
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 16, NO. 10, OCTOBER 2017 6321

Roadside Unit Caching: Auction-Based Storage
Allocation for Multiple Content Providers

Zhiwen Hu, Student Member, IEEE, Zijie Zheng, Student Member, IEEE, Tao Wang, Senior Member, IEEE,
Lingyang Song, Senior Member, IEEE, and Xiaoming Li, Senior Member, IEEE

Abstract— Recent improvements in vehicular ad hoc networks
are accelerating the realization of intelligent transportation
system (ITS), which not only provides road safety and driving
efficiency, but also enables infotainment services. Since data
dissemination plays an important part in ITS, recent studies have
found caching as a promising way to promote the efficiency of
data dissemination against rapid variation of network topology.
In this paper, we focus on the scenario of roadside unit (RSU)
caching, where multiple content providers (CPs) aim to improve
the data dissemination of their own contents by utilizing the
storages of RSUs. To deal with the competition among multiple
CPs for limited caching facilities, we propose a multi-object
auction-based solution, which is sub-optimal and efficient to be
carried out. A caching-specific handoff decision mechanism is also
adopted to take advantages of the overlap of RSUs. Simulation
results show that our solution leads to a satisfactory outcome.

Index Terms— Vehicular networking, roadside unit, caching,
multi-object auction.

I. INTRODUCTION

VEHICULAR ad hoc networks (VANETs) are becoming
increasingly popular in recent years, aiming to cope with

the strong demands for communicating on the move. As more
and more communication and computing techniques being
enabled by VANETs, it is promising to deploy Intelligent
Transportation Systems (ITS) widely in our real world [2].
By combining the theoretical improvements with the devel-
opment of transportation infrastructure, ITS is expected to
alleviate or even prevent many road traffic problems such as
congestions and accidents effectively. To achieve these targets,
roadside units (RSUs) are being deployed as the most signif-
icant infrastructure in ITS [3]. RSUs are typically Internet-
connected devices, dedicated in exchanging information with
on-board units (OBUs) placed at vehicles. Therefore, vehicle-
to-roadside (V2R) communications are enabled in addition to
the vehicle-to-vehicle (V2V) communications.

Manuscript received September 6, 2016; revised January 3, 2017 and
March 31, 2017; accepted June 15, 2017. Date of publication July 11, 2017;
date of current version October 9, 2017. This work was supported in part by
the National 973 Project under Grant 2013CB336700 and in part by
the National Nature Science Foundation of China under Grant U1301255
and Grant 61625101. This paper was presented at the ACM International
Symposium on Mobile Ad Hoc Networking and Computing, Hangzhou,
China, June 2015 [1]. The associate editor coordinating the review of this
paper and approving it for publication was P. Wang. (Corresponding author:
Lingyang Song.)

The authors are with the School of Electronics Engineering and Computer
Science, Peking University, Beijing 100871, China (e-mail: zhi-
wen.hu@pku.edu.cn; zijie.zheng@pku.edu.cn; wangtao@pku.edu.cn;
lingyang.song@pku.edu.cn; lxm@pku.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TWC.2017.2721938

Although initially designed to improve road safety and
driving efficiency, ITS can also provide infotainment services
for the passing-by drivers and passengers with the help of
RSUs, such as commercial, informative, and entertainment
services [4]. One of the prerequisites for infotainment services
is to design the data dissemination strategy in VANET envi-
ronment, where data can either be generated by the OBUs in
VANETs or by the content provider (CP) on the Internet. In
both cases, wireless data need to be disseminated to the given
set of target vehicular users through VANET. However, due to
the rapid changes in network topology and high variability of
the connectivity, it is hard to guarantee that data can arrive at
targets safely, accurately and punctually [5]. Therefore, data
dissemination in VANET still remains to be a challenging task.

To deal with this problem, many early studies considered
cache-enabled RSUs and OBUs as the ways to improve
the quality of dissemination [6]–[16]. Among them, [6]–[9]
studied the case where data was generated by OBUs in
VANET and being disseminated to other interested users.
While [10]–[16] focused on the case where data was provided
by CPs and to be disseminated to interested users VANETs.
Specifically, Abdelhamid et al. [6] and [7] suggested that
cache-enabled RSUs can collect OBU-generated data in order
to serve other OBUs. The works in [8] and [9] further took
into account the caching ability of OBUs and thus made
the dissemination more efficient. To accelerate the speed of
vehicular users acquiring online contents of CPs, centralized
RSU caching algorithms were proposed by Ding et al. [10]
and Idir et al. [11]. User-specific RSU caching was discussed
in [12]–[14], where CPs’ contents can be cached in the RSUs
on the pre-determined routes of vehicular users. Works in
[15] and [16] also considered the caching ability of OBUs
as a supplement to cache-enabled RSUs. In addition, coding
techniques are discussed in [17]–[19], which provide efficient
ways to utilize caching storages.

For the case where data are generated by CPs, however, few
existing studies consider the existence of multiple CPs [20].
In reality, there are multiple CPs possessing different sets of
contents, and vehicular users are able to select their inter-
ested contents to download through VANETs. Since each CP
only cares about the experience of its own users, it intends
to improve the data disseminations of its own contents by
utilizing the caching storages of RSUs or OBUs. Unfor-
tunately, the storage capacity of either RSUs or OBUs is
barely enough for any of the CPs, which makes the compe-
tition among different CPs unavoidable. Therefore, a proper
mechanism should be designed to deal with the competition

1536-1276 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

6322 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 16, NO. 10, OCTOBER 2017

among CPs and guarantee the overall performance at the
same time.

Since the capacity of RSUs can be much higher than that of
OBUs and most of the users’ retrieved data result from V2R
communications rather than V2V communications [21], the
major contribution for the dissemination of CPs’ data is RSU
caching. Therefore, without the loss of generality, in this paper,
we focus on RSU caching for multiple CPs and formulate this
problem by taking into account the overlapping among RSUs.
Since CPs have to compete for the caching storages on behalf
of their own contents, a nature solution is to apply auctions
to allocate resources reasonably [22]–[24]. Each CP has to
evaluate its contents and bid for caching storages, while the
Mobile Network Operators (MNOs) who manages the RSUs
can benefit from CPs’ payments [25]. We propose our own
solution based on multi-object auctions, where a serial of
multi-object auctions are carried out to complete the caching
scheme. Each multi-object auction can be solved by the market
matching algorithm [36], which uses the valuations to calculate
allocation results and trading prices. Simulation results show
the effectiveness of the proposed solution and also testified
our theoretical predictions.

The main contributions of our work are listed below:
1) We focus on the roadside unit caching scenario which

involves multiple CPs that are competing for the limited
caching storages of RSUs.

2) We formulate the caching problem with the objective to
maximize the total amount of downloaded data, where
a caching-specific handoff mechanism are adopted due
to the overlap of RSUs.

3) We provide a sub-optimal solution based on multi-object
auctions, which is efficient to be carried out and also
compatible with the existence of multiple MNOs.

4) We testify the effectiveness of our auction-based solu-
tion, the caching-specific handoff mechanism, and
the proposed content block segmentation method by
simulations.

The rest of our paper is organized as follows. Section II
presents our system model and problem formulation of road-
side caching. Section III provides the theoretical analysis
on the system parameters. Section IV introduces our multi-
object auction based solution. Section V shows the simulation
results which prove the effectiveness of our solution and testify
our theoretical analysis. Finally, we conclude our paper in
Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a simple two-way street
where RSUs with caching abilities are equidistantly distrib-
uted.1 Vehicular users that moving in both directions can
get accesses to nearby RSUs and thereby download contents
from the Internet. We assume that some of the users start
to download one of the contents once they drive into the
street. During the whole journey, users can always continue
downloading if there are RSUs nearby. But the transmission

1This model can be generalized for a complicated traffic network as long
as the traffic condition can be estimated.

Fig. 1. System model for roadside unit caching among multiple content
providers.

rate could be different, depending on whether the desired
content is cached in nearby RSUs. Since most of the retrieved
data of vehicular users result from V2R communications [21],
we ignore the possible V2V communications for simplicity.
As the downloading process may not complete by the end
of the street, we aim to maximize the total amount of down-
loaded data by caching the contents properly. The replacement
procedure of caching storages can be done during the night,
when RSUs are lightly loaded. For the rest part of this section,
we provide the model of contents, the model of vehicles, the
model of RSUs, the model of wireless communications, the
adopted handoff decision, and finally the objective function.

A. Contents

There are L CPs that aim to provide vehicular users with
better quality of service by caching their individual contents
into RSUs. We denote these CPs by P = {Pl |1 ≤ l ≤ L},
and denote the kth content of Pl by Cl,k , with size Sl,k . The
popularity of Cl,k is its probability of being requested by each
single user, denoted by φl,k . It is assumed that φl,k can be
seen as a constant in a single day, and is also predictable
with the help of some learning techniques [26]. The popularity
distribution of massive amount of contents conform to Zipf-
like distribution [27], which is kind of power law distribution.
In addition, we also have

∑

l,k
φl,k = 1, to guarantee that each

interested user only choose one content to download. Since
contents can be divided into several segments for caching,
we use Cl,k,n to denote the nth segment of Cl,k , and Sl,k,n

to denote the size of it, where 1 ≤ n ≤ Nl,k , and Nl,k is
the number of segments that Cl,k is divided. Here we assume
that different segments of a certain content have a sequential
order, and users have to download the segments of their desired
contents in sequence.2

B. Vehicles

The traffic condition on the street can be described by
three parameters, which are the linear density of vehicles
ρ(x, t), the velocity of vehicles u(x, t), and the flux of vehicles

2Although a coding method is also applicable (which ignores the sequence
of segments), the method we adopted here is compatible with streaming media
(which users would like to download in sequence).

HU et al.: RSU CACHING: AUCTION-BASED STORAGE ALLOCATION FOR MULTIPLE CPs 6323

Fig. 2. Generalized LWR vehicular traffic model, where ρmax = 0.8m−1

and umax = 20m/s, with α = 1, 2, 4 respectively.

f (x, t) = ρ(x, t)v(x, t). And we also adopt the generalized
Lighthill-Whitham-Richards (LWR) model [28] to describe the
additional restriction between velocity and density, given as:

u(ρ) = umax

[

1 −
(ρ

ρmax

)α
]

, α = 1, 2, 3 · · · (1)

where umax > 0 is the maximum allowable velocity in the
given street, and ρmax is the maximum allowable vehicular
density. Parameter α can be called as traffic coefficient, which
describes the property of vehicular traffic: A greater α indi-
cates that the vehicular velocity is not critically influenced by
vehicular density until the street is crowded. When ρ = ρmax ,
the u decreases to zero, indicating that the street is congested.
An illustration of this model is shown in Fig. 2.

During a day, the vehicular traffic condition of the street
could vary drastically. However, we suppose that the traffic
condition on each side of the street is uniform in a certain
period of time. That is to say, ρ, u and f are no longer the
functions of location x within each time slot. Let t denote a
certain time slot and let T denote the total number of time slots
in a day. Later in this paper, we use ρt

1, ut
1 and f t

1 respectively
to represent the traffic from the left side of the street in the t th

time slot, and use ρt
2, ut

2 and f t
2 to represent the other side.

Among all the users, only a proportion of them is interested
in downloading contents as driving through the street, while
the others don’t demand this service and only contribute to
vehicular traffic. And we denote such proportion as λ, where
0 ≤ λ ≤ 1.

C. RSUs

There are M RSUs equidistantly distributed along the street,
denoted by {RSUm}, where 1 ≤ m ≤ M . These RSUs can
belong to multiple MNOs, and the storage capacity of RSUs
could be different. We use Sm to denote the storage capacity
of RSUm . The coverage length of any RSU is assumed to be
the same, denoted by d , while the total length of the street is
denoted by ds . Any user that wants to connect to a specific
RSU has to make sure that the distance between its vehicle and
the RSU is less than d/2. In addition, users in the overlapping
region of the given two RSUs are able to benefit from both
RSUs’ caching storages. Also note that the width of the street
is ignored for simplicity.

Since the storages of RSUs can be used to cache contents
for users, we use the boolean matrix � to represent the caching

of RSUs, whose element is defined as:

δm
l,k,n =

{
1, if RSUm caches Cl,k,n ,

0, if RSUm doesn’t cache Cl,k,n .
(2)

D. Wireless Traffic

There are two types of wireless connections with transmis-
sion constraints in our model, which are the down-links from
RSUs to vehicles and the backhaul links from RSUs to the
Internet.

As for the down-links, each RSU is assumed to have U
wireless channels and the maximum rate of each channel is
Rdown. For simplicity, we suggest that each user can only
occupy at most one channel at a time, and multiple users
are able to share a channel by time-division multiplexing.
Based on the assumptions on vehicles, the average number
of users that intend to connect to the Internet under each
RSU’s coverage is d(ρt

1 + ρt
2)λ. If d(ρt

1 + ρt
2)λ ≤ U , then the

down-link rate for each user connected to a RSU is Rdown.

Otherwise, the down-link rate is
RdownU

d(ρt
1 + ρt

2)λ
. By combining

these two situations, we provide the following equation3:

r t
down = min

{
Rdown,

RdownU

d(ρt
1 + ρt

2)λ

}
. (3)

As for the backhaul links, we denote the maximum backhaul
rate of a RSU as Rback . Here we have to further introduce the
cache failure ratio of RSUm , μm , where 0 ≤ μm ≤ 1, to denote
the percentage of data that cannot be served by the caching
storage of RSUm . Therefore, the equivalent number of users
that occupy the backhaul link of RSUm is d(ρt

1 + ρt
2)λμm .

Similar to the downlink rate, we can provide the expression
of the available backhaul link rate for each user as follows:

rm,t
back = min

{
Rback,

Rback

d(ρt
1 + ρt

2)λμm

}
. (4)

Based on the equations above, we can provide the final
download rate of each user as below:

rm,t
cache = rm,t

down, (5)

rm,t
uncache = min{rm,t

down, rm,t
back}, (6)

where rm,t
cache is for the users whose desired content is cached in

RSUm at t , and rm,t
uncache is for the users whose desired content

is not cached in RSUm at t .

E. Handoff Decision

When a vehicle moves from one RSU to another adjacent
RSU, a handoff process should be considered, which usually
includes network discovery, handoff decision and handoff
execution [29]. The network discovery phase is to find adjacent
connectable RSUs for users, which can be easily handled by a
RSU controller [30] since the adjacency relationship between

3Note that, for the user that is in the overlapping region of any two RSUs,
whichever RSU it is connected to, it causes interference to the other RSU
in the same channel and affects both RSUs’ download speed. Therefore it is
reasonable to assume that the rate of a RSU depends on the number of all
the vehicles under its cover (with a λ factor).

6324 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 16, NO. 10, OCTOBER 2017

Fig. 3. An example of the adopted handoff decision. RSU1 has cached
a specific content while RSU2 does not. The car from right makes handoff
execution immediately, while the car from left makes handoff execution after
leaving RSU1.

RSUs is quite simple in our model. In addition, the delay of
handoff execution can be neglected since most time is spent on
the previous two phases. However, the handoff decision should
be better designed to improve the quality of caching service in
our model. We assume that, if a user is moving towards a RSU
that does not cache the desired content segment, the handoff
execution will not be made hurriedly until the user has left the
coverage region of the previous RSU. In comparison, if a user
is moving towards a RSU that caches the desired content seg-
ment, the handoff execution will be made as soon as possible.
The download rate of each user can be improved by selecting
the cached RSU as priority during the handoff decision.

We call this handoff decision as caching-specific handoff,
which can be applicable in practice since a RSU controller is
aware of whether a user’s desired content is cached. Here, we
use th to represent the total delay of network discovery and
handoff decision. It is only after having entered the coverage
region for th that a user can set up connections to a certain
RSU. According to the adopted handoff decision, whether
a user immediately connects to a RSU after th depends on
whether the desired content is cached. Fig. 3 gives an example
of such handoff decision.

F. Amount of Downloaded Data

Once a user with interests in Cl,k enters the street from the
left side at t , it has to download Nl,k segments of Cl,k sequen-
tially. By the end of the street, the amount of downloaded
data is denoted by Dt

1,l,k , where Dt
1,l,k ≤ Sl,k . Similarly,

for the other direction, the amount of downloaded data is
Dt

2,l,k , where Dt
2,l,k ≤ Sl,k . Given the vehicular condition,

the caching allocation and the handoff delay, Dt
1,l,k and Dt

2,l,k
can be calculated. The general mathematical expression of
Dt

1,l,k and Dt
2,l,k has a complicated form since Nl,k could

be greater than 1. To keep the model more readable, we put
the detailed calculation procedure in Section III. Our objective
is to maximize the expected total amount of downloaded data
within each day, as given below:

max
�

T∑

t=1

{
λ f t

1

∑

l,k

Dt
1,l,k · φl,k + λ f t

2

∑

l,k

Dt
2,l,k · φl,k

}
(7)

s.t .
∑

l,k,n

δm
l,k,n · Sl,k,n ≤ Sm, ∀m, (8)

where the constraint shows the limited storage capacity of
each RSU.

III. THEORETICAL ANALYSIS

In this section, we first discuss the calculation of down-
loaded data of each user, then reveal some properties of the
formulated problem, and finally analyse the impacts of some
parameters on the caching performance.

A. Calculation of Downloaded Data

For a specific content segment Cl,k,n , given its allocation
in M RSUs and the traffic condition in the street, we can
calculate the amount of data downloaded by the users who
request Cl,k,n . As given in Section II, ut

1 denotes the vehicular
velocity from the left side of the street. Thus the travel distance
induced by handoff delay for the users to connect to a RSU
is dt

h,1 = th · ut
1. Based on the caching result of Cl,k,n , the

whole street can be divided into M serving intervals, where
the mth interval represents the scope where RSUm transmits
Cl,k,n to users moving in the given direction. For the traffic
from the left, we denote Pm,t

1,l,k,n and Qm,t
1,l,k,n as the beginning

coordinate and the ending coordinate of such an interval. The
overlapping distance of two adjacent RSUs is given by do

and the location of RSUm is given by xm , where RSU1 is the
leftmost one and RSUM is the rightmost one. Based on the
adopted handoff decision, we have

Pm,t
1,l,k,n =

{
xm − d/2 + dt

h,1, if C1,

xm − d/2 + max{dt
h,1, do}, if C2.

(9)

Qm,t
1,l,k,n =

{
xm + d/2 + min{0, dt

h,1 − do}, if C3,

xm + d/2, if C4.

C1: m = 1 or δm
l,k,n = 1; C2: m > 1 and δm

l,k,n = 0;
C3: m < M and δm+1

l,k,n = 1; C4: m = M or δm+1
l,k,n = 0.

(10)

The upper line in Eqn. (9) represents an immediate entering
since the RSU has cached the content or it is the first RSU
being encountered. The lower line in Eqn. (9) represents a
deferred entering since the content is cached in the previous
RSU and not cached in the current RSU. The upper line in
Eqn. (10) shows an immediate leaving since the next RSU
has cached the content. And the lower line in Eqn. (10) shows
a deferred leaving since the next RSU has not cached the
content or there is no RSUs ahead. Note that if dt

h,1 ≤ do,

we have Qm,t
1,l,k,n = Pm+1,t

1,l,k,n , thus the downloading process is

continuous. However, if dt
h,1 > do, we have Qm,t

1,l,k,n < Pm+1,t
1,l,k,n ,

which implies there are some regions where users are off the
connection.

The maximum amount of downloaded data that a user
can acquire while driving through the interval of RSUm is
r · (Qm,t

1,l,k,n − Pm+1,t
1,l,k,n)/v t

1, where r = rm,t
cached if δm

l,k,n = 1
and r = rm,t

uncached if not. With the consideration of Nl,k

(the number of segments that Cl,k is divided into), the user
that interested in Cl,k has to first download Cl,k,1 according
to the intervals of Cl,k,1. After Cl,k,1 has been successfully
received, the user continues to download Cl,k,2 in the current

HU et al.: RSU CACHING: AUCTION-BASED STORAGE ALLOCATION FOR MULTIPLE CPs 6325

location according to the intervals of Cl,k,2 (if Cl,k,2 exists).
This process goes on until all the segments of Cl,k have been
downloaded or the user leaves the street with only a fraction
of Cl,k downloaded.

In comparison, the traditional handoff decision is based on
the Received Signal Strength (RSS) measurement [31], where
an OBU is likely to switch to a new RSU near the middle of
two RSUs4 regardless of whether the content is cached. The
intervals of a traditional handoff decision can be given by

Pm,t ′
1,l,k,n

=
{

xm − d/2 + dt
h,1, if m = 1

xm − d/2 + max{dt
h,1, do/2}, if m > 1.

(11)

Qm,t ′
1,l,k,n

=
{

xm + d/2 − do + max{dt
h,1, do/2}, if m < M,

xm + d/2, if m = M
(12)

By subtracting the intervals of the traditional handoff and that
of the caching specific handoff, it is not hard to find that
Qm,t

1,l,k,n − Pm,t
1,l,k,n ≥ Qm,t ′

1,l,k,n − Pm,t ′
1,l,k,n if Cl,k,n is cached in

RSUm and Qm,t
1,l,k,n − Pm,t

1,l,k,n ≤ Qm,t ′
1,l,k,n − Pm,t ′

1,l,k,n if not. Such
property guarantees that the caching specific handoff provides
users with longer scope to download with higher rate. And we
have proved this conclusion in Section V-B by simulations.

For the vehicles from the right side of the street, the
calculation of downloaded data is similar to that of the above
discussion. Therefore, we only provide the corresponding
expressions of the intervals and omit the detailed discussions
and comparisons:

Pm,t
2,l,k,n =

{
xm + d/2 − dt

h,1, if C1,

xm + d/2 − max{dt
h,1, do}, if C2.

Qm,t
2,l,k,n =

{
xm − d/2, if C3,

xm − d/2 − min{0, dt
h,1 − do}, if C4.

C1: m = M or δm
l,k,n = 1; C2: m < M and δm

l,k,n = 0;
C3: m = 1 or δm−1

l,k,n = 0; C4: m > 1 and δm−1
l,k,n = 1.

B. Two Properties of the Formulated Problem

In this subsection, we prove that our problem is: NP-
hard [32] and submodular [33].

Proposition 1: The problem formulated in the Eqn. (7) is
NP-hard.

Proof: To achieve this, we prove that a special case of our
problem can be reduced to the 0-1 Knapsack Problem [34] in
polynomial time. We define the special case of our problem
as:

Single RSU Caching Problem: A RSU with limited storage
capacity S is located in a street with vehicular density ρ and
zero handoff delay. The contents {Ck} with corresponding size
{Sk} are requested by vehicular users according to their popu-
larity {Pk}. Assuming that the rate of backhaul link rback and
the downlink rate rdown are fixed for each user (rback < rdown),

4A more realistic model will consider the signal strength, and the handoff is
executed later than the middle of two RSUs. However, there is one property
that remains the same in our formulation: RSUs are expected to serve for the
same distance and the difference from (11) (12) is not significant.

find the optimal caching strategy to maximize the average
downloaded data.

To deal this problem, we can calculate the caching gain
of each content, denoted as Gk , representing the marginal
increase of average downloaded data as we cache Ck into
the RSU. If we reckon each content as an object, then there
is a value Gk and a cost Sk of caching it. Therefore, the
problem can be considered as a knapsack problem without
further transformation. Since a knapsack problem is NP-hard
and the reduction only takes polynomial time, we can deduce
that the Single RSU Caching Problem is NP-hard. Therefore,
the more general and complicated problem in (7) is also
NP-hard.

Before we prove the submodularity, we have to provide
some notations. We first use A to denote a given caching
allocation, which includes M groups of contents being cached
into the M RSUs. And we denote f : A → R as the function
that maps the given caching allocation to a real number which
represents the system performance (i.e., the total amount of
downloaded data). By putting some additional contents into
A, we have another caching allocation B, where A ⊆ B. The
function f is a submodular function if and only if

f (A ∪ x) − f (A) ≥ f (B ∪ x) − f (B), A ⊆ B, (13)

where x denotes the single operation of caching one of the
contents into one of the RSUs. Intuitively, this attribute implies
that the marginal utility is monotonically decreasing (adding
x into A could be better than adding x into a bigger set B).

Proposition 2: The problem formulated in Eqn. (7) is sub-
modular.

Proof: Assuming that the current caching allocation is not
completed, we consider the effect of caching another content
into a certain RSU: 1) If it is already cached in this RSU,
then no more gains can be acquired. 2)If it is not cached in
this RSU, then there are two parts of potential marginal gains.
The first one GT his , is for the users who request this content,
which is either zero or positive (depending on whether this
content can be already finished downloading for the drive-
through users based on its size). The second one, G All , is for
all of the users (also either positive or zero), since caching
can reduce the cache failure ratio of the RSU, which could
increase the backhaul rate according to Eqn. (4). All the
above considerations show that marginal gain of caching is
non-negative.

For the case where A = B, we have f (A ∪ x) − f (A) =
f (B ∪ x) − f (B) and the above property holds. For the case
where A 	= B, we denote C = B − A as the additional
contents that added to the allocation A. If x ⊆ A, then
f (A ∪ x) − f (A) = f (B ∪ x) − f (B) = 0. If x ⊆ C ,
we have f (A ∪ x) − f (A) ≥ 0 = f (B ∪ x) − f (B). And
finally, if x is not in B, we can also obtain f (A ∪ x) −
f (A) ≥ f (B ∪ x) − f (B) since the presence of C might
reduce GT his and G All of x . Such a reduction occurs when
the addition of C makes vehicular users able to completely
download some of the contents. In conclusion, we always have
f (A ∪ x) − f (A) ≥ f (B ∪ x) − f (B). Therefore, the formu-
lated problem is submodular.

6326 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 16, NO. 10, OCTOBER 2017

Due to its submodularity, in the rest of our paper we are
able to compare our auction solution with a general centralized
algorithm of submodular problems. Briefly, this centralized
algorithm select the most valuable allocation pair (one content
to one RSU) within each step and repeats until there is not
enough caching space. It is guaranteed that the outcome is
at least (1 − 1/e) of the optimal solution [33]. Therefore, its
outcome can be taken as a benchmark in our performance
evaluation in Section V-B.

C. Impacts of System Parameters

In this subsection, we analyse some of the parameters
which can affect the total amount of downloaded data. Since
vehicular density ρ is the independent variable of velocity and
flux, and also influences download rate of users, it is necessary
to discuss the its influence on each time slot’s performance.
Besides, the competition for limited caching storages among
CPs’ contents is the key issue, thus the total number of
contents K and the storage capacity of RSUs S are the two
important concerns. In addition, the number of RSUs M can
also affect the outcome because it determines the degree of
overlapping as the length of the street is fixed. At last, the
proportion of interested users λ and the handoff delay th are
also two influential factors that need to be discussed.

To have a better understanding of the problem, in the rest of
this subsection we consider a special case where the two sides
of the street share the same traffic condition, i.e., ρt

1 = ρt
2,

ut
1 = ut

2 and f t
1 = f t

2 . Note that the objective function (7)
shows that the total amount of data is the sum of each time
slot’s downloaded data, and given a fixed caching allocation
the outcomes of different time slots are independent of each
other. Therefore, we mainly analyse how the parameters
changes the amount of downloaded data in each time slot.
And we use ρ, u and f to denote the density, velocity and
flux of the street from both directions in a certain time slot.

Proposition 3: With a fixed caching allocation, given that
all contents are cached without being segmented, the amount
of downloaded data that takes vehicular density ρ as a single
variable is concave within (0, ρmax).

Proof: Given the vehicular density ρ, we have vehicular
velocity u = umax(1 − ρ/ρmax) and vehicular flux f =
umax(1 − ρ/ρmax)ρ. Given the maximum backhaul rate Rb

and maximum down-link rate Rd , we have the cached rate of

RSUm for each user given by rm
c = min

{
Rd ,

RdU

2λρ

}
and the

uncached rate by rm
u = min

{
Rd ,

RdU

2dλρ
, Rb,

Rb

2dλμmρ

}
.

Since the allocation is fixed, RSUm ’s cache failure ratio μm

can be seen as a constant. In addition, the serving intervals that
introduced in the last subsection are also fixed. We denote the
distance of RSUm ’s serving interval as dm , thus the maximum
amount of data that a user can acquire as passing by RSUm is

Dm
l,k = rm dm

u
= rm · dm

umax(1 − ρ/ρmax)
, where rm = rm

c if RSUm

caches Cl,k and rm = rm
u if not. When a user is interested in

Cl,k , the amount of downloaded data by the end of the street

is Dl,k = min
{∑

m
Dm

l,k , Sl,k

}
. The expected total amount of

data that downloaded from both directions of the street is

D = 2λ f
∑

l,k

φl,k Dl,k

= 2
∑

l,k

[
φl,k min

{ ∑

m

λ f Dm
l,kλ f Sl,k

}]

= 2
∑

l,k

[
φl,k min

{ ∑

m

λ f · rmdm

umax(1 − ρ

ρmax
)
, λ f Sl,k

}]

= 2
∑

l,k

[
φl,k min

{ ∑

m

λρ · rmdmλ f Sl,k

}]
(14)

For all of the cached contents, λρ · rm = min
{
λρRd ,

RdU

2

}
.

And for all of the uncached contents, we have λρ · rm =
min

{
λρRd ,

RdU

2d
, λρRb,

Rb

2dμm

}
. For either case, λρ · rm is

concave of ρ [35]. In addition, f = umax(1 − ρ/ρmax)ρ is
also concave of ρ, which makes min

{∑

m
λρrmdm, λ f Sl,k

}

concave. Finally, we can deduce that D is concave of ρ.
Remark 1: When the vehicles is sparse (such as in the

midnight) or crowded (such as in the busy hours), the efficiency
of the data services provided for users will not be satisfying.
The former case is due to the lack of users in the street,
while the latter case is due to the fact that crowded vehicles
move slowly and thereby reduce the vehicular flux. However,
a moderate vehicular density (such as in the normal hours)
can make the best use of RSUs’ caching.

Proposition 4: Supposing that the storage capacities of
RSUs are the same, then the total amount of downloaded data
D has a positive correlation with storage capacity S.

The proof of this proposition is trivial and the conclusion
is straight-forward. The key point is to notice that the caching
allocation of S′ can be derived from the given caching alloca-
tion of S (S < S′). Therefore additional content segments can
be added to the caching storages and the involved contents are
able to be downloaded more by users.

Proposition 5: Given a certain distribution of content pop-
ularity and content size, the total amount of downloaded data
D has a negative correlation with the number of contents K .

Proof: Suppose that there are initially K contents in the
system and we denote the set of these content as C . The
downloaded data in a specific time slot can be calculated by

D =
∑

Cl,k∈C

φl,k Dl,k ,

where Dl,k = λ f1 D1,l,k + λ f2 D2,l,k . Now we add additional
set of contents C ′ with the same popularity distribution and
size distribution, supposing |C ′| = K ′ = x K and x > 0.
Then the downloaded data of each original content in C is
expected to be lowered since some of the caching storages are
now occupied by new contents, i.e., D′

l,k < Dl,k . Besides, the
popularity of all the original contents and all the new contents
decreases because the popularity should be normalized, as:

φ′
l,k = φl,k

1

1 + x
, if Cl,k ∈ C . Note that no matter from C or

C ′, contents with the similar popularity and size are expected
to have similar amount of downloaded data for users (as long

HU et al.: RSU CACHING: AUCTION-BASED STORAGE ALLOCATION FOR MULTIPLE CPs 6327

as the caching allocation algorithm is rational). Therefore, the
downloaded data in a specific time slot with C ′ added is

D′ =
∑

Cl,k∈C

φ′
l,k D′

l,k +
∑

Cl,k∈C ′
φ′

l,k D′
l,k

=
(

1 + x
) ∑

Cl,k ∈C

φ′
l,k D′

l,k

=
∑

Cl,k∈C

φl,k D′
l,k <

∑

Cl,k ∈C

φl,k Dl,k = D.

Therefore, the increase in content number K reduces the
amount of downloaded data D.

This result can also be intuitively comprehended that the
increase in content number leads to the decrease in caching
percentage, making the caching system less efficient.

Proposition 6: Given that the length of the street is constant
and the RSU are distributed equidistantly, the total amount
of downloaded data D has a positive correlation with the
number of RSUs M.

Note that the download rate is not influenced by the number
of RSUs (as modeled in section II and explained in the
corresponding footnote). Since deploying more RSUs enables
more contents to be cached, the amount of downloaded data
of each content for users is also expected to be larger.

Proposition 7: With the contents unsegmented, the total
amount of downloaded data D has a positive correlation with
the proportion of interested users λ.

Proof: Based on the denotations used in

Proposition 3, λρ · rm is either min
{
λρRd ,

RdU

2

}
or

min
{
λρRd ,

RdU

2d
, λρRb,

Rb

2dμm

}
. In both cases, λρ · rm

has a positive correlation with λ. Based on Eqn. (14), which
tells us the positive correlation of λρ · rm and D, we can
directly obtain that D has a positive correlation with λ.

Proposition 8: With fixed setting of RSUs, contents, traffic
condition, caching allocation, the total amount of downloaded
data D has a negative correlation with handoff delay th .

This conclusion is also straight-forward to intuitively under-
stand. The impact of th mainly lies in the distance induced by
handoff delay, dh,1 and dh,2. And the increase of dh,1 and
dh,2 defers the starting point of connecting to a cached RSU.
Thus each user is expected to download less data while driving
through the street.

IV. AUCTION-BASED SOLUTION

In this section, we propose an auction-based solution to deal
with the caching problem which involves multiple CPs. In
general, CPs who possess different sets of contents play the
roles of bidders, and the RSUs’ caching storages that owned
by MNOs play the roles of objects. A serial of multi-object
auctions are hold to determine the caching allocation for the
next day. And based on the auction results, old cached contents
are replaced by new ones during midnight when RSUs are
lightly loaded.

For the rest part of this section, we first discuss the motiva-
tion of applying multi-object auction, then elaborate the setup
of a serial of multi-object auctions, and finally introduce the
market matching algorithm to solve each auction.

A. Background and Motivation

The RSU caching problem we are dealing with involves
multiple selfish CPs. Each CP aims to cache its own contents
into RSUs in order to provide better experience for its own
users and thereby acquires better user ratings. However, the
caching storages of RSUs are not infinite, and hardly suf-
ficient for caching enough contents to satisfy all kinds of
requests from users. Therefore, the competition among CPs
is inevitable. Additionally, MNOs, the owners of RSUs, have
to pay for the installation and operation costs of caching
storages in RSUs. Thus they are not interested to maintain the
storages to cache the contents of CPs unless they can benefit
from it. Since CPs are willing to pay a reasonable price to
obtain caching storages, it is possible to create transactions
between CPs and MNOs. For each CP, there is a value of
each content being cached, which, however, the MNOs are
not aware of. Therefore auctions can be applied here, to
determine the trading prices according to the bids submitted
by CPs. A proper auction mechanism [22] is able to guarantee
caching efficiency as well as providing fairness for all the
participated CPs.

In our situation, the auctioneer of the auctions (who is
in charge of the auction procedure) could be another third
party, or even be the MNO itself as long as there is only
one MNO. The objects to be sold in each auction are the
caching storages of RSUs, which can be seen as successive in
size. The complexity of auctioning storages in random sizes
is extremely high and almost intractable in practice. Thus,
it is reasonable to divide the caching storages into specific
equal-sized storage blocks, and regard each of blocks as a
single object in the auctions. Since there are still a large
number of storage blocks waiting to be allocated to cache
contents, we adopt multi-object auctions in our solution instead
of single-object auctions to increase auction efficiency and
reduce the number of auctions that needed in each allocation.
We propose that, each of the RSUs provides one storage block
to be auctioned in each multi-object auction. The detailed
advantages of such method are discussed in Section IV-B.2.

B. Multi-Object Auctions Setup

In this subsection, we first propose a method to transform
contents into equal-sized content blocks, then introduce our
way to arrange a serial of multi-object auctions to complete
the allocation, and finally provide the technique to calculate
the evaluations of caching each content blocks into RSUs.

1) Transforming Contents Into Equal-Sized Content Blocks:
To match the size of storage blocks that specified by the
auctioneer, contents have to be adjusted to form equal-sized
content blocks. Here we have to notice that, contents
belonging to different CPs are not allowed to be put into one
content block because CPs have to evaluate their own content
blocks separately.

Since the formulated caching problem is a little bit similar
to the classical knapsack problem [34], the transforming
procedure we propose here is inspired by one of the greedy
algorithm. For a given CP, we sort all of its contents in the
descending order of popularity to size ratio, and put them

6328 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 16, NO. 10, OCTOBER 2017

Fig. 4. The data ribbon of C Pl is formed by sorting its contents in the
descending order of φl,k/Sl,k .

Fig. 5. A simple idea to transform contents into equal-sized content blocks
without segmentation.

Fig. 6. The proposed method to transform contents into equal-sized content
blocks with the consideration of segmentation.

together to form a one-dimensional long “data ribbon”, as
shown in Fig. 4.

However, there still could be different ways to transform
this data ribbon into content blocks. A simple idea is to keep
each content unsegmented, which is just to start from the
left side, repeatedly put the current leftmost content into a
SB -sized block, and create a new empty block whenever the
residual size of the current block is insufficient for the current
content. Fig. 5 illustrates the procedure of such idea, where
some of the space are being wasted. In contrast, the method we
would like to propose is based on the assumption that contents
can be segmented. And we only have to directly cut the data
ribbon from the left side into multiple SB -sized content blocks,
as shown in Fig. 6. Here we ignore the minor problem that
whether the length of the “data ribbon” can be divisible by SB .
This is because the most right side usually consists of low-
popularity contents and they have little impact to the caching
performance.

Due to the huge number of contents in reality, we recom-
mend that SB is set greater than the largest original content,
in which way the computational complexity can be reduced to
some extent. And as a result, each content is divided into no
more than two content blocks. The larger SB is set, the less
number of contents are being segmented.

2) Arranging a Serial of Multi-Object Auctions: Recall that
the storage capacity of RSUm is Sm and the size of a storage
block is SB . Without the loss of generality, we assume that
Sm can be divided by SB . According to our scheme, there
are totally H = max

m
{Sm/SB} rounds of multi-object auctions

to finish the caching allocation. In the hth round of auction,
the hth storage blocks in all the RSUs are being auctioned and
allocated to cache content blocks. This process is essentially to
auction the storages of all RSUs concurrently within multiple
steps, as shown in Fig. 7.

The two main advantages of applying multi-object auctions
instead of single object auctions are as follows: 1) Our
scheme is more compatible with the case of multiple MNOs.
If there are multiple MNOs who own different RSUs, then
the auction sequence among different RSUs needs to be con-
sidered as long as single-object auctions are applied, because

Fig. 7. The arrangement of a serial of multi-objet auctions, where the boxes
represent the SB -sized storages. The given example takes three rounds of
auctions, which generate four states of the system, shown as the four rows.

each single-object auction is only able to allocate a storage
block of one RSU. Since different auction sequences can
result in different caching results and different trading prices,
fairness problem could arise among those MNOs. However,
the proposed multi-object auction method is able to avoid such
problems by allocating the storages of RSUs concurrently.
2) The communication costs can be reduced with multi-object
auctions. The single-object auction needs H · M rounds of
auctions, which causes H ·M times of communications among
CPs and MNOs. But the proposed method only needs H
rounds of auctions, indicating a significant reduction. Either
in multi-object auction or single-object auction, CPs have to
submit the bids of its content blocks for all the RSUs in each
auction, i.e., the costs of each time’s communications are the
same. Therefore, our scheme guarantees a much lower total
communication costs to complete the caching allocation.

3) Approximate Valuations of Caching: In each multi-object
auction, CPs have to calculate the marginal utility of caching
its each content block into each RSU. Based on the estimations
of system parameters, we are able to provide the way to
calculate the marginal utility of caching each content block
into each RSU. We first denote the bth content block of Pl by
Bl,b, which is a collection of content segments {Cl,k,n}. The
marginal utility of caching Cl,k,n into RSUm in the t th time slot
is denoted by V m,t

l,k,n . Based on current caching allocation, the
amount of downloaded data of users downloading Cl,k from
two directions in the current time slot is D1,l,k and D2,l,k ,
respectively. If we further cache Cl,k,n into RSUm , the result
becomes Dt ′

1,l,k and Dt ′
2,l,k , respectively. According to Eqn. (7),

the marginal utility can be calculated as

V m,t
l,k,n = λφl,k

[
f t
1 (Dt ′

1,l,k − Dt
1,l,k) + f t

2 (Dt ′
2,l,k − Dt

2,l,k)
]
.

Therefore, the final valuation of caching Bl,b into RSUm is

V m
l,b =

T∑

t=1

[∑

Cl,k,n ∈Bl,b

V m,t
l,k,n

]

. (15)

Before we go on to introduce the algorithm that uses
valuations to generate the allocation results, we summarize
the overall procedure of our solution in Algorithm 1.

HU et al.: RSU CACHING: AUCTION-BASED STORAGE ALLOCATION FOR MULTIPLE CPs 6329

Algorithm 1 The Overall Procedure of our Auction-Based
Solution.
begin

The auctioneer announces the block size SB ;
Each CP transforms its own contents to form multiple
SB -sized content blocks;
The total rounds of auctions is H = max

m
{Sm/SB};

for h is from 1 to H do
The hth storage blocks in all RSUs are regarded as
objects;
Create the valuation matrix based on current
allocation matrix;
Run the market matching algorithm to complete a
multi-object auction;
Update the allocation matrix based on the result of
the algorithm;

end
end

C. Market Matching Algorithm

We adopt the market matching algorithm to determine the
allocation results of each multi-object auction. This algorithm
is originated from [36] and uses bipartite graphs to match
the bidders and objects with maximum social welfare. That is
to say, based on the results of previous rounds of auctions,
the utility of the next-round’s caching allocation can be
maximized.

For convenience of reading, in this subsection, we use
“content” and “storage” to represent “content block” and
“storage block” respectively.

In general, this algorithm builds bipartite graphs based on
the valuations and tries to find a perfect matching between
contents and storages,5 and finally outputs the auction results
as the allocation scheme. Here, we describe this algorithm by
a initialization procedure followed by an iteration procedure
with four steps and finally a termination procedure, as
given below:

1) Initialization Procedure: Given X contents and Y stor-
ages (X > Y), add X − Y virtual storages. Then set the initial
prices of all storages as zero, i.e., py = 0, ∀y ∈ [1, X].
The valuation of the xth content for the yth storage, vx,y ,
is calculated according to Eqn. (15).

The introduction of virtual objects is to equalize the num-
bers of contents and storages, which is a prerequisite to find a
perfect matching in a bipartite graph. Since virtual storages do
not actually exist, the valuations for them are confined as zero
in the algorithm. The content that matched to a virtual storage
in the allocation results will not be allocated to any RSUs.
Since the numbers of contents and storages are equalized,
we can assume X = Y in the following descriptions of this
algorithm for clearer writing.

5In a matching, each content cannot be allocated to more than one RSU in
each auction. And here we assume M ≤ H to avoid a possible unreasonable
situation where a content with high popularity cannot be allocated into all
of the RSUs. This assumption can be satisfied in most real-world situations
because the storages can be divided into a large number of blocks.

Definition 1: A bipartite graph G = (C , S, E) is a graph
that consists of two sets of nodes, C , S, and a set of edges E,
such that any edge in E connects one node from C with one
node from S.

Definition 2: In G = (C , S, E) where C stands for the
content nodes and S stands for the storage nodes, given a fixed
x, the edge between Cx and Sy exists if and only if (vx,y − py)
is the largest for any y. Then such a bipartite graph is called
a preferred-storage graph.

2) Iteration Procedure Step 1: Based on the valuations and
the prices, a preferred-storage graph can be built. Intuitively,
the preferred-storage graph shows the “most preferred” stor-
ages of each content. If the profit of acquiring storage Sy is the
highest among all the storages for the content Cx , then there
will be an edge between Cx and Sy . Note that, each single
content may have multiple most preferred storages.

Definition 3: Given G = (C , S, E), a matching M is a
subset edges of E such that each node in G is connected by
no more than one edge in M .

Definition 4: Given G = (C , S, E) and a matching M of it,
an alternating path consists of a serial of concatenated edges
in E such that these edges are alternately included or excluded
in M .

Definition 5: An augmenting path is a special kind of
alternating path where the two end-vertices are not connected
by the edges in M .

3) Iteration Procedure Step 2: In a given preferred-storage
graph, the algorithm tries to find augmenting paths and uses
them to expand the matching until no more augmenting
paths exist.

The classical breadth-first-search (BFS) algorithm in graph
theory [37] can be applied to find augmenting paths by starting
from any of the non-matched content nodes. We denote all the
edges in the augmenting path as E′ in a given bipartite graph
with matching M . Here E′ consists of two disjoint subsets, E′

1
and E′

2, where E′
1 is the set of edges included in M while E′

2
is the opposite. By adding E2 to M and deleting E1 from M , a
greater matching can be formed, because |E2| = |E1|+1. The
matching achieves maximum as no more augmenting paths
can be found.

4) Iteration Procedure Step 3: Based on the maximum
matching in the last step, the algorithm decides whether
to jump to the termination procedure. If all the nodes are
matched, i.e., the maximum matching is a perfect matching,
then jump to the Termination Procedure which ends the
algorithm. Otherwise, the algorithm starts to find a constricted
set, which is an obstruction for the existence of a perfect
matching. The constricted set is defined as below:

Definition 6: In a preferred-storage graph, given C ′ as a
subset of C , all the directly connectable storage nodes from
C ′ are denoted as the set S′. If |C ′| > |S′|, then S′ is a
constricted set.

Intuitively, a constricted set S′ shows a situation where more
contents are competing for less storages. Studies in [38] show
that the equivalence condition of the existence of a perfect
matching in a bipartite graph is the absence of constricted
sets. The process of searching for a constricted set is based
on the process of trying to find augmenting paths. When the

6330 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 16, NO. 10, OCTOBER 2017

algorithm fails to find an augmenting path during BFS, the
visited storage nodes form a constricted set [38].

5) Iteration Procedure Step 4: Once a constricted set S′
is found, the algorithm raises the prices of storages in S′
uniformly by a certain amount of value δp. Here δp is the
minimum value to make at least one content change their
preferred-storages so that a new preferred-storage graph can
be built. After that, if the algorithm finds min{py} = δ > 0,
then it lets py = py − δ for all y (which is necessary for
the proof of the convergence property [36]). Thereafter, the
algorithm goes back to Iteration Procedure Step 1 for the
next round of iteration.

6) Termination Procedure: The algorithm ends here. The
matching in the bipartite graph shows the allocation of con-
tents to storages, and the price vector represents the final
trading prices. As a summary, we provide an overview of this
algorithm in Algorithm 2.

Algorithm 2 Market Matching Algorithm to Solve Each
Multi-Object Auction.
Input: Valuation matrix VX×Y (X : number of contents,

Y : number of storages, X > Y).
Output: Allocation matrix �X×Y and trading price

vector PY .
Initialization Procedure:
Add X − Y virtual objects and expand the valuation
matrix from VX×Y to VX×X with 0;
Initialize the price vector PX as zero;
Iteration Procedure:

Build a preferred-storage graph G(C , S, E) based on
VX×X and PX ;
while a augmenting path can be found during BFS do

Expand the current matching M according to the
augmenting path;

end
if M is a perfect matching then

Break the iteration;
else

Find a constricted set S′ in G(C , S, E) by BFS;
Find the minimum additional price δp for storages
in S′ that can change G;
Let px = px + δp for all Sx ∈ S′, and let
px = px − min {px} for all 1 ≤ x ≤ X ;

end
Termination Procedure:
Deduce matrix �X×Y from the matching, which shows
the caching allocation;
The vector PY represents the final trading prices that
have to be paid;

The convergence of this algorithm can be guaranteed as long
as the valuations are quantified as decimals with finite preci-
sion and finite upper-bound [36]. The performance degradation
brought by quantification is ignorable, as long as the value
space has more than 100 quantized values (i.e., quantification
accuracy q ≥ 100) [39]. In additional, the practical complexity
of running this algorithm can be far below the theoretical upper
bound O(N4) where N is the number of content blocks.

Fig. 8. (a) The average profit of faking bids with unknown others’ bids.
(b) The average profit of faking bids with estimated others’ bids but also with
errors. In both subplots x = 1 represents truthful bids.

D. Discussions on the Auction

In our paper, we use CP’s true valuations as their bids in the
auction. But whether truthful bidding remains to be their best
bidding strategies is worth discussing. The original algorithm
has a “truth-telling” property, where bidders’ best strategy is
to bid truthfully even with the knowledge of others’ bids [40].
Its proof is based on the assumption that all the bidders are
decoupled from each other. However, in our situation, we
regard each content block as the corresponding bidder to be
matched, and a CP who owns multiple content blocks is able
to bid for all its content blocks jointly.

If we consider the auction as a “complete information game”
where each CP is aware of all the other’s exact valuations,
then the outcome of truthful bidding is not a Nash equilibrium
solution. However, the “complete information” assumption is
not reasonable in reality. The proper assumption is to consider
the auction as an “incomplete information game”, where each
CP at most know the statistical distribution of the others’ bids.
If we take the auctions as “incomplete information games”,
then we should consider “Bayesian Nash equilibrium” [41]
as a substitute to analysis whether truthful bidding will be
adopted by the CPs in the auction. Specifically, this means
that from the point view of each certain CP, any one of
the other CP has multiple possible “types” and will only
choose one “type” to participate in the auction based on the
probabilistic distribution of all its types. And for the situation
in our paper, each CP has almost infinite number of types
since the submitted bidding matrix has countless variations.
If there is a Bayesian Nash equilibrium in our auction, it
should be seen as the average outcome of infinite types.

Unfortunately, it is difficult to find the Bayesian Nash equi-
librium theoretically even if we assume that all the CPs have
the same probability distribution. Such difficulty is mainly
due to the sensitivity of the market matching algorithm. Even
the tiniest change of bidding matrix could bring significant
difference to the outcome. As a result, the relation of “bidding-
profit” of each CP is neither convex or concave—it is not even
continuous.

However, the truthful bidding is likely to be such an
equilibrium. This is because truth-telling averagely maximizes
the expected profit of each CP, and any deviation from
truthful bids brings averagely negative utility. Fig. 8 shows
the outcome of 100 contents where half of the contents are
possessed by the concerned CP. From the results, we can

HU et al.: RSU CACHING: AUCTION-BASED STORAGE ALLOCATION FOR MULTIPLE CPs 6331

TABLE I

SIMULATION PARAMETERS

conclude that fake bidding strategies averagely bring lower
profit. In addition, only a small amount of estimation error of
others’ bids also causes significant decrease in profit. From
a practical point of view, the attempts to predict others’ bids
and calculate better strategies could also be troublesome for
the CPs, which should be considered as a non-negligible cost.
Therefore, the CPs are not likely to lie about the true valuations
in the auction, and the allocation results based on truthful bids
can be considered as the outcome of the results of an auction
in real-world.

V. SIMULATION RESULTS

In this section, we simulate the performance of the proposed
auction-based solution and verify the impacts of system para-
meters that discussed in Section III. The simulation parameters
are set in the first subsection. The simulation results and cor-
responding discussions are provided in the second subsection.

A. Simulation Parameters

Without loss of generality, we set Sm = S for all 1 ≤
m ≤ M and ρt

1 = ρt
2 for all 1 ≤ t ≤ T . In addition, we

choose one hour to be the length of a time slot, which makes
T = 24. Although a shorter time slot would make the results
more accurate, our key point is only to solve the problem
with a given length of time slot. According to [42], the traffic
loads in different days have the similar profile, so we set the
variation of vehicular density ρt in a similar way, as given in
the second row in Table I. The popularity of contents conform
to Zipf-like distribution, which is to say, the popularity of the

kth most popular content is φ(k) = Z

kβ
, where Z =

K∑

k=1

1

kβ
is

Fig. 9. The impacts of the vehicular density ρ and the proportion of interested
users λ, where th = 50ms, S = 1000G B , SB = 20G B , M = 25 and
K = 10000. The Y-axis shows the amount of data downloaded in each hour
with given ρ and λ.

the normalization factor and β is the Zipf coefficient, which
is usually around 1.

Table I shows a more detailed list of parameters in our
simulations.

B. Simulation Results and Discussions

In this subsection, we first simulate the vehicular density
ρ to see its impact on each hour’s performance. A 24-hour
situation is then provided to show the performance’s variation
in a day. After that, the influence of the size of capacity S, the
number of contents K , the size of blocks SB , the number of
RSUs M and the handoff delay th are given. In some of the
simulations, we also compare our solution to several related
solutions to show the advantages of ours.

As the vehicular density is significant to the system perfor-
mance in each hour, our first simulation presents the impact
of ρ. Fig. 9 shows the corresponding results, where handoff
delay th = 50ms, RSUs’ capacity S = 1000G B , size of
block SB = 20G B , number of RSUs M = 25 and number
of contents K = 10000. The Y-axis represents the amount of
downloaded data D in each hour according to the given ρ on
the X-axis. When the value of ρ gets closer to 0 or ρmax , the
amount of downloaded data per hour drastically decreases. As
ρ is somewhere in the middle of (0, ρmax), the curve of D
keeps flat and does not response much to the variation of ρ.
Such behavior can be explained by the proof of Proposition 3,
where the concave feature is predicted. Intuitively speaking,
for the case where ρ is close to 0, the lack of users results in
the lack of data being downloaded. In contrast, for the case
where ρ is close to ρmax , the crowded vehicles reduce the total
flux of vehicles and thereby also reduce the total data being
downloaded. This phenomenon implies that the performance
of the RSU caching system can be fully exploited when the
density of vehicles is moderate.

Fig. 9 also gives the results with different settings of the
proportion of interested users λ. We can observe that with
more users participating into content downloading, the amount
of total downloaded data increases, which also accords with
Proposition 7. However, it is noticeable that the total amount
of downloaded data will not unlimitedly increase by enlarg-
ing λ. The system seems to have an upper bound, implying
the maximum ability of providing data services. The actual

6332 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 16, NO. 10, OCTOBER 2017

Fig. 10. Subplot (b) and (c) show the variation of the amount of downloaded
data in each hour with the given setting of ρ in subplot (a), with λ = 0.1,
th = 50ms, S = 1000G B , SB = 20G B , M = 25 and K = 10000.

downloaded data is the closest to such an upper bound while
the vehicular density ρup = ρmax/2. Note that this feature is
originated from the adopted vehicular model, just as shown in
Fig. 2 (b). A different choice of α will change the value of ρup .

Based on the analysis of the impact of vehicular density,
we can simulate a one-day situation where 24 time slots are
included, as shown in Fig. 10, where λ = 0.1, th = 50ms,
S = 1000G B , SB = 20G B , M = 25 and K = 10000.
Fig. 10 (a) shows the setting of the vehicular density in
different hours, which mainly has two peaks: at noon and
in the evening. The maximum vehicular density is around
0.75 at twelve o’clock, which means the traffic is crowded
by then. Fig. 10 (b) illustrates the system performance of
caching during a whole day. Based on the results of Fig. 9, we
are able to explain the two valleys in the curve. The former
one results from the sparsity of vehicles and the latter one
is due to the congestion of the vehicular traffic. It is also
noticeable that the small peak at 21 o’clock in Fig. 10 (a) is not
reflected in Fig. 10(b), since the vehicular density is not high
enough to generate obvious degradation of the performance.
As a result, the performance in most hours stays still until
vehicular density goes over or below some thresholds. In the
given setting, these thresholds are approximately 0.2m−1 and
0.7m−1. Fig. 10 (b) also reveals the performance gains of our
auction-based solution and the centralized algorithm mention
in Section III-B. This centralized algorithm takes M × H
rounds of allocation, where in each round the greatest value
in the valuation matrix is selected and corresponding content
is added in the corresponding RSU. It was proved to be at
least (1 − 1/e) of the performance of a optimal one [33], and
we use it to be a benchmark in the simulation. The advantage
of the centralized algorithm is almost unnoticeable and they
both can elevate the system performance in most time of the
day. In the midnight when there is little traffic in the street,
the advantages brought by caching disappear. That is to say,
the RSU caching system is unnecessary if a street is nearly

Fig. 11. (a) The impacts of number of contents K and the capacity of RSUs
S, where λ = 0.1, th = 50ms, SB = 20G B and M = 25. (b) The impact of
the size of blocks SB , where λ = 0.1, th = 50ms, S = 1000G B , K = 10000
and M = 25.

empty, and the cache-enabled RSUs should be deployed in the
street that with appropriate traffic.

Fig. 10 (c) illustrates the advantage of our solution over
some related ones. The Undivided Content is based on the
simple idea to transform contents into content blocks, as shown
in Fig. 5 in Section IV-B.1, which keeps contents unseg-
mented. The Greedy Caching is another centralized solution,
which caches the contents according to the descending order
of “popularity to size ratio”, and in fact does not transform
the contents into content blocks. The RSS handoff uses the
same auction solution with our proposed one, except for the
condition that the handoff decision is based on a traditional
one, as mentioned in Section III-A. The overall advantages
of our solution to those three are positive. The advantage
over Undivided Content comes from the full utilization of
caching space because Undivided Content wastes some of
the caching storages by keeping contents unsegmented. The
advantage over Greedy Caching shows that our auction-based
solution is better than a simple and straight-forward centralized
caching scheme. The advantage over RSS handoff is brought
by the adopted handoff decision mechanism, which improves
the utilization of overlapping areas of RSUs.

The impacts of number of contents K and the capacity of
RSUs S are shown in Fig. 11 (a), where λ = 0.1, th = 50ms,
SB = 20G B and M = 25. Note that the Y-axis is the total
downloaded data in 24 hours instead of in each single hour. As
Propositions 4 and 5 predict, D has a positive correlation with
S and a negative correlation with K , which agrees with our
simulation. It can be observed that the curve of K = 10000 is
high above the curve of K = 20000, and the two curves have
a similar shape. Thus a greater number of contents K makes
it more difficult to achieve high performance. We can also see
that when B gets greater, D increases but the change rate of
D decreases as well. Therefore, the same amount of storage
makes greater difference in a low-capacity situation.

The impact of the size of blocks SB is shown in Fig. 11 (b),
where λ = 0.1, th = 50ms, S = 1000G B , K = 10000
and M = 25. The two upper curves show the results of
contents that can be segmented, while the two lower curve
shows the outcome of the Undivided Content. For the proposed
solution, the larger SB is, the worse the outcome becomes.
This is because a larger content block combines too many
contents together and these contents have to be allocated
as a whole, which reduces the flexibility of allocation and

HU et al.: RSU CACHING: AUCTION-BASED STORAGE ALLOCATION FOR MULTIPLE CPs 6333

Fig. 12. (a) The impact of the number of RSUs M, where λ = 0.1,
th = 50ms, S = 1000G B , SB = 20G B and K = 10000. (b) The impact
of the handoff delay th , where λ = 0.1, S = 1000G B , SB = 20G B and
K = 10000.

deviates more from the optimal solution (a hypothetical one).
A smaller SB can improve the caching efficiency but also
induce higher computational complexity. Thus a practical
choice of SB should take both factors into account. The
outcome of Undivided Content, however, is not monotonous
of SB . The reason is that the average wasted space brought
by unsegmented contents decreases while the size of blocks
gets larger. Thus, the difference between the two curves gets
fewer when we increase SB . It can be also observed that the
difference of our solution and the centralized solution is not
noticeable until SB is larger than 4 ×104M Bytes. The reason
is provided in a footnote in Section IV-C, where we need
to guarantee S/SB ≥ M to avoid an unreasonable situation.
Therefore, to guarantee the performance of the auction-based
solution, it is necessary to choose a smaller SB .

In Fig. 12 (a), we illustrate the impact of the number
of RSUs M , where λ = 0.1, th = 50ms, S = 1000G B ,
SB = 20G B and K = 10000. The outcome of the traditional
handoff is not sensitive to the number of RSUs as the two
lower curves in this figure is almost flat. For the adopted
handoff decision where users choose the cached RSUs as
priority, the total amount of data increases as more RSUs are
being deployed. In addition, the change rate of D gets larger
while M continues to increase. However, the improvement
is not significant, where 10 more RSUs only lead to 1%
performance increased. This is mainly because adjacent RSUs
can also cause interference with each other (Remember that
in Section II we assume that the user in the overlapping area
takes up both RSUs’ channel due to interference). Therefore,
we can deduce that it is not an effective way to improve the
performance by adding additional RSUs in the street. Since the
difference of the two handoff methods is not significant, we
can conclude that even a traditional handoff will not degrade
much of the system performance.

Finally, we provide the impact of the handoff delay th in
Fig. 12 (b), where λ = 0.1, S = 1000G B , SB = 20G B
and K = 10000. As can be observed in this figure, for
each setting of M (given by 30, 28, 26 and 24, respectively),
D has an approximate linear correlation with th . The reason is
that th influences the performance by deferring the procedure
of switching an uncached RSU to a cached RSU. Such a loss
can be approximately calculated as L = th(rcache − runcache).
The uneven density of the four curves in this figure results
from the non-linear property of the upper curve in Fig. 12(a).

Based on some of the existing studies like [30], the handoff
delay between RSUs is able to be reduced to about 10ms.
Therefore, our caching system is able to keep its efficiency in
a practical situation with the consideration of handoff.

VI. CONCLUSION

In this paper, we studied a roadside caching scenario where
multiple CPs intended to cache their own contents into the
storages of RSUs for better data dissemination. We focused on
a single two-way street and formulated the caching problem as
how to maximize the total downloaded data by vehicular users.
In the theoretical analysis, we first predicted the downloaded
data as a concave function of vehicular density. Then we found
the number of RSUs M and the proportion of interested users
λ had positive impacts on the performance, while the number
of contents K , the size of blocks SB and the handoff delay
th had negative impacts. To solve the caching problem with
the consideration of the competition of CPs, we designed
an auction-based solution, which included a serial of multi-
object auctions to complete the allocation. Simulation results
testified the theoretical analysis and also revealed a satisfying
performance of our solution. The advantages of caching-
specific handoff and segmented contents was also verified.

REFERENCES

[1] Z. Hu, Z. Zheng, T. Wang, and L. Song, “Roadside Unit Caching
Mechanism for Multi-Service Providers,” in Proc. ACM Int. Symp.
Mobile Ad Hoc Netw. Comput., Hangzhou, China, Jun. 2015,
pp. 387–388.

[2] G. Karagiannis et al., “Vehicular networking: A survey and tutorial on
requirements, architectures, challenges, standards and solutions,” IEEE
Commun. Surveys Tuts., vol. 13, no. 4, pp. 584–616, 4th Quart., 2011.

[3] H. T. Cheng, H. Shan, and W. Zhuang, “Infotainment and road safety
service support in vehicular networking: From a communication per-
spective,” Mech. Syst. Signal Process., vol. 25, no. 6, pp. 2020–2038,
Aug. 2011.

[4] M. Amadeo, C. Campolo, and A. Molinaro, “Enhancing content-centric
networking for vehicular environments,” Comput. Netw., vol. 57, no. 16,
pp. 3222–3234, Nov. 2013.

[5] M. Chaqfeh, A. Lakas, and I. Jawhar, “A survey on data dissemination in
vehicular ad hoc networks,” Veh. Commun., vol. 1, no. 4, pp. 214–225,
Oct. 2014.

[6] S. Abdelhamid, H. S. Hassanein, G. Takahara, and H. Farahat, “Caching-
assisted access for vehicular resources,” in Proc. Annu. IEEE Conf. Local
Comput. Netw., Edmonton, AB, Canada, Sep. 2014, pp. 28–36.

[7] S. Abdelhamid, H. S. Hassanein, and G. Takahara, “On-road caching
assistance for ubiquitous vehicle-based information services,” IEEE
Trans. Veh. Technol., vol. 64, no. 12, pp. 5477–5492, Sep. 2015.

[8] N. Kumar and J.-H. Lee, “Peer-to-peer cooperative caching for data
dissemination in urban vehicular communications,” IEEE Syst. J., vol. 8,
no. 4, pp. 1136–1144, Dec. 2014.

[9] T. H. Luan, L. X. Cai, J. Chen, X. S. Shen, and F. Bai, “Engineering a
distributed infrastructure for large-scale cost-effective content dissemina-
tion over urban vehicular networks,” IEEE Trans. Veh. Technol., vol. 63,
no. 3, pp. 1419–1435, Mar. 2014.

[10] R. Ding, T. Wang, L. Song, Z. Han, and J. Wu, “Roadside-unit caching
in vehicular ad hoc networks for efficient popular content delivery,” in
Proc. IEEE Wireless Commun. Netw. Conf., New Oleans, LA, USA,
Mar. 2015, pp. 1207–1212.

[11] L. Idir, S. Paris, and F. Naït-Abdesselam, “Optimal caching of encoded
data for content distribution in vehicular networks,” in Proc. IEEE Int.
Conf. Commun. Workshop, London, U.K., Jun. 2015, pp. 2483–2488.

[12] B. B. Chen and M. C. Chan, “MobTorrent: A framework for mobile
Internet access from vehicles,” in Proc. IEEE Int. Conf. Comput.
Commun., Rio de Janeiro, Brazil, Apr. 2009, pp. 1404–1412.

[13] U. Shevade, Y.-C. Chen, L. Qiu, Y. Zhang, V. Chandar, M. K. Han,
H. H, Song, and Y. Seung, “Enabling high-bandwidth vehicular con-
tent distribution,” in Proc. ACM Int. Conf., Philadelphia, PA, USA,
Nov. 2010, pp. 1–12.

6334 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 16, NO. 10, OCTOBER 2017

[14] K. Mershad and H. Artail, “SCORE: Data Scheduling at roadside units
in vehicle ad hoc networks,” in Proc. Int. Conf. Telecommun., Jounieh,
Lebanon, Apr. 2012, pp. 1–6.

[15] F. Malandrino, C. Casetti, C.-F. Chiasserini, and M. Fiore, “Optimal con-
tent downloading in vehicular networks,” IEEE Trans. Mobile Comput.,
vol. 12, no. 7, pp. 1377–1391, Jul. 2013.

[16] P. Salvo, F. Cuomo, A. Baiocchi, and A. Bragagnini, “Road side unit
coverage extension for data dissemination in VANETs,” in Proc. Annu.
Conf. Wireless On-Demand Netw. Syst. Services, Courmayeur, Italy,
Jan. 2012, pp. 47–50.

[17] Z. Dong, S. H. Dau, C. Yuen, Y. Gu, and X. Wang, “Delay minimiza-
tion for relay-based cooperative data exchange with network coding,”
IEEE/ACM Trans. Netw., vol. 23, no. 6, pp. 1890–1902, Dec. 2015.

[18] X. Wang, C. Yuen, T. J. Li, W. Song, and Y. Xu, “Minimizing
transmission cost for third-party information exchange with network
coding,” IEEE Trans. Mobile Comput., vol. 14, no. 6, pp. 1218–1230,
Jun. 2015.

[19] X. Wang, C. Yuen, and Y. Xu, “Coding-based data broadcasting for time-
critical applications with rate adaptation,” IEEE Trans. Veh. Technol.,
vol. 63, no. 5, pp. 2429–2442, Jun. 2014.

[20] Z. Hu, Z. Zheng, T. Wang, L. Song, and X. Li, “Game theoretic
approaches for wireless proactive caching,” IEEE Commun. Mag.,
vol. 54, no. 8, pp. 37–43, Aug. 2016.

[21] B. Yu and F. Bai, “ETP: Encounter transfer protocol for opportunistic
vehicle communication,” in Proc. IEEE Int. Conf. Comput. Commun.,
Shanghai, China, Apr. 2011, pp. 2201–2209.

[22] V. Krishna, Auction Theory. San Diego, CA, USA: Academic, 2009.
[23] C. Yi and J. Cai, “Two-stage spectrum sharing with combinatorial

auction and Stackelberg game in recall-based cognitive radio networks,”
IEEE Trans. Commun., vol. 62, no. 11, pp. 3740–3752, Nov. 2014.

[24] C. Yi and J. Cai, “Multi-item spectrum auction for recall-based cognitive
radio networks with multiple heterogeneous secondary users,” IEEE
Trans. Veh. Technol., vol. 64, no. 2, pp. 781–792, Feb. 2015.

[25] C. Liang and F. R. Yu, “Wireless network virtualization: A survey, some
research issues and challenges,” IEEE Commun. Surveys Tuts., vol. 17,
no. 1, pp. 358–380, 1st Quart., 2014.

[26] P. Blasco and D. Gündüz, “Learning-based optimization of cache content
in a small cell base station,” in Proc. IEEE Int. Conf. Commun., Sydney,
NSW, Australia, Jun. 2014, pp. 1897–1903.

[27] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and Zipf-like distributions: Evidence and implications,” in Proc. IEEE
Int. Conf. Comput. Commun., New York, NY, USA, Mar. 1999,
pp. 126–134.

[28] B. Piccoli and A. Tosin, “Vehicular Traffic: A Review of Continuum
Mathematical Models,” in Mathematics of Complexity and Dynamical
Systems. New York, NY, USA: Springer, 2009.

[29] B. Ma and X. Liao, “Speed-adaptive vertical handoff algorithm based
on fuzzy logic in vehicular heterogeneous networks,” in Proc. Int. Conf.
Fuzzy Syst. Knowl. Discovery, Sichuan, China, May 2012, pp. 371–375.

[30] T.-Y. Wu, W.-T. Lee, F.-H. Liu, H.-L. Chan, and T.-H. Lin, “An efficient
pre-scanning scheme for handoff in Cooperative Vehicular Networks,”
in Proc. IEEE Int. Symp. Pers., Indoor Mobile Radio Commun., Toronto,
ON, Canada, Sep. 2011, pp. 583–587.

[31] D. Kwak, J. Mo, and M. Kang, “Investigation of handoffs for IEEE
802.11 networks in vehicular environment,” in Proc. Int. Conf. Ubiqui-
tous Future Netw., Hong Kong, Jun. 2009, pp. 89–94.

[32] T H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. Cambridge, U.K.: MIT Press, 2001.

[33] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency.
Berlin, Germany: Springer-Verlag, 2003.

[34] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer
Implementations. New York, NY, USA: Wiley, 1990.

[35] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[36] G. Demange, D. Gale, and M. Sotomayor, “Multi-item auctions,”
J. Political Econ., vol. 94, no. 4, pp. 863–872, Aug. 1986.

[37] D. B. West, Introduction to Graph Theory. Upper Saddle River, NJ,
USA: Prentice-Hall, 2001.

[38] L. Lovász and M. D. Plummer, Matching Theory. Providence, RI, USA:
AMS, 2009.

[39] Z. Hu, Z. Zheng, T. Wang, and L. Song, “Caching as a service: Small-
cell caching mechanism design for service providers,” IEEE Trans.
Wireless Commun., vol. 15, no. 10, pp. 6992–7004, Oct. 2016.

[40] H. B. Leonard, “Elicitation of honest preferences for the assignment of
individuals to positions,” J. Political Econ., vol. 91, no. 3, pp. 461–479,
Jun. 1983.

[41] D. Fudenberg and J. Tirole, Game Theory. Cambridge, U.K.: MIT Press,
1991.

[42] J. Lorincz, T. Garma, and G. Petrovic, “Measurements and modelling
of base station power consumption under real traffic loads,” Sensors,
vol. 12, no. 4, pp. 4281–4310, Mar. 2012.

Zhiwen Hu (S’15) received the B.S. degree in elec-
tronic engineering from Peking University, China,
in 2015, where he is currently pursuing the Ph.D.
degree with the School of Electrical Engineering
and Computer Science. His current research interests
include caching in wireless networks, game theory in
5G networks, and wireless M2M communications.

Zijie Zheng (S’14) received the B.S. degree in elec-
tronic engineering from Peking University, China,
in 2014, where he is currently pursuing the Ph.D.
degree with the School of Electrical Engineering
and Computer Science. His current research inter-
ests include game theory in 5G networks, wireless
powered networks, and mobile social networks.

Tao Wang (SM’11) received the B.S. and Ph.D.
degrees from Peking University in 1999 and 2006,
respectively. He was a Post-Doctoral Researcher
with Intel from 2006 to 2008, where he was a
Staff Research Scientist. He is currently an Associate
Professor with the School of Electronics Engineering
and Computer Science, Peking University. He is also
a CCF (Chinese Computer Society) Senior Member.
He joined Peking University as a Faculty Member
in 2010. In the past five years, he received many
research fundings and published about 30 research

papers in top journals/conferences. His current research interests are com-
puter architecture, reconfigurable wireless network architecture, and wireless
e-health. He received the Intel China Employee of the Year Award in 2008,
which is the highest individual award at Intel China.

Lingyang Song (S’03–M’06–SM’12) received the
Ph.D. degree from the University of York, U.K., in
2007. He was a Research Fellow with the University
of Oslo, Norway, until rejoining Philips Research,
U.K., in 2008. In 2009, he joined the School
of Electronics Engineering and Computer Science,
Peking University, China, as a Full Professor. His
main research interests include MIMO, cognitive
and cooperative communications, security, and big
data. He was a recipient of the IEEE Leonard G.
Abraham Prize in 2016 and IEEE Asia Pacific Young

Researcher Award in 2012. He is currently on the Editorial Board of the
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS. He received the
K. M. Stott Prize for excellent research from the University of York.

Xiaoming Li (S’87–M’87–SM’03) received the
Ph.D. degree in computer science from the Stevens
Institute of Technology, NJ, USA. He is currently
a Professor with Peking University, China. His
research interests include search engine and web
mining. He is a fellow of the Computer Federation
of China (CCF) and a member of Eta Kappa Nu.
He serves on the Editorial Board of Concurrency
and Computation (John Wiley). He received the CCF
Wang Xuan Award and the Outstanding Educator
Award in 2013 and 2014, respectively.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

