multi-programmed workloads.
Compared with prior approaches, SBAC has the advan-
tages of low design overhead and compatibility for differ-
ent cache configurations. The experimental results show
improvement of cache performance and energy efficiency
after using SBAC.

ACKNOWLEDGMENTS

This work was supported by NSF CNS-1116171, ECCS-
1202225, National Natural Science Foundation of China
(No. 61572045, No. 61202072 andNo. 61103028), and National
High-tech R&DProgram of China (No. 2013AA013201).

REFERENCES

[1] J. Abella, A. Gonz�alez, X. Vera, and M. F. P. O’Boyle, “IATAC: A
smart predictor to turn-off l2 cache lines,” ACM Trans. Archit.
Code Optim., vol. 2, no. 1, pp. 55–77, Mar. 2005.

[2] F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donz�e, M.
Jagasivamani, E. C. Buda, F. Pellizzer, D. W. Chow, A. Cabrini,
G. M. A. Calvi, et al., “A bipolar-selected phase change memory
featuring multi-level cell storage,” IEEE J. Solid-State Circuits,
vol. 44, no. 1, pp. 217–227, Jan. 2009.

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2,
pp. 1–7, Aug. 2011.

[4] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan,
and R. S. Shenoy, “Overview of candidate device technologies for
storage-class memory,” IBM J. Res. Develop., vol. 52, no. 4.5,
pp. 449–464, Jul. 2008.

[5] C.-H. Chi and H. Dietz, “Improving cache performance by selec-
tive cache bypass,” in Proc. 22nd Annu. Hawaii Int. Conf. Syst. Sci.,
Archit. Track, vol. 1, pp. 277–285, Jan. 1989.

[6] X. Dong, C. Xu, Y. Xie, and N. Jouppi, “Nvsim: A circuit-level per-
formance, energy, and area model for emerging nonvolatile mem-
ory,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 31,
no. 7, pp. 994–1007, Jul. 2012.

[7] H. Dybdahl and P. Stenstr€om, “Enhancing last-level cache perfor-
mance by block bypassing and early miss determination,” in Proc.
11th Asia-Pacific Conf., 2006, pp. 52–66.

[8] J. Gaur, M. Chaudhuri, and S. Subramoney, “Bypass and insertion
algorithms for exclusive last-level caches,” in Proc. 38th Annu. Int.
Symp. Comput. Archit., 2011, pp. 81–92.

[9] A. Gonz�alez, C. Aliagas, and M. Valero, “A data cache with multi-
ple caching strategies tuned to different types of locality,” in Proc.
9th Int. Conf. Supercomput., 1995, pp. 338–347.

[10] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E. Hallnor,
H. Jiang, M. Dixon, M. Derr, M. Hunsaker, R. Kumar, R. B.
Osborne, R. Rajwar, R. Singhal, R. D’Sa, R. Chappell, S. Kaushik,
S. Chennupaty, S. Jourdan, S. Gunther, T. Piazza, and T. Burton,
“Haswell: The fourth-generation Intel core processor,” IEEE
Micro, vol. 34, no. 2, pp. 6–20, Mar./Apr. 2014.

[11] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo,
K. Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, et al.,
“A novel nonvolatile memory with spin torque transfer magneti-
zation switching: Spin-RAM,” in Proc. IEEE Int. Electron Devices
Meet., Tech. Dig., 2005, pp. 459–462.

[12] I. H. Inoue, S. Yasuda, H. Akinaga, and H. Takagi, “Nonpolar
resistance switching of metal/binary-transition-metal oxides/
metal sandwiches: Homogeneous/inhomogeneous transition of
current distribution,” Phys. Rev. B, vol. 77, no. 3, p. 035105, 2008.

[13] A. Jadidi, M. Arjomand, and H. Sarbazi-Azad, “High-endurance
and performance-efficient design of hybrid cache architectures
through adaptive line replacement,” in Proc. Int. Symp. Low Power
Electron. Des., 2011, pp. 79–84.

[14] T. L. Johnson, D. A. Connors, M. C. Merten, and W.-m. W. Hwu,
“Run-time cache bypassing,” IEEE Trans. Comput., vol. 48, no. 12,
pp. 1338–1354, Dec. 1999.

[15] T. L. Johnson and W.-m. W. Hwu, “Run-time adaptive cache hier-
archy management via reference analysis,” in Proc. 24th Annu. Int.
Symp. Comput. Archit., 1997, pp. 315–326.

[16] Y. Joo, D. Niu, X. Dong, G. Sun, N. Chang, and Y. Xie, “Energy-
and endurance-aware design of phase change memory caches,” in
Proc. Eur. Des. Autom. Assoc., 2010, pp. 136–141.

[17] B. Jun and P. Kocher, “The Intel random number generator,”Cryp-
tography Research Inc. white paper, 1999.

[18] S. M. Khan, Y. Tian, and D. A. Jimenez, “Sampling dead block pre-
diction for last-level caches,” in Proc. 43rd Annu. IEEE/ACM Int.
Symp. Microarchit., 2010, pp. 175–186.

[19] M. Kharbutli and Y. Solihin, “Counter-based cache replacement
and bypassing algorithms,” IEEE Trans. Comput., vol. 57, no. 4,
pp. 433–447, Apr. 2008.

[20] T. Kishi, H. Yoda, T. Kai, T. Nagase, E. Kitagawa, M. Yoshikawa,
K. Nishiyama, T. Daibou, M. Nagamine, M. Amano, et al.,
“Lower-current and fast switching of a perpendicular TMR for
high speed and high density spin-transfer-torque MRAM,” in
Proc. IEEE Int. Electron Devices Meet., 2008, pp. 1–4.

[21] M. N. Kozicki, M. Balakrishnan, C. Gopalan, C. Ratnakumar, and
M. Mitkova, “Programmable metallization cell memory based
on Ag-ge-s and Cu-ge-s solid electrolytes,” presented at the Non-
Volatile Memory Technology Symp., Dallas, TX, USA, 2005.

[22] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-block prediction & dead-
block correlating prefetchers,” in Proc. 28th Annu. Int. Symp. Com-
put. Archit., 2001, pp. 144–154.

[23] J. Li, P. Ndai, A. Goel, H. Liu, and K. Roy, “An alternate
design paradigm for robust spin-torque transfer magnetic RAM
(STT MRAM) from circuit/architecture perspective,” in Proc. Asia
South Pacific Des. Autom. Conf., 2009, pp. 841–846.

SUN ETAL.: STATISTICALCACHE BYPASSING FOR NON-VOLATILE MEMORY 3439

[24] L. Li, I. Kadayif, Y.-F. Tsai, N. Vijaykrishnan, M. T. Kandemir,
M. J. Irwin, and A. Sivasubramaniam, “Leakage energy manage-
ment in cache hierarchies,” in Proc. Int. Conf. Parallel Archit. Compi-
lation Tech., 2002, pp. 131–140.

[25] H. Liu, M. Ferdman, J. Huh, and D. Burger, “Cache bursts: A new
approach for eliminating dead blocks and increasing cache
efficiency,” in Proc. 41st Annu. IEEE/ACM Int. Symp. Microarchit.,
2008, pp. 222–233.

[26] M. K. Qureshi, M. M. Franceschini, A. Jagmohan, and L. A.
Lastras, “Preset: Improving performance of phase change memo-
ries by exploiting asymmetry in write times,” in Proc. 39th Annu.
Int. Symp. Comput. Archit., vol. 40, no. 3, pp. 380–391, Jun. 2012.

[27] J. Rivers and E. S. Davidson, “Reducing conflicts in direct-mapped
caches with a temporality-based design,”in Proc. Int. Conf. Parallel
Process. Software, 1996, pp. 154–163.

[28] J. A. Rivers, E. S. Tam, G. S. Tyson, E. S. Davidson, andM. Farrens,
“Utilizing reuse information in data cache management,” in Proc.
12th Int. Conf. Supercomput., 1998, pp. 449–456.

[29] Z. Shao, Y. Liu, Y. Chen, and T. Li, “Utilizing PCM for energy
optimization in embedded systems,” in Proc. IEEE Comput. Soc.
Annu. Symp. VLSI, 2012, pp. 398–403.

[30] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and
M. R. Stan, “Relaxing non-volatility for fast and energy-efficient
STT-RAM caches,” in Proc. IEEE 17th Int. Symp. High Perform.
Comput. Archit., 2011, pp. 50–61.

[31] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A novel architecture of
the 3D stacked MRAM L2 cache for CMPs,” in Proc. IEEE 15th Int.
Symp. High Perform. Comput. Archit., Feb. 2009, pp. 239–249.

[32] G. Sun, C. Xu, and Y. Xie, “Modeling and design exploration of
FBDRAM as on-chip memory,” in Proc. Des. Autom. Test Eur. Conf.
Exhib.,Mar. 2012, pp. 1507–1512.

[33] G. Sun, Y. Zhang, Y. Wang, and Y. Chen, “Improving energy effi-
ciency of wtire-asymmetric memories by log style write,” in Proc.
ACM/IEEE Int. Symp. Low Power Electron. Des., 2012, pp. 173–178.

[34] Z. Sun, X. Bi, and H. Li, “Process variation aware data manage-
ment for STT-RAM cache design,” in Proc. ACM/IEEE Int. Symp.
Low Power Electron. Des., 2012, pp. 179–184.

[35] M. Takagi and K. Hiraki, “Inter-reference gap distribution
replacement: An improved replacement algorithm for set-
associative caches,” in Proc. 18th Annu. Int. Conf. Supercomput.,
2004, pp. 20–30.

[36] E. S. Tam, J. A. Rivers, V. Srinivasan, G. S. Tyson, and E. S.
Davidson, “Active management of data caches by exploiting reuse
information,” IEEE Trans. Comput., vol. 48, no. 11, pp. 1244–1259,
Nov. 1999.

[37] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun, “A modi-
fied approach to data cache management,” in Proc. 28th Annu. Int.
Symp. Microarchit., 1995, pp. 93–103.

[38] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely,
Jr., and J. Emer, “Ship: Signature-based hit predictor for high per-
formance caching,” in Proc. 44th Annu. IEEE/ACM Int. Symp.
Microarchit., 2011, pp. 430–441.

[39] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie,
“Hybrid cache architecture with disparate memory technologies,”
in Proc. 36th Annu. Int. Symp. Comput. Archit., 2009, pp. 34–45 .

[40] Y. Wu, R. Rakvic, L.-L. Chen, C.-C. Miao, G. Chrysos, and J. Fang,
“Compiler managed micro-cache bypassing for high performance
EPIC processors,” in Proc. 35th Annu. IEEE/ACM Int. Symp. Micro-
archit., 2002, pp. 134–145.

[41] C. Xu, X. Dong, N. P. Jouppi, and Y. Xie, “Design implications of
memresistor-based RRAM cross-point structures,” in Proc. Des.,
Autom. Test Eur. Conf. Exhib., 2011, pp. 1–6.

[42] Y. Zhang, H. Wu, Y. Bai, A. Chen, Z. Yu, J. Zhang, and H. Qian,
“Study of conduction and switching mechanisms in al/alox/
wox/w resistive switching memory for multilevel applications,”
Appl. Phys. Lett., vol. 102, no. 23, 2013.

[43] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “Energy reduction for
STT-RAM using early write termination,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Des. - Dig. Tech. Papers, 2009, pp. 264–268.

Guangyu Sun received the BS and MS degrees
from Tsinghua University, Beijing, China, in 2003
and 2006, respectively. He received the PhD
degree in computer science from Pennsylvania
State University, State College, PA, USA, in
2011. He is currently an assistant professor of
CECA at Peking University, Beijing, China. His
research interests include computer architecture,
VLSI Design, and electronic design automation
(EDA). He has published more than 60+ journals
and refereed conference papers in these areas.

He has also served as a peer reviewer and technical referee for
several journals, which include IEEE Micro, IEEE Transactions on Very
Large Scale Integration Systems (TVLSI), IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
etc. He is a member of the CCF and IEEE.

Chao Zhang received the BS degree in micro-
electronics from Peking University, Beijing, China,
in 2012. He is currently working toward the PhD
degree from Peking University. He is also a visit-
ing scholar at the University of California, Santa
Barbara, USA, since 2015. His current research
interests include architectural optimization for
STT-RAM and Domain wall racetrack memory.
He is a student member of IEEE.

Peng Li received the BS degree in computer sci-
ence and technology from the Harbin Institute of
Technology, Harbin, China in 2002, and the PhD
degree in computer science and technology from
Tsinghua University, Beijing, China, in 2008. Then
he joined Intel Labs China as a research scientist
and later as senior research scientist. He was a
postdoc in Peking University when he finished
this work. He is a member of IEEE.

Tao Wang received the BS and PhD degrees
from Peking University, Beijing, China, in 1999,
and 2006, respectively. He is currently an associ-
ate professor in Peking University. His research
interests include computer architecture, reconfig-
urable logic, wireless network architecture, and
mobile cloud computing. He is a member of IEEE.

Yiran Chen received the BS and MS degrees in
electrical engineering from Tsinghua University,
China, in 1998 (Hons.), 2001 (Hons.), respec-
tively and the PhD in ECE from Purdue University,
W. Lafayette, IN, USA. He moved to the Univer-
sity of Pittsburgh as an assistant professor, Elec-
trical and Computer Engineering Department in
September 2010 and then promoted as an not a
associate professor in September 2014. His
research interests include VLSI design/CAD for
nano-scale Silicon and non-Silicon technologies,

low-power circuit design and computer architecture, emerging memory
technologies and nano-scale reconfigurable computing system and sen-
sor system. He is a member of IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

3440 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 11, NOVEMBER 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

