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Abstract— Long Short-Term Memory Recurrent

neural networks (LSTM-RNNs) have been widely

used for speech recognition, machine translation,

scene analysis, etc. Unfortunately, general-purpose

processors like CPUs and GPGPUs can not imple-

ment LSTM-RNNs efficiently due to the recurrent na-

ture of LSTM-RNNs. FPGA-based accelerators have

attracted attention of researchers because of good per-

formance, high energy-efficiency and great flexibility.

In this work, we present an FPGA-based accelera-

tor for LSTM-RNNs that optimizes both computa-

tion performance and communication requirements.

The peak performance of our accelerator achieves 7.26

GFLOP/S, which significantly outperforms previous

approaches.

I. Introduction

In recent years, research in deep learning algorithms
has achieved great progress in model accuracy and train-
ing methods, which makes deep learning a hot topic in
computer science. When it comes to applications that
process sequential data, such as speech recognition, the
performance of conventional neural networks is not satis-
factory, because they do not take timing information into
account. As a result, it is natural to design a new network
architecture to generate outputs based on previous input
sequence.

Recurrent neural network (RNN), a well-known deep
learning algorithm, has been extensively applied in
various applications like speech recognition[7][14], text
recognition[13], machine translation[16], scene analysis[4],
etc. By taking advantage of previous outputs as inputs
for current prediction, RNNs show a strong ability to
learn and predict sequential data. To further improve
the prediction accuracy of RNNs, Long Short-Term Mem-
ory (LSTM), a learned memory controller, is combined
with standard RNN designs. In recent years, research on
LSTM-RNNs has grown very fast due to the rapid de-
velopment of modern applications based on deep learning

algorithms.
Though the combination of LSTM and standard RNNs

improves the prediction accuracy, it also makes the com-
putation pattern and data access pattern more complex.
Due to the recurrent nature of LSTM-RNNs, it is quite
difficult for CPUs to accomplish LSTM-RNN computa-
tion in parallel. GPGPUs can explore little parallelism
due to the branching operations and relatively small
model size of LSTM-RNNs. The disappointing perfor-
mance of LSTM-RNN on general-purpose processors can
not meet the requirements of real-time inference in mod-
ern applications. It means that a high-performance ac-
celerator is highly desired. Taking performance, energy-
efficiency and flexibility into consideration, an FPGA-
based accelerator is a good choice, and previous de-
signs have showed great benefits brought by FPGA-based
accelerators[5][10][17].
Typically in practice, an LSTM-RNN model must be

trained off-line for a fairly good prediction accuracy, then
it can be applied to various real-life applications. As a
result, the processing speed of on-line inference is the key
point of LSTM-RNN deployment, and we focus on accel-
erating the inference phase of LSTM-RNNs in this work.
The inference phase requires carefully designed compu-
tation engines and data management modules. In this
work, we carefully analyze the characteristics of LSTM-
RNN inference, and propose several optimization strate-
gies for hardware implementation. We implement an
FPGA-based accelerator with significant performance im-
provement.
In summary, this paper makes following contributions:

• At the architecture level, we optimize the LSTM-
RNN accelerator to meet both computation perfor-
mance and communication requirements.

• Our implementation of the LSTM-RNN accelerator
integrates a set of high-performance computation en-
gines and a data dispatcher. These designs signifi-
cantly improve the overall performance.

• As a case study, we implement an LSTM-RNN accel-
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erator for a real-life speech recognition model. The
peak performance of our design is 7.26 GFLOP/S,
which outperforms all previous works.

The remainder of this paper is organized as follows:
Section II provides the basics of RNN and LSTM. Sec-
tion III presents our architecture level optimization and
provides our analysis. Section IV provides the details of
our hardware implementation. The experimental setup
and results can be found in Section V, and Section VI
compares our implementation with related work. Section
VII concludes this paper and discusses future work.

II. Background

In this section, we introduce some basic concepts of
RNN, LSTM cell and LSTM-RNNs.

A. RNN Basis

Recurrent neural networks (RNNs) were first invented
to deal with sequential data, which requires the model to
learn from previous states. Fig.1 compares the basic ar-
chitectures of a standard feed-forward neural network and
a standard RNN. As Fig.1 illustrates, a standard feed-
forward neural network (Fig.1.a) connects all the layers
in a uniform direction, while RNN (Fig.1.b) adds addi-
tional connections that pass the previous outputs of hid-
den layers back to the current input. Unlike deep neural
networks, standard RNN exhibits a deep structure in time
rather than in space. As a result, standard RNN can take
the time dimension into account, and generates outputs
on the basis of previous input sequence.

Fig. 1. Feed-forward NN and RNN

Given an input sequence X = (x1, ... , xT ), RNN
will compute the hidden layer vector sequence H= (h1,
... ,hT ) and output vector sequence Y = (y1, ... , yT ) by
iterating the following equations from t = 1 to t = T :

ht = σ(Wxhxt + Whhht−1 + bh) (1)

yt = Whyht + by (2)

Where Wxh represents the weight matrix between the
input layer and the hidden layer, and Why represents the
weight matrix between the hidden layer and the output
layer. Additionally, Whh denotes the weight matrix of

the recurrent connections between two hidden layer states
at two consecutive time steps. bh and by represent the
hidden bias vector and output bias vector respectively. σ
is the hidden layer activation function, an element-wise
sigmoid() function.

B. LSTM

Though RNN can learn from prior information, re-
search later showed that it could not maintain long-term
memory and the prediction accuracy was not very satis-
factory. To overcome the problem that RNNs can not ex-
plore long range context [3], researchers proposed to com-
bine the RNN architecture with Long Short-Term Mem-
ory (LSTM). LSTM was first designed in [9] as a memory
cell to decide what to remember, what to forget and what
to output. The architecture of a typical LSTM cell is
shown in Fig.2.

Fig. 2. Standard Long-Short Term Memory Cell [9]

The activation function in each gate can be sigmoid()
or tanh(). � and ⊕ represent element-wise multiplication
and addition respectively. Though there have been a great
number of LSTM cell variants for different applications
[2][6][12][14][15], the changes to the standard architecture
are very small and their effects on the overall prediction
accuracy are small enough to be ignored [8]. Replacing
each hidden layer in RNN with an LSTM cell, we can get
an LSTM-RNN. For the standard LSTM cell shown in
Fig.2, the hidden layer vector sequence H is produced by
the following functions:

it = σ(Wxixt + Whiht−1 + bi) (3)

ft = σ(Wxfxt + Whfht−1 + bf ) (4)

c̃t = tanh(Wxcxt + Whcht−1 + bf ) (5)

ct = ft � ct−1 + it � c̃t (6)

ot = σ(Wxoxt + Whoht−1 + bo) (7)

ht = ot � tanh(ct) (8)
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where σ is the sigmoid() function, and f , i, c̃, o repre-
sent the output vectors of forget gate, input gate, cell gate,
and output gate, respectively. W terms denote weight ma-
trices (e.g. Wxi is the weight matrix between input gate i
and input vector x), and b terms denote bias vectors (e.g.
bi is the bias vector of input gate i).

C. Real-life LSTM-RNN

Many LSTM-RNNs have been proposed in various ap-
plications, and they offer great prediction accuracy. Typi-
cally, deploying an LSTM-RNN in real-life applications in-
cludes two phases: training and inference. This character-
istic is the same as other deep learning algorithms. Train-
ing is accomplished off-line, and all parameters (weights
and bias) of LSTM-RNNs are adjusted to improve pre-
diction accuracy. Once training is over, all parameters
will not change any more, and they are stored for model
inference. Inference is performed on-line for real-life time-
sensitive applications, so the speed of inference computa-
tion is what really matters for the deployment of LSTM-
RNNs. As a result, in this work we focus on accelerating
the inference phase of LSTM-RNNs.
We use the LSTM-RNN (PRETRANS-3L-250H) intro-

duced in [7] as a case study. This LSTM-RNN is designed
for speech recognition, and achieves a test set error of
17.7% on the TIMIT phoneme recognition benchmark.
This model consists of an input layer, an output layer,
and three LSTM layers. The number of all its parameters
is about 4.3M. Due to space constraints, please refer to
[7] for detailed layer configurations.

III. Optimization Analysis

To optimize the overall performance, we need to con-
sider two principal constraints: computation performance
and communication requirements. In this section, we an-
alyze the problems and possible optimizations of LSTM-
RNN for these two constraints.

A. Computation Optimization

Our software-based profiling results show that the most
time-consuming and resource-consuming part of LSTM-
RNN inference is the computation inside each LSTM
gate, so we focus on improving the computation per-
formance of LSTM gates. Here we denote the length
of the input vector and hidden layer vector at a cer-
tain time step as Li and Lh respectively. Then the to-
tal number of operations (floating-point number multi-
plication and addition) during an LSTM-RNN inference
within a single layer can be approximately estimated as:
(Li +Lh) ∗Lh ∗ 4 ∗ 2 + Lh ∗ (8+ 4+4). Usually, Li is no
larger than Lh, so the computation complexity is O(L2

h).
Considering the computation resource constraints of

hardware platforms and scalability of design, it is natural

to take advantage of computation tiling to fit LSTM-RNN
models into certain hardware platforms. We tile the loop
computation inside each gate, and every tile performs a
small portion of the inference computation. The input
vectors and weight matrices are also tiled correspondingly.
At the inter-tile level, we execute tiles in a pipeline man-
ner to maximize throughput. At the intra-tile level, we
unroll the inner-most loops and perform computation in
parallel to minimize latency.
The second frequently performed computation during

LSTM-RNN inference is the activation functions. Typi-
cally, sigmoid() and tanh() are the two most used acti-
vation functions. Unfortunately, the exponentiation and
floating-point divisions consume a large amount of hard-
ware resource for implementation. Considering the com-
putation resource constraints of hardware platforms, we
choose to make a trade-off between computation accuracy
and resource consumption: we replace the activation func-
tions with some simple additions and shifting operations,
by using a piecewise linear approximation of nonlinear
function (PLAN) approach, which was introduced in [1].
Our experimental results show that, compared with orig-
inal activation functions, the average error rate brought
by our linear approximated activation functions is only
0.63%, which is small enough to be ignored during LSTM-
RNN inference.

B. Communication Optimization

Conventionally, parameters and inputs of deep learning
models are too large to be stored in limited FPGA on-chip
memory. As a result, FPGA-based accelerators usually
store the parameters, inputs and outputs in the external
DRAM, and load data onto the FPGA for computation
during run-time inference. However, the parameters of
modern LSTM-RNNs are usually less than 10M [7] [14],
which can be stored in FPGA on-chip memory partially
or even entirely. This will greatly reduce the long latency
of off-chip memory accessing, and improve the communi-
cation requirements. Thus, we apply an eclectic approach
in our implementation.
There are other optimizations that make the commu-

nication speed keep up with the computation modules.
With the expressions and analysis in Section III.A, the
amount of data transferred between the external DRAM
and FPGA chip during an inference is (Li + Lh) ∗ Lh ∗
4 + Lh ∗4, which indicates that the space complexity for
storing these parameters is O(L2

h).
During the inference phase of LSTM-RNN, the com-

putation between input vectors and parameters needs to
transport parameters from the external DRAM to the ac-
celerator. In addition, these matrices or vectors need to be
transposed and tiled for computation optimization. As a
result, the pattern of data access is pretty irregular, which
makes it more difficult to meet the required data band-
width of the accelerator. To avoid the additional overhead
brought by random DDR reads, we reshape the parameter
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matrices to insure that they can be accessed sequentially
for the tiled computation. The reshaping operations are
done off-line, and we store the reshaped parameters in
the external DRAM before performing model inference,
so these reshaping operations do not adversely affect the
performance of the accelerator. In the meantime, we im-
plement two input buffer groups and two output buffer
groups to work in a ping-pong manner during data ac-
cessing, and this scheme can also help to largely improve
communication requirements. In addition, we design a
data dispatcher to maximize the utilization of data band-
width between the external DRAM and FPGA on-chip
buffers, and this dispatcher is orthogonal to the hardware
platform.

IV. Implementation

In this section, we first present an overview of the whole
accelerator system. Then we describe implementation of
the LSTM accelerator in detail.

A. System Overview

Fig.3 shows an overview of the whole implementation
on an FPGA board. This system consists of a single
FPGA, with a DDR3 DRAM as the external memory for
storing input vectors, output vectors, and parameters of
the LSTM-RNN model. The modules on-chip are con-
nected to AXI4 bus or AXI4Lite bus. The data commu-
nications among different modules are done on the AXI4
bus, and the AXI4Lite bus is used to transfer commands.
The LSTM Accelerator is packaged as a hardware IP. We
use MicroBlaze, a RISC processor, to initialize the LSTM
Accelerator, measure execution time, and control the data
communication between accelerator and DRAM through
the AXI4Lite bus. The Data Dispatcher communicates
with the AXI4 bus, and uses two FIFOs to communicate
with LSTM Accelerator. According to [19], only more
IP interfaces added to AXI4 bus can efficiently improve
bandwidth nearly linearly. Thus, Data Dispatcher uses
multi-IP interfaces to fully utilize the physical data width
of the AXI4 bus (512 bits). The UART module transfers
the results returned by the LSTM Accelrator to host, and
Timer is used to measure the execution time of the LSTM
Accelerator.

Fig. 3. System Overview

B. LSTM Accelerator

The architecture of the LSTM Accelerator is shown in
Fig.4. On-chip data buffers are evenly divided into four
groups: two for input data buffering, and two for output
data buffering. These buffers work in a ping-pong manner
to overlap the time of data communication with inference
computation.

Fig. 4. LSTM Accelerator

The central part of the LSTM Accelerator includes four
LSTM gate modules (Forget Gate, Cell Gate, Input Gate
and Output Gate) of the LSTM cell, which output the
gate vectors of LSTM-RNN. All four gate modules fetch
data from input buffer groups through a crossbar. With
the fetched data, these four gate modules perform LSTM-
RNN inference, and transport results to LSTM Functional
Logic to perform the remaining computation (element-
wise multiplication and addition of gate vectors, activa-
tions, etc.). Then, the final results are loaded to output
buffer groups through a crossbar. The current state of
the LSTM cell is stored in am on-chip buffer, called Cell
Buffer.
Inside each gate module, gate vector is calculated in a

tiling scheme. Tiled input vectors and the correspond-
ing parameters are transferred into the LSTM gate mod-
ule in parallel to perform inference. Inside each LSTM
gate module, all multiplications between input elements
and parameters are performed in parallel. The results are
then summed up through a addition tree to minimize la-
tency. The whole architecture is also pipelined to further
improve throughput. The outputs are fed into activation
nodes to generate the final output vectors of each gate.

V. Evaluation

We introduce the setups of our experiments in this sec-
tion. Then we present and carefully analyze the experi-
mental results.

A. Experimental Setup

We implement the LSTM-RNN (PRETRANS-3L-
250H) discussed in Section II.C as a case study. We finish
the design of the LSTM-RNN accelerator with the help of
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TABLE I
Performance Comparison with Software Implementations

CPU-1th CPU-16th FPGA
LSTM #1 2.15 s 0.58 s 0.11 s
LSTM #2 2.87 s 0.77 s 0.15 s
LSTM #3 2.85 s 0.76 s 0.13 s

Total 7.87 s 2.11 s 0.39 s
Speedup 1.00 x 3.73 x 20.18 x

a high-level synthesis design tool, Vivado HLS (v2015.4).
Then we export the accelerator as a hardware IP core for
implementation. The whole system is designed in Vivado
(v2015.4), which performs RTL synthesis and implemen-
tation, then generates the final binary file to configure the
FPGA.

The FPGA board we use is Xilinx VC707, which has
a Xilinx Virtex7-485t FPGA chip on it. The working
frequency of the accelerator is set to 150MHz. For per-
formance comparison, we also have a software implemen-
tation of LSTM-RNN inference, which runs on an Intel
Xeon CPU E5-2430. The working frequency of this CPU
is 2.20GHz.

B. Experimental Results

We apply a uniform hardware configuration to all the
LSTM layers, and perform LSTM-RNN inference layer
by layer on the FPGA. For the software part, we have
two versions of software implementations: one runs in 1
thread (CPU-1th), the other runs in 16 threads (CPU-
16th) using OpenMP. Both software implementations are
compiled by gcc with -O3 optimization option. The per-
formance comparison between our accelerator and soft-
ware implementations is shown in Table I. Table I lists
the execution time of each layer and overall performance
for an input sequence with a length of 1K (typical value
for real-life applications). As Table I shows, our FPGA
implementation (FPGA) is 20.18x faster than CPU-1th,
and also achieves a speedup of 5.41x over CPU-16th. Con-
sidering the run-time power of our FPGA board (19.63W,
measured by a power monitor), our implementation out-
performs CPU-1th 1∼2 orders of magnitude in energy-
efficiency (GFLOP/J, giga floating operations per joule).

To show the benefits of our proposed framework, we
compare an existing FPGA-based LSTM-RNN accelera-
tor design [5](denoted as Ref.) with ours in Table II.
To make a fair comparison, we listed the FPGA chip,
run-time frequency, total number of operations in each
model, data precision, and overall performance in detail.
However, the detailed resource utilization is not reported
in [5], so we omit the comparison of overall performance
density. From Table II, we can see that the overall per-
formance of our implementation is 15.45x better than the
implemented design in [5], and 1.92x better than their
predicted performance.

The on-chip resource utilization shown in Table III is
reported by Vivado (v2015.4) after implementation. Since

TABLE II
Comparison with Previous Implementation

Ref.[5] Ours
FPGA chip Zynq 7020 Virtex7-vx485t
Frequency 142 MHz 150 MHz
Model Size 0.48 MOP 2.76 MOP
Precision fixed-16 float-32

Performance
0.47 GOP/Sa

7.26 GFLOP/S
3.78 GOP/Sb

aimplemented
bpredicted

TABLE III
Resource Utilization

Resource BRAM DSP FF LUT
Used 112 1176 181634 189871
Total 2060 2800 607200 303600

Utilization 5.44% 42.00% 29.91% 62.54%

TABLE IV
Resource Utilization (Memory Optimized)

Resource BRAM DSP FF LUT
Used 1072 1176 182646 198280
Total 2060 2800 607200 303600

Utilization 52.04% 42.00% 30.08% 65.31%

fixed-point computing units can achieve better perfor-
mance and utilize less resource [19], the overall perfor-
mance can even be better if we use fixed-point computing
units instead of floating-point computing units. However,
this will definitely bring some errors to the predictions.
Research on LSTM-RNNs is still on-going, and we have
not found any research which shows that LSTM-RNNs
have strong robustness when data precision changes. As
a result, we use floating-point numbers in our implementa-
tions. We leave the inference accuracy test of fixed-point
implementations to future work, and we can potentially
use fixed-point computing units in future hardware de-
signs.
It is worth noticing that we do not use much BRAM in

our implementation, so we consider storing a small por-
tion of parameters on-chip using BRAMs, as mentioned in
Section III.B. In this way, we can utilize the on-chip mem-
ory more and further optimize the overall performance of
the accelerator. We test this scheme on the first layer only,
and our experimental results show that this approach can
achieve a further overall speedup of about 1.47x. The re-
source utilization is shown in Table IV, and this strategy
can be an option for our future design.

VI. Related Work

Much previous work focuses on accelerating the train-
ing phase or inference phase of standard RNNs. Since
LSTM-RNN is an advanced version of the standard RNN,
the optimization strategies may be similar, and may need
to be carefully discussed. The work in [18] [11] [10] are
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representative. Work in [18] focuses on implementing a
RNN-based MUD (multiuser detection) for CDMA, and
work in [11] focuses on accelerating a new RNN train-
ing scheme on FPGAs. In [10], Li et al. realize a train-
ing framework for an RNN-based language model. These
three designs all used fixed-point data, and each achieves
fairly good performance. However, the RNN models that
they implement do not perform well enough in predic-
tion accuracy, which prevents them from being applied to
real-life applications.
Since LSTM-RNN has been an emerging architecture

in recent years, few FPGA-based accelerators were stud-
ied or proposed for it. We find the designs in [17] and
[5] to be representational work. Work in [17] focuses
on replacing the LSTM training algorithm with simul-
taneous perturbation stochastic approximation (SPSA),
which is more suitable for FPGA implementation. But
our work focuses on accelerating the inference phase to
deploy LSTM-RNN in real-life applications. In [5], Chang
et al. propose an FPGA-based accelerator for a 2-layer
LSTM-RNN. The data format they chose is 16bit fixed-
point, and their accelerator explores coarse-grained com-
putation parallelism during LSTM-RNN inference. Com-
pared with their work, our implementation uses floating-
point data, explores both computation and communica-
tion optimizations, and achieves better performance.

VII. Conclusions and Future Work

In this paper, we propose an FPGA-based accelerator
for LSTM-RNN. We optimize both computation perfor-
mance and communication requirements, and implement
an accelerator on a Xilinx VC707 FPGA board. The ex-
perimental results show that our design achieves signifi-
cant speedup over software implementations, and it out-
performs previous LSTM-RNN accelerators as well.
There are several opportunities for further research,

such as storing parameters in carefully quantized fixed-
point data to reduce resource utilization and improve
overall performance. Additionally, we can try to ex-
tend this acceleration framework to some other variants
of LSTM-RNNs.
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