
A Practical Implementation of GPU based Accelerator for Deep Neural Networks

Jian Ouyang1, Lei Jia1, Zhenyu Hou1, Guangyu Sun2, Guangjun Xie1 ,Yong Wang1
1Baidu, Inc.

2Peking University
1{ouyangjian, jialei, houzhenyu, xieguangjun,wangyong03}@baidu.com

2
{gsun}@pku.edu.cn

Abstract:

Deep neural network (DNN) has been widely used in Internet

applications like speech recognition, image classification,

neural language processing, etc.. DNN training process,

however, is very computing intensive and is also difficult to

be handled by distributed clusters without using algorithm

approximation [6], which incurs recognition accuracy loss. As

training data size increases for modern applications, e.g. large

vocabulary conversational speech recognition, the training

process becomes more and more time consuming. In order to

accelerate the process, we implement a GPU based DNN

accelerator in a X86 computing system, which is. The original

DNN training algorithm is implemented on GPU without

approximation. Our heterogeneous architecture with a single

GPU accelerator can achieve 462X speedup compared to the

homogeneous architecture with only one X86 CPU. In

addition, we implement a heterogeneous system using

multiple accelerators, which further gains 1.99X and 3.3X

performance improvements with two and four GPUs,

respectively.

1. Introduction:

Recently, speech recognition application is becoming one of

killer APPs for mobile network. Many internet companies

have released their speech recognition APPs for mobile

devices, e.g. Google’s “Google now” and Apple’s “Siri”.

As the leading search engine in China, Baidu also provides

voice services, such as voice search, voice input on mobile

devices. In these recognition APPs, deep neural networks

(DNN) has been widely adopted as a promising

acoustic-modeling technique [4]. Compared to traditional

GMM/HMM based algorithm, DNN can achieve a significant

higher accuracy for speech recognition [2][3].

On the other hand, the DNN training is process is really

computing intensive. For example, it takes about 3 months to

train a 24-hour speech data set on a traditional CPU based

homogeneous system [1]. As speech data size increases to

thousands of hours, which is common for modern speech

recognition APPs, training time on a traditional system

becomes unacceptable [2]. Recently, GPU based DNN

training accelerator has been proposed to accelerate the

process [4]. The prior work, however, employs an

approximation of DNN training algorithm, which incurs data

accuracy loss. Moreover, further accuracy loss is induced with

a large input batch size in their design.

In this work, we propose a practical implementation of GPU

based accelerator for DNN, which has already been adopted in

Baidu’s commercial speech recognition APPs. Compared to

prior work, our contributions are summarized as follows,

 An original DNN algorithm without approximation is

implemented in both single and multiple GPU based

accelerators with proper optimization techniques.

 A small batch size with 100 is used to improve

recognition accuracy.

 Using our heterogeneous platform, the performance of

DNN training process can be significantly improved

compared to the homogeneous one.

 We compared our implementation with prior approach

and achieve similar or even better performance with

higher data accuracy.

The rest of this paper is organized as follows. In the next

section, we present a brief review of DNN structure and

quantitatively evaluate computing complexity of using DNN

for speech recognition. In Section 3, we introduce our

accelerator implementation using single and multiple GPUs.

At the same time, comparisons to homogeneous system and

prior heterogeneous approach are also provided. The paper is

concluded in Section 4.

mailto:jialei

2. DNN Structure Review

Figure 1 demonstrates the structure of DNN. The number of

middle layer of a real speech recognition system is typical

more than five, and the number of nodes of middle layer is

typically set to 2048. The input vector describes the feature of

training voice. Every input vector contains 429 elements and

one second of speech data is composed of 100 vectors. The

output layer typically contains 9000 nodes.

x1 x2 xn…..

Input
layer

1st hidden
layer

2nd hidden
layer

3th hidden
layer

Nth hidden
layer

output hidden
layer

Figure 1: structure of DNN

Forward
computing

backward
computing

Update
weight

Input
vector

Figure 2: processing of DNN training

The calculation step of a real DNN training system for speech

recognition is illustrated in Figure 2. The calculation is

sequentially processed step by step. Within each step, data is

processed through different layers. In a forward computing

step, the process starts from the first layer and each following

layer takes output of its previous layer as input. The

computing ends when it reaches the last output layer of the

set.

On the contrary, a backward calculation is a reverse process of

a forward one. It will calculate the error vector of the last

output layer and go through all layers to the first one. The

update weight process is similar as forward computing. It

updates the weight matrix of each layer one by one till the last

layer. It is difficult to distribute calculation to several servers

because each calculating of layers is absolutely sequential and

the weight matrix of each layer must be synchronized for each

input vector. Every input vector would be calculated in such

three states. One round process of calculating all input vectors

is called an epoch. A real system would often run 20 to 50

epochs to train a result with enough accuracy.

In a real system, a batch of 100 to 1024 input vectors is

computed simultaneously to increase parallelism. However a

larger batch size means lower accuracy [5]. The initial size of

a batch would be 100 and increase to 200 or 400 during the

later epochs. The batch size, however, cannot exceed1000,

otherwise the accuracy would degrade significantly. The

typical computing operation of each layer is matrix

multiplication, matrix addition and log for each elements of

matrix.

The calculation intensity of each batch during one epoch is

estimated in Table 1. The configuration details are as follows.

There are 7 layers. Batch size is set to 100. The output nodes

and middle nodes are 8000 and 2048, respectively. The input

vector is 429.

Forward 4.0G float mul-add ops

Backward 2.6G float mul-add ops

Update weight 4.4G float mul-add ops

Table 1: Calculation complexity of a 7 layer DNN

If the multiply-and-add instruction is enabled in a 2.4GHz

i7-like CPU, it takes about 3.3 seconds to process a second of

training data without considering the cache miss and CPU

core pipeline exceptions. A typical 1000 hours data would cost

several months by traditional CPU. Actually, a real training

would include two individual steps: NO-Sparse training with

dense weight matrix and sparse training with sparse weight

matrix. So the intensity of calculation in a real system would

be increased to twice of the estimation. Since DNN training is

composed of various matrix calculations, it is suitable to

accelerate such computing by GPU. The latest GPU like

Nvidia C2050 is able to achieve 300Gflops for double

precision matrix multiplication and 600Gflops for float

precision matrix multiplication while batch size is 200. It is at

least 50 times more powerful than a six core X86 CPU.

3. Accelerator Implementation

a) Single GPU Implementation

Table 2 lists our experiment environment.

CPU Intel E5620x2 2.4GHz

GPU Nvidia C2050

Host Memory 64GB

GPU memory 2.6GB

Software RH Linux 6.0/GCC 4.6/ CUDA 4.1

Table 2: experiment environment

The detailed configuration of heterogeneous system in our

implementation is listed in Table 2. The whole DNN is

composed of eight layers. Its output layer has 9000 nodes and

the middle layer has 2048 nodes. The input vector has 429

elements and the batch size is set to 100. Table 3 compares the

measured timing consumption of processing one batch using

homogeneous and our heterogeneous systems.

 CPU Only

(ms)

CPU+ GPU

(ms)

Speed

up

Forward 10473 19 551

Backward 14890 20 744

Update weight 3418 21 162

total 26985 61 442

Table 3: Comparison of timing consumption.

The real training system of Baidu uses more than 8 layers and

the size of output layer is 9000. And each iterates more than

16 epochs. We trained 50 hours data in our real training

system with the batch size of 100 and got a 462 times faster

than a signal CPU core.

b) Multiple GPU implementation

With a single GPU, it would cost nearly 4 months to train

2000 hours data. The major challenge in real product is to find

a scalable solution to reduce training time as training data size

increases. We have mentioned that DNN algorithm is difficult

to be distributed into multiple servers for parallel computing

because the weight matrix of each layer must be synchronized

after updating. The network overhead would degrade the

overall performance significantly. Thus, we further implement

the training accelerator in one server using multiple GPUs.

A naive method for multiple GPUs is shown in Figure 4.

forward

Backward

Batch/2

Update W

Merge W

forward

Backward

Batch/2

Update W

Merge W

GPU0 GPU1

Figure 4: A naive method for multiple GPUs

The naive method is composed of two parts. Each GPU

perform a process individually as a single GPU

implementation. At last, two GPUs fetch the weight matrix of

every layer from each other and merge them into an integrated

weight matrix. This naive method would lead to heavy

communication overhead. A DNN with 7 layers would need

50ms to synchronize the weight matrix between 2 GPUs for a

batch with size 100. The communication time is even more

than the entire computing time by a signal GPU

implementation. Thus, we propose another improved method,

as described in Figure 5.

forward

Backward

Batch/2

Update W

forward

Backward

Batch/2

Update W

GPU0 GPU1

Figure 5: an improved strategy

This method synchronizes output of forward step and

backward step for each layer because the output of forward

step and backward step is 100 times smaller than weight

matrix. Consequently, the total communication time is only

1.7ms. Since the outputs of preceding step have been

synchronized. The merge W step is not required in this

method. Another optimization of this method is to pipeline the

computing and communication so that the time of

communication is hidden by computing. The pipeline design

is illustrated by Figure 6.

Compute L0 Compute L1 Compute L6

tran L0 tran L6

Figure 6: Structure of pipeline design.

We achieved 1.99x speedup by this method compared to a

single GPU implementation with the batch size of 100.

We also propose another more powerful architecture using

four GPUs. We found that if the entire computing task is

distributed to multiple GPUs uniformly, the communication

overhead would be significantly increased. The overall

performance would be degraded seriously. Unlike the

two-GPU design, we propose an asymmetric architecture for

four GPUs. This architecture is demonstrated in Figure 7.

forward

Batch/4

Update W

forward

Batch/4

Update W

GPU0 GPU1

forward

Backward

Batch/4

forward

Backward

Batch/4

GPU2 GPU3

Figure 7: 4 GPUs architecture

The update Weight step in GPU0 and GPU1 is simultaneously

processed with the backward step in GPU2 and GPU3. For

example, the completion of backward of layer 6 would trigger

update W of layer 6, and the update W of layer 6 is calculated

in parallel with backward of layer 5. We achieve another 3.3X

speedup using this four-GPU architecture compared to a

single-GPU accelerator with the batch size of 100.

Compared to prior approach, our two-GPU solution is able to

achieve better performance Moreover, algorithm

approximation and large batch size is not required. And our 4

GPUs architecture is easy to scale up to 8 GPUs.

Conclusion

In this paper, we implement DNN training accelerators using

GPU on Baidu’s real system with real data set. We have

shown that 462 times speedup is achieved by single GPU

compared to latest homogeneous X86 CPU architecture. And

we also propose techniques to implement DNN algorithms on

multiple GPUs. Compared to prior approach, these methods

can get nearly linear speedup without using approximant

algorithm and large batch size, which result in loss of

recognition accuracy.

[1] George E.Dahl, Dong Yu, Li Deng, Alex Acero,

“Context-Dependent Pre-trained Deep Neural Networks for

Large Vocabulary Speech Recognition,” IEEE Trans. Speech

and Audio Pro, Special Issue on Deep Learning for Speech

and Lang. Processing, 2012

[2] Frank Seide, Gang Li, Xie Chen, Dong Yu, “Feature

Engineering in Context-Dependent Deep Neural Networks for

Conversational Speech Transcriptioon,” Automatic Speech

Recognition and Understanding Workshop, 2011

[3] Navdeep Jaitly, Patrick Nguyen, Andrew Senior, Vincent

Vanhoucke, “Application of Pretrained Deep Neural Networks

to Large Vocabulary Conversational Speech Recognition”,

http://learning.cs.toronto.edu, 2012

[4] Xie Chen, Adam Eversole, Gang Li, Dong Yu, Frank Seide,

“Pipelined Back-Propagation for Context-Dependent Deep

Neural Networks”, 13
th

 Annual Conference of the

International Speech Communication Association, 2012

[5] Frank Seide, Gang Li, Dong Yu, “Conversational Speech

Transcription Using Context-Dependent Deep Neural

Networks” International Speech Communication Association,

2011

[6] Alain Petrowski et al., “Performance Analysis of a

Pipelined Back propagation parallel Algorithm ”, IEEE Trans,

Neural Networks, 1993

http://learning.cs.toronto.edu/

