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Abstract: 

Deep neural network (DNN) has been widely used in Internet 

applications like speech recognition, image classification, 

neural language processing, etc.. DNN training process, 

however, is very computing intensive and is also difficult to 

be handled by distributed clusters without using algorithm 

approximation [6], which incurs recognition accuracy loss. As 

training data size increases for modern applications, e.g. large 

vocabulary conversational speech recognition, the training 

process becomes more and more time consuming. In order to 

accelerate the process, we implement a GPU based DNN 

accelerator in a X86 computing system, which is. The original 

DNN training algorithm is implemented on GPU without 

approximation. Our heterogeneous architecture with a single 

GPU accelerator can achieve 462X speedup compared to the 

homogeneous architecture with only one X86 CPU. In 

addition, we implement a heterogeneous system using 

multiple accelerators, which further gains 1.99X and 3.3X 

performance improvements with two and four GPUs, 

respectively.   

1. Introduction: 

Recently, speech recognition application is becoming one of 

killer APPs for mobile network. Many internet companies 

have released their speech recognition APPs for mobile 

devices, e.g. Google’s “Google now” and Apple’s “Siri”.  

As the leading search engine in China, Baidu also provides 

voice services, such as voice search, voice input on mobile 

devices. In these recognition APPs, deep neural networks 

(DNN) has been widely adopted as a promising 

acoustic-modeling technique [4]. Compared to traditional 

GMM/HMM based algorithm, DNN can achieve a significant 

higher accuracy for speech recognition [2][3].  

 

On the other hand, the DNN training is process is really 

computing intensive. For example, it takes about 3 months to 

train a 24-hour speech data set on a traditional CPU based 

homogeneous system [1]. As speech data size increases to 

thousands of hours, which is common for modern speech 

recognition APPs, training time on a traditional system 

becomes unacceptable [2]. Recently, GPU based DNN 

training accelerator has been proposed to accelerate the 

process [4]. The prior work, however, employs an 

approximation of DNN training algorithm, which incurs data 

accuracy loss. Moreover, further accuracy loss is induced with 

a large input batch size in their design.  

In this work, we propose a practical implementation of GPU 

based accelerator for DNN, which has already been adopted in 

Baidu’s commercial speech recognition APPs. Compared to 

prior work, our contributions are summarized as follows, 

 An original DNN algorithm without approximation is 

implemented in both single and multiple GPU based 

accelerators with proper optimization techniques. 

 A small batch size with 100 is used to improve 

recognition accuracy. 

 Using our heterogeneous platform, the performance of 

DNN training process can be significantly improved 

compared to the homogeneous one.  

 We compared our implementation with prior approach 

and achieve similar or even better performance with 

higher data accuracy. 

The rest of this paper is organized as follows. In the next 

section, we present a brief review of DNN structure and 

quantitatively evaluate computing complexity of using DNN 

for speech recognition. In Section 3, we introduce our 

accelerator implementation using single and multiple GPUs. 

At the same time, comparisons to homogeneous system and 

prior heterogeneous approach are also provided. The paper is 

concluded in Section 4. 
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2. DNN Structure Review 

Figure 1 demonstrates the structure of DNN. The number of 

middle layer of a real speech recognition system is typical 

more than five, and the number of nodes of middle layer is 

typically set to 2048. The input vector describes the feature of 

training voice. Every input vector contains 429 elements and 

one second of speech data is composed of 100 vectors. The 

output layer typically contains 9000 nodes.  
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Figure 1: structure of DNN 
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Figure 2: processing of DNN training 

The calculation step of a real DNN training system for speech 

recognition is illustrated in Figure 2. The calculation is 

sequentially processed step by step. Within each step, data is 

processed through different layers. In a forward computing 

step, the process starts from the first layer and each following 

layer takes output of its previous layer as input. The 

computing ends when it reaches the last output layer of the 

set.   

On the contrary, a backward calculation is a reverse process of 

a forward one. It will calculate the error vector of the last 

output layer and go through all layers to the first one. The 

update weight process is similar as forward computing. It 

updates the weight matrix of each layer one by one till the last 

layer. It is difficult to distribute calculation to several servers 

because each calculating of layers is absolutely sequential and 

the weight matrix of each layer must be synchronized for each 

input vector. Every input vector would be calculated in such 

three states. One round process of calculating all input vectors 

is called an epoch. A real system would often run 20 to 50 

epochs to train a result with enough accuracy. 

In a real system, a batch of 100 to 1024 input vectors is 

computed simultaneously to increase parallelism. However a 

larger batch size means lower accuracy [5]. The initial size of 

a batch would be 100 and increase to 200 or 400 during the 

later epochs. The batch size, however, cannot exceed1000, 

otherwise the accuracy would degrade significantly. The 

typical computing operation of each layer is matrix 

multiplication, matrix addition and log for each elements of 

matrix. 

The calculation intensity of each batch during one epoch is 

estimated in Table 1. The configuration details are as follows. 

There are 7 layers. Batch size is set to 100. The output nodes 

and middle nodes are 8000 and 2048, respectively. The input 

vector is 429. 

Forward 4.0G float mul-add ops 

Backward 2.6G float mul-add ops 

Update weight 4.4G float mul-add ops 

Table 1: Calculation complexity of a 7 layer DNN 

If the multiply-and-add instruction is enabled in a 2.4GHz 

i7-like CPU, it takes about 3.3 seconds to process a second of 

training data without considering the cache miss and CPU 

core pipeline exceptions. A typical 1000 hours data would cost 

several months by traditional CPU. Actually, a real training 

would include two individual steps: NO-Sparse training with 

dense weight matrix and sparse training with sparse weight 

matrix. So the intensity of calculation in a real system would 

be increased to twice of the estimation. Since DNN training is 

composed of various matrix calculations, it is suitable to 

accelerate such computing by GPU. The latest GPU like 

Nvidia C2050 is able to achieve 300Gflops for double 

precision matrix multiplication and 600Gflops for float 

precision matrix multiplication while batch size is 200. It is at 

least 50 times more powerful than a six core X86 CPU. 

 

3. Accelerator Implementation 

a) Single GPU Implementation 

Table 2 lists our experiment environment.   

CPU Intel E5620x2 2.4GHz 

GPU Nvidia C2050 



Host Memory 64GB 

GPU memory 2.6GB 

Software RH Linux 6.0/GCC 4.6/ CUDA 4.1 

Table 2: experiment environment 

The detailed configuration of heterogeneous system in our 

implementation is listed in Table 2. The whole DNN is 

composed of eight layers. Its output layer has 9000 nodes and 

the middle layer has 2048 nodes. The input vector has 429 

elements and the batch size is set to 100. Table 3 compares the 

measured timing consumption of processing one batch using 

homogeneous and our heterogeneous systems. 

 CPU Only 

(ms) 

CPU+ GPU 

(ms) 

Speed  

up 

Forward 10473 19 551 

Backward 14890 20 744 

Update weight 3418 21 162 

total 26985 61 442 

Table 3: Comparison of timing consumption. 

The real training system of Baidu uses more than 8 layers and 

the size of output layer is 9000. And each iterates more than 

16 epochs. We trained 50 hours data in our real training 

system with the batch size of 100 and got a 462 times faster 

than a signal CPU core. 

b) Multiple GPU implementation 

With a single GPU, it would cost nearly 4 months to train 

2000 hours data. The major challenge in real product is to find 

a scalable solution to reduce training time as training data size 

increases. We have mentioned that DNN algorithm is difficult 

to be distributed into multiple servers for parallel computing 

because the weight matrix of each layer must be synchronized 

after updating. The network overhead would degrade the 

overall performance significantly. Thus, we further implement 

the training accelerator in one server using multiple GPUs. 

A naive method for multiple GPUs is shown in Figure 4. 
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Figure 4: A naive method for multiple GPUs 

The naive method is composed of two parts. Each GPU 

perform a process individually as a single GPU 

implementation. At last, two GPUs fetch the weight matrix of 

every layer from each other and merge them into an integrated 

weight matrix. This naive method would lead to heavy 

communication overhead. A DNN with 7 layers would need 

50ms to synchronize the weight matrix between 2 GPUs for a 

batch with size 100. The communication time is even more 

than the entire computing time by a signal GPU 

implementation. Thus, we propose another improved method, 

as described in Figure 5. 
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Figure 5: an improved strategy 

This method synchronizes output of forward step and 

backward step for each layer because the output of forward 

step and backward step is 100 times smaller than weight 

matrix. Consequently, the total communication time is only 

1.7ms. Since the outputs of preceding step have been 

synchronized. The merge W step is not required in this 

method. Another optimization of this method is to pipeline the 

computing and communication so that the time of 

communication is hidden by computing. The pipeline design 

is illustrated by Figure 6. 
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Figure 6: Structure of pipeline design.  

We achieved 1.99x speedup by this method compared to a 

single GPU implementation with the batch size of 100. 

We also propose another more powerful architecture using 

four GPUs. We found that if the entire computing task is 

distributed to multiple GPUs uniformly, the communication 

overhead would be significantly increased. The overall 

performance would be degraded seriously. Unlike the 

two-GPU design, we propose an asymmetric architecture for 

four GPUs. This architecture is demonstrated in Figure 7. 
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Figure 7: 4 GPUs architecture 

The update Weight step in GPU0 and GPU1 is simultaneously 

processed with the backward step in GPU2 and GPU3. For 

example, the completion of backward of layer 6 would trigger 

update W of layer 6, and the update W of layer 6 is calculated 

in parallel with backward of layer 5. We achieve another 3.3X 

speedup using this four-GPU architecture compared to a 

single-GPU accelerator with the batch size of 100. 

Compared to prior approach, our two-GPU solution is able to 

achieve better performance Moreover, algorithm 

approximation and large batch size is not required. And our 4 

GPUs architecture is easy to scale up to 8 GPUs. 

Conclusion 

In this paper, we implement DNN training accelerators using 

GPU on Baidu’s real system with real data set. We have 

shown that 462 times speedup is achieved by single GPU 

compared to latest homogeneous X86 CPU architecture. And 

we also propose techniques to implement DNN algorithms on 

multiple GPUs. Compared to prior approach, these methods 

can get nearly linear speedup without using approximant 

algorithm and large batch size, which result in loss of 

recognition accuracy. 
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