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Abstract— High-level synthesis (HLS) tools provide automatic
generation of hardware at the register transfer level (RTL) from
algorithm descriptions written in high-level languages, enabling
faster creation of custom accelerators for FPGA architectures.
Existing HLS tools support a wide variety of input languages,
and assist users in design space exploration through automation
and feedback on designs’ performance bottlenecks. This design
space exploration applies techniques such as pipelining, partition-
ing and resource sharing in order to improve performance, and re-
source utilization. However, although automated exploration can
find some inherent parallelism, data-parallel input source code is
still superior for exposing a greater variety of parallelism.

In prior work, we demonstrated automated design space explo-
ration of GPU multi-threaded (CUDA) language source code for
efficient RTL generation. In this paper, we examine the challenges
in extending this automated design space exploration to multiple
dependent CUDA kernels, demonstrate a step-by-step procedure
for efficiently performing multi-kernel synthesis, and demonstrate
the potential of this approach through a case study of a stereo
matching algorithm. This study demonstrates that HLS of mul-
tiple dependent CUDA kernels can maintain performance parity
with the GPU implementation, while consuming over 16X less en-
ergy than the GPU. Based on our manual procedure, we iden-
tify the key challenges in fully automating the synthesis of multi-
kernel CUDA programs.

I. INTRODUCTION

FPGAs have long been used as an efficient implementation
platform for application compute acceleration. FPGAs’ re-
configurability provides implementation flexibility; designers
for FPGA platforms optimize computation bit-width, compu-
tation block critical paths, and communication structures to
create specialized, efficient hardware implementations. FPGA-
based accelerators have been created for a variety of algorithms
including compression, networking, cryptography, and video
processing among many others. However, the availability of
such hardware techniques comes at a cost: register transfer
level (RTL) design time is much slower than algorithm imple-
mentations for CPU or GPU-based platforms. To resolve this
problem, there have been decades of research in high-level syn-
thesis (HLS): the process of automatically mapping high-level
language code to RTL. Typically, HLS tools require restruc-
turing of the original sequential software algorithm in C/C++

or reimplementation of the algorithm in a HLS-specific lan-
guage in order to expose parallelism and facilitate the HLS pro-
cess. Many such recent research efforts have been productive
— with a large variety of both academic [1–8] and industrial
[9–18] tools gaining increased acceptance. Collectively, these
tools accept a wide range of different programming language
inputs, such as functional programming languages [6, 7], Do-
main Specific Languages (DSLs) [17], extensions to C/C++
[1, 2, 11, 13, 18], GPGPU languages [3, 4, 8, 15], and graphical
input languages [10].

In the same time-period as the rise of HLS tools, we have
also experienced the emergence of general-purpose graph-
ics processor (GPGPU) computation as a common compute-
acceleration platform. NVIDIA released the data-parallel com-
pute unified device architecture (CUDA) programming model
[19] based on minimal extensions to C/C++ constructs to har-
ness the parallel computational capabilities of GPUs. The wide
adoption of the CUDA programming model has led to a large
and growing set of compute-accelerators programmed and ver-
ified in a C-like language that is now widely used. CUDA’s data
parallel model exposes parallelism for easy application analy-
sis. Thus, several academic projects for compute acceleration
are based on CUDA: MCUDA maps CUDA code to multi-core
processors and heterogeneous architectures [20] and FCUDA
[3, 4] performs source-to-source translation of CUDA to Au-
toESL C code for HLS [18,21–23], allowing FPGA implemen-
tations that meet or exceed the GPU performance with signif-
icantly reduced power consumption. The data-parallel CUDA
code allows both easier analysis of application parallelism and
exploration of parallelism granularity options.

As a key feature of HLS, all tools offer some features to fa-
cilitate design space exploration: some choose programming
language features or compiler directives to make design ex-
ploration simple for users, and others choose to automate (or
partially automate) the selection of design parameters. In
FCUDA-2 [4], design space exploration for a single CUDA
kernel is automated, with generation of many design choices
and selection of a design from the pareto-optimal set of de-
signs based on an area-performance cost function. Prior tools
also support automated or semi-automated design space explo-
ration, and these tools can expand the optimization from a sin-
gle C/C++ function to multiple functions simply by enclosing
multiple functions in a wrapper function that describes com-
munication between them. Similarly, FCUDA could also sup-
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port multi-kernel optimization through this path. It is possible
to create a single enclosing wrapper kernel that uses the max-
imum thread dimension of all kernels and calls sub-kernels in
succession. However, we argue that this implementation choice
is neither attractive nor efficient for multiple reasons:

1. A single CUDA kernel must fully-buffer all sub-kernel
communication on-chip — multiple CUDA kernels re-
duce buffering to the granularity of communication, and
allows data streaming between sub-kernels for improved
efficiency

2. A single CUDA kernel must use the same thread organiza-
tion for sub-kernels whereas multiple CUDA kernels may
each use different thread organization based on algorithm
need

3. A single CUDA kernel forces all sub-kernels to be CUDA
device-only functions — multiple CUDA kernels can be a
mixture of device and host CUDA functions.

Therefore, in this work, we map multiple communicating
kernels onto an FPGA architecture, allowing fine-grained com-
munication and data streaming, different thread organizations,
and full use of natural CUDA language features such as both
host and device functions are fully synthesized. We first de-
velop a process for using FCUDA-2 individually on multi-
ple kernels and then manually connecting and optimizing the
FCUDA-generated kernels through buffer insertion and resiz-
ing, pipelining and joint-design space exploration of the mul-
tiple kernels. Then, we use stereo matching, an active area of
computer vision research, as a case study for evaluation of this
process. Finally, we discuss the challenges in automating this
manual process to automatically synthesize and perform design
space exploration for multiple communicating CUDA kernels.
This work contributes to the study of HLS with:

1. A demonstration of a manual step-by-step procedure to
synthesize communicating CUDA kernels to RTL

2. An identification of key challenges to automate synthesis
of multiple CUDA kernels to RTL

3. A case study of multiple CUDA kernel synthesis of a
stereo matching algorithm

The rest of this paper is organized as follows: Section II
presents an overview of FCUDA and our manual process for
multiple kernel synthesis. Section III demonstrates the case
study of applying our technique to a multi-kernel stereo match-
ing source code, and section IV discusses the challenges in au-
tomating our manual multi-kernel synthesis process.

II. MULTIPLE DEPENDENT CUDA KERNEL SYNTHESIS

Our platform is based on FCUDA [3, 4], a source-to-
source compilation framework that translates single-program
multiple-data (SPMD) CUDA kernels to restructured C code
for AutoPilot [18]1. Then, AutoPilot is used to synthesize the
C-code to synthesizable RTL, and the RTL is synthesized to

1AutoESL was acquired by Xilinx; AutoPilot is now part of Vivado

an FPGA using Xilinx Vivado [22]. AutoPilot also generates a
cycle-accurate SystemC simulation model that we use for func-
tional verification.

FCUDA’s source-to-source transformations convert data-
parallel CUDA thread blocks to thread loops that can be
mapped to FPGA hardware as custom compute engines (cores),
and parallelism is explored by instantiating multiple cores. The
FCUDA code transformations are guided by preprocessor di-
rectives to indicate how to decompose the FCUDA kernel into
multiple levels of granularity that can be implemented effi-
ciently in both area and latency [4]. The FCUDA framework
can automatically generate and insert AutoPilot pragmas cor-
responding to automated design space exploration [4]. How-
ever, in the prior work, these automatic insertions assume that
the kernel has all of the FPGA resources available to itself, and
thus the selected solutions would not be based on joint opti-
mization of multiple CUDA kernels. Thus, in this work, we
allow FCUDA to insert the pragmas, but force the initial solu-
tion to be minimal in area; we will develop the analytical model
for joint-design space exploration in the next sub-section.

A. Manual Process for Multiple Dependent Kernels

With multiple dependent CUDA kernels, FCUDA could di-
rectly inline kernels, but this doesn’t allow sub-kernels to have
different thread organizations, a feature that is natural and nec-
essary for efficient implementation of communicating CUDA
kernels. Therefore, instead of a single synthesis process for
all of the kernels, we must individually synthesize the kernels,
generate inter-kernel communication buffers and jointly opti-
mize the kernels.

A.1 Individual Kernel Synthesis

The first step of the multiple dependent kernel synthesis is to
individually synthesize each kernel using FCUDA and collect
the resource consumption and latency metrics. Rather than the
default FCUDA which attempts to maximize FPGA area usage
in order to improve latency, we optimize to improve latency
while minimizing single-core area in order to leave opportu-
nity for joint-optimization of kernels later. For the minimal so-
lution, which corresponds to one processing core, we measure
the resource use and latency.

A.2 Communication Buffer Computation

With individually synthesized kernels, we will need to gener-
ate a control flow graph (CFG) for the kernels. This CFG is
a simple graph of the kernels’ dependence relations where we
perform ASAP scheduling to determine the execution critical
path and label the CUDA kernels that can execute in parallel.
We need to insert buffers between each pair of communicating
kernels. Ideally, we could buffer all data for the kernel and no
partitioning would be necessary. However, this is not realistic
in the general case; therefore we determine the size of the com-
munication buffers after analyzing the data access patterns of
the kernels. The analysis determines the minimal data process-
ing quanta that retains the processing semantics to be passed
between each pair of communicating kernels. In the analyti-
cal design space exploration, the algorithm will automatically
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Fig. 1. Dual-Buffering Scheme to Enable Pipelining

explore larger buffer sizes when feasible. Therefore, the case
of fully on-chip buffered data will also be discovered if that
is feasible. We also determine the growth rate of the commu-
nication buffers as the data processing quanta is scaled. Note
that for some communication patterns, there may be overlap-
ping between communication windows. Thus, we model the
communication buffer size using Eqn. (1). We map the com-
munication buffers to BRAMs and this information is used in
the analytical model.

BUFsize = comm size ∗ nQuantai + overlap (1)

We can implement the communication buffers in multiple
ways: first, each set of kernels may have a single buffer be-
tween them. However, to ensure that data is not overwritten
incorrectly, only one of the communicating kernels can use the
buffer at a time (either read or write). This reduces pipelin-
ing throughput by a factor of 2, but can be effective if mem-
ory is a critical resource. The second implementation method
uses double buffering between communicating kernels so that
there is always a buffer available for reading and writing, which
allows full pipelining throughput at the cost of an additional
set of buffers. Our analytical model (next sub-section) models
both buffering implementations and selects between them de-
pending on resource limitations and achievable performance.
A comparison of the buffering schemes is shown in Figure 1.

A.3 Analytical Design Space Exploration Model

In order to analytically model the performance of a sequence
of dependent CUDA kernels, we use several input data values:
the resource consumption and latency of each individual syn-
thesized kernel, control flow graph of the dependence relations
of the CUDA kernels, the resource consumption of communi-
cation buffering schemes, and total available resources of the
target FPGA.

With the scheduled CFG, we can now build a simple an-
alytical model for the performance of a jointly-optimized set
of dependent CUDA kernels. Let us define that we have N

kernels k0 to kN−1. Each kernel ki has a latency lati, a pre-
dence level in the CFG levi, a minimal communication quanta
nQuantai (in units of CUDA thread blocks), and a 4-tuple of
its resource use (BRAMi, FFi, LUTi, DSPi). The number of
levels in the CFG determines the number of pipeline stages in
the design (and the analytical model). The worst-case pipeline
stage latency is simply the maximum latency of any kernel in
the graph as in Eqn. (2).

latcrit = MAX(lati) (2)

For each kernel, based on the number of cores available for
computation, we can compute the number of execution phases
within each epoch as in Eqn. (3). Then, the latency of the ker-
nel lati is the simple product of the latency of a single thread
block and the number of phases. Note that our analytical explo-
ration forces the number of allocated cores to produce integral
values of phasei; alternatively, you could formulate Eqn. (3)
as the ceiling of the given fraction.

phasei =
nQuantai
coresi

(3)

lati = latTB ∗ phasei (4)

Based on the communication quanta size, we can compute the
number of epochs as

Nepoch = totTB/nQuanta (5)

The value of nQuanta is computed such that Nepoch is an in-
tegral value. Additionally, because nQuanta is computed as a
quanta that selects a coherent data processing unit for all ker-
nels, Nepoch can be computed using the total thread blocks and
quanta of any kernel in the design (for simplicity, we use the
first kernel). Given these values, we now have the latency of
each kernel as a function of the number of FPGA resources al-
located to it, the number of stages in the design’s pipeline, and
the number of quanta that must be sent through the pipeline.
Therefore, the total design latency for the double buffered com-
munication style is simply computed by Eqn. (6). For the single
buffered communication, the pipeline depth remains the same,
but lower throughput effectively doubles the number of epochs.

Latency = (Nepoch + pipe depth− 1) ∗ latcrit (6)

As we evaluate different communication quanta and cores
per kernel, the critical path and Nepoch will change, leading to
different total latencies in the design space. Note that in the
general case, we can also consider splitting each kernel into
multiple pipeline stages, which would correspondingly affect
pipe depth and latcrit. In the FCUDA framework, we could
extend to splitting kernels by allowing each of the COMPUTE
blocks to be a pipeline stage, or combine kernels with identical
thread structure to merge pipeline stages. However, we leave
this extension to future work.

With the above computation, we model the performance of
any particular partitioning of a total computation into epochs
and allocation of computation resources to the kernels. Each
kernel’s resource use 4-tuple is used to compute the maximum
(resource limited) implemented cores using Eqn. (7). In prac-
tice, this upper limit is much larger than the number of thread
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blocks in the quanta so we compute the final maximum imple-
mented cores using Eqn. (8).

Res Limi = MIN(
BRAM

BRAMi
,
FF

FFi
,
LUT

LUTi
,
DSP

DSPi
) (7)

Limi = MIN(Res Limi, nQuantai) (8)

These limitations of kernel core implementation set some
bounds on the analytical design space search. We compute
the total resource simply as the sum of kernels’ resource use
and communication buffers’ resource use. Together, we can
now use the resource use and latency to perform an analytical
search of the design space as follows:

Algorithm 1: Analytical Design Exploration Model

let D be the minimal nQuanta for the design (buffers) ;1
let C be the set of per-kernel core allocations ;2
let A be the area of C plus communication buffers D ;3
best lat = INF ;4
best soln = (C,D) ;5
while A < FPGA resources do6

while A < FPGA resources do7
find kernel ki that has lati == latcrit ;8
if Ci < nQuantai then9

phase = nQuantai
Ci

;10

Ci =
nQuantai
phase−− ;11

compute A and lattotal values ;12
if A < FPGA resources&&lattotal < best lat13
then

best lat = lattotal ;14
best soln = (C,D) ;15

end16

end17
else18

no core increase reduces critical path ;19
break;20

end21

end22
increment D to next value with coherent, integral Di values ;23
set C to the minimal core allocation at nQuanta D ;24
compute A value ;25

end26

After using this exploration algorithm, the final solution
(best soln) will contain a set of suggested core allocations and
nQuanta values (that determine the total number of epochs).

A.4 Implementation and Verification

Using the analytically computed core allocation values, we
implement the suggested core allocations and communication
buffer parameters and synthesize the resulting AutoPilot-C
code to RTL. We update the AutoPilot-C pragmas to corre-
spond to the suggested parallelism, insert the communication
buffers and add proper pragmas to ensure that the communica-
tion buffers support pipelined computation at the kernel granu-
larity. The RTL is then synthesized to the target FPGA and we
verify that the design fits and operates correctly.

III. CASE-STUDY: STEREO MATCHING

We have now presented our manual method and analytical
model for synthesizing multiple dependent CUDA kernels us-
ing the FCUDA and AutoPilot tools. Now, we present a case
study of applying this method to a real application with mul-
tiple dependent CUDA kernels. Stereo matching [24, 25]
algorithms estimate depth by comparing two or more time-
synchronized but spatially separated images and measuring the
disparity between corresponding points in the images. The al-
gorithm selected for this case study uses Bilateral Filtering with
an Adaptive Support (BFAS) function for a local optimization
stereo matching method. In prior work, we demonstrated that
there is a performance gap between synthesizing stereo match-
ing algorithms written in C using AutoPilot and manual FPGA
implementations of stereo matching [26].

In order to meet real-time requirements using a Point-Grey
stereo-camera system [27], we implemented the BFAS algo-
rithm in CUDA on an NVIDIA GTX480. The CUDA imple-
mentation used as input to FCUDA in this paper consists of 8
sub-kernels (some sub-kernels are called twice, once each for
the left- and right-images), and can meet real-time performance
for 720x1280 (720p) images arriving at 15 frames per second
(the maximum frame rate of our stereo-camera). The eight
sub-kernels are census transform, RGB to Lab colorspace con-
version, left grid building, right grid-building, matching, cross
correction, pre-filtering, and median filtering; for more infor-
mation on algorithmic details see [24]. We will now apply our
manual process for synthesizing these dependent kernels.

A. Step 1: Individual Kernel Synthesis

The eight individual kernels are extracted from the CUDA
implementation and each kernel is independently synthesized
using the FCUDA tool. Note that the left grid and right grid
processing kernels are logically similar, but their computations
are sufficiently different that they require different hardware
implementations; thus, the grid building kernel is the only ker-
nel that is individually specialized for left- or right-image pro-
cessing, although (as we see explicitly in the next subsection)
many of the kernels are called twice. The original CUDA im-
plementation includes floating point computation and dynamic
memory allocation for sizing the image buffer; we convert to
fixed point computations and a static image size in order to
support HLS.

For each of these kernels we perform the FCUDA source-
to-source translation, AutoPilot C-to-RTL synthesis, and Vi-
vado RTL synthesis to a Virtex-7 XC7VX1140T to gather area
and performance estimates. We note that the AutoPilot syn-
thesis estimates for latency are only accurate in the absence
of dataflow pipelining, and with statically determined loop trip
counts. However, the FCUDA translation of CUDA to C often
interferes with AutoPilot’s ability to estimate latency in clock
cycles. We verified that the AutoPilot SystemC model simula-
tion is accurate with respect to the latency in clock cycles of the
synthesized RTL, therefore we use that SystemC simulation to
determine each kernel’s latency. Table I shows the synthesis
results and latency in clock cycles for each of the sub-kernels.
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TABLE I
KERNEL SYNTHESIS DATA

Kernel Name DSP FF LUT BRAM Clock Cycles)
Census 3 450 1054 0 2917

RGB to LAB 41 935 1150 18 5221
Left Grid 3 1498 2333 2 63011

Right Grid 9 1588 2518 2 61011
Matching 37 2420 4240 11 662371

Cross Corr. 3 397 537 0 1765
Prefiltering 4 584 852 2 40914

Median Filter 3 364 432 0 1759

Census	  Transform	  
Kernel	  

RGB	  to	  Lab	  
Conversion	  Kernel	  

Le7	  	  
GridBuilding	  Kernel	  	  

Matching	  Kernel	  

Cross	  Correc=on	  
Kernel	  

Pre	  Filtering	  Kernel	  

Median	  Filtering	  
Kernel	  

Census	  Transform	  
Kernel	  

RGB	  to	  Lab	  
Conversion	  Kernel	  

Right	  	  
GridBuilding	  Kernel	  

Matching	  Kernel	  

Pre	  Filtering	  Kernel	  

Median	  Filtering	  
Kernel	  	  

Left Image Right Image 

Left Depth Map Right Depth Map 

Fig. 2. CUDA Kernels Representing the Transforms of Stereo Matching
Algorithm

B. Step 2: Communication Buffers

As the first step of the determining necessary communica-
tion buffers, we generate a CFG of the kernels in the stereo
matching application. Figure 2 depicts the set of transforms
and the dependence relations between them. This CFG will
guide our pipeline implementation and performance model in
the next section when finding candidate solutions with the an-
alytical model. The buffer size and computation quanta are
selected such that one epoch of data provided to the first ker-
nels in the CFG corresponds to an integer number of thread
blocks for every kernel in the control flow graph. For the stereo
matching application, we determine that due to the restrictions
on computation correctness, thread organization, and buffering
quanta, the minimum sub-image size is a 6x96 pixel sub-image.

Table II shows the buffer size in BRAMS for the minimal
buffer size for each of the communication paths. Note that,
according to the CFG some of the paths are identical and du-
plicated (e.g. 2 buffers between the Cross Correction kernel
and the 2 copies of the pre-filtering kernels). In addition, as
discussed above, there are both single- and double-buffered

schemes that allow different amounts of parallelism. Dou-
ble buffering schemes consume twice as many BRAMs in ex-
change for an increase in pipeline throughput.

TABLE II
COMMUNICATION BUFFER DATA

Communication Buffer BRAM
Census ⇒ Left Grid 3

Census ⇒ Right Grid 3
Left Grid ⇒ Matching 8

Right Grid ⇒ Matching 8
RGB to LAB ⇒ Matching 3

Matching ⇒ Cross Correction 1
Cross Correction ⇒ Prefiltering 1
Prefiltering ⇒ Median filtering 1

C. Step 3: Analytical Design Exploration

Given the area and latency data for each kernel, the buffers
between them and the CFG of dependencies, we can now use
the analytical model to determine the solution that fills the
FPGA while minimizing the total latency of the design. Intu-
itively, the analytical model is aware that the buffering between
kernels consumes resources, but does not necessarily reduce
the compute latency. Therefore, the model balances between
solutions that fill the FPGA with cores from kernels (to min-
imize critical path) and adding more buffering to allow more
parallel processing opportunity.

Figure 3 shows, for the stereo matching application, the area
and latency of every candidate solution evaluated by the analyt-
ical model for the dual-buffer (DB) implementation. The best
feasible solution in the design space is annotated. Every point
in Figure 3 is feasible point with individual resource use of
each resource type less than or equal to 100% of available re-
sources. In this graph, area is computed as the sum of each
resource type’s percentage of resources used; therefore, area
values are normalized to be between 0.0 and 4.0, with all in-
feasible combinations eliminated. This analytical design space
exploration demonstrates several expected trends: reducing la-
tency as resource use increases at any particular buffer size, and
increasing latency and resource use with identical computation
cores as buffer size grows. Thus, although a larger buffer size
increase the number of core implementation options, it may
also increase the latency such that increased cores cannot over-
come the additional overheads of larger communication and
data processing quanta. Figure 4 shows the design space for
both the single buffer (SB) and dual-buffer (DB) implementa-
tions. Figure 5 shows an example of the code modifications
necessary to introduce the ping-pong (dual buffering) scheme.

Based on the analytical modeling, we select a solution with a
sub-image buffer of 12x96, double buffering, 36 parallel cores
for the matching transform, 4 cores for grid building and 3
cores for pre-filtering transform in order to reduce the critical
path. Based on this selected design, we set the AutoPilot HLS
parameters, generate RTL and synthesize the design to gather
final area and clock period. The resources usage for the design
are DSP: 2833(85%); FF: 193983(14%); LUT: 335605(47%);
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Fig. 4. Design Space Showing both Dual and Single Buffer Flow

BRAM: 992(25%). The design was synthesized to clock pe-
riod of 7.5ns. Performance and energy comparison between
the GPU and FPGA solution is shown in Figure 6. We used
the average power consumption of GPU GTX480 as 223W and
used the Xilinx Power Estimator tool to calculate FPGA power
consumption as 13.4W for a savings of over 16X. Table III
shows the latency and power metrics for GPU and FPGA.

TABLE III
PERFORMANCE AND POWER RESULTS

Architecture Latency (ms) Power (W)
GPU 29 223

FPGA 27.8 13.4

D. Observations

The analytical model does an effective job of pruning the de-
sign space through iteratively increasing resource allocation to
kernels on the critical path, and increasing the communication

void stereo_top (unsigned char left_img_ping[I], unsigned char left_img_pong[I], 
unsigned char right_img_ping[I], unsigned char right_img_pong[I],unsigned 
short left_depth_ping[I], unsigned char left_depth_pong[I]]) { 
#pragma AP dataflow 
… 
static int ping_pong = 0;  
unsigned char census_left_ping[image_size]; //Intermediate buffer declarations 
unsigned char census_left_pong[image_size]; //for ping-pong 
unsigned char left_grid_disparity_ping[disp_image_size]; 
unsigned char left_grid_disparity_pong[disp_image_size]; 
… 
if (ping_pong == 0) { 
censusTransformKernel_left (left_img_ping, census_left_pong); 
leftGridBuildKernel_left(census_left_ping,left_grid_disparity_pong, 
left_grid_cost_pong); 
…  
ping_pong = 1;} 
else{ 
censusTransformKernel_left (left_img_pong, census_left_ping); 
leftGridBuildKernel_left(census_left_pong, left_grid_disparity_ping, 
left_grid_cost_ping); 
…  
ping_pong = 0;} 
} 

read 

write 

read 

write 

Fig. 5. Code Modifications to Introduce Dual-buffering Scheme

buffering when parallelism opportunity is limited by the com-
munication quantum. The solution is able to meet performance
parity with a GPU. This presents an interesting case: when syn-
thesizing the original C code for the BFAS algorithm [26], we
achieved a 6.9X speedup over the original source code. How-
ever, the GPU implementation sped up the software by over
50X in order to meet real-time constraints and our synthesis
of this implementation is able to maintain performance parity.
This demonstrates the benefits of a data-parallel input language
for HLS: greater exposed parallelism gives the synthesis tool
greater opportunity for optimization while still meeting both
performance and power/energy constraints.

Multiple dependent CUDA kernel synthesis is thus an attrac-
tive implementation platform for HLS of application accelera-
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Fig. 6. GPU-FPGA Comparison
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tors. The additional benefit of uniform programming interface
with GPU platforms makes CUDA implementation even more
attractive. However, although the FCUDA tool assisted in this
achievement, it is important to note that this manual process
still requires some effort in the mapping process and there will
be challenges in fully automating this flow for multiple depen-
dent CUDA kernels.

IV. CHALLENGES: MULTI-KERNEL CUDA PROGRAMS TO
HARDWARE

We have identified some challenges for fully automating our
manual design flow for multiple dependent CUDA kernel syn-
thesis. We divide the challenges into two main categories: 1.
challenges in improving FCUDA individual kernel synthesis,
and 2. challenges in multi-kernel analysis. Although the first
category of challenges are primarily for single kernel synthe-
sis, the fact that we are duplicating the initial solutions many
times makes the efficiency of single kernel synthesis even more
critical than in the original FCUDA implementation.

A. Single Kernel Synthesis

In realistic CUDA kernels, thread indexing is often a com-
plex combination of the block and grid dimensions. Simple
data-parallel indexing computation is supported efficiently by
FCUDA, but more complex indexing schemes can both in-
crease computation resources to implement index calculation
and increase the difficulty of determining access orders, data
dependencies, and loop iteration bounds. For FCUDA, im-
proved analytical techniques to optimize index computations
and/or transform access patterns to lookup tables could signifi-
cantly improve the resource use per kernel and thus the design
space exploration flexibility. Furthermore, improved optimiza-
tion of index computations will also improve the opportunity
to apply other optimizations such as array partitioning.

Similarly, many applications (such as the stereo matching)
use constant multiplications and divisions for signal process-
ing computations. When these constants are powers of two,
FCUDA and AutoPilot correctly convert the operation to shifts
with little resource consumption. However, other constants
generate inefficient implementations that consume many DSP
units — efficient alternative implementations can significantly
reduce resource consumption (e.g. table-based constant di-
viders [28]).

Finally, FCUDA and AutoPilot do not currently support au-
tomatic translation from floating-point to fixed-point compu-
tation. Transformation to fixed-point computation can be par-
ticularly beneficial to meet area constraints and thus allowing
more instantiated parallelism. However, it is difficult to auto-
matically determine if such a transformation is feasible, func-
tionally correct or desirable for the implementer.

B. Multiple Kernel Synthesis

The first challenge in multiple kernel synthesis relates to the
selection of the initial single-core implementation for each of
the sub-kernels. Because these single-core implementations
will be duplicated many times, it is important to select an area

efficient implementation. In this work, we do this manually,
but in an automatic flow this would require a complex value
function and iteration of the entire design flow to improve the
single-core latency of critical kernels. Additionally, this would
require integrated knowledge of critical resource use so that
optimization decisions can effectively decide whether an opti-
mization impacts implementation choices for the multi-kernel
design.

The next challenge in multiple kernel synthesis is the auto-
matic buffer generation and insertion. This process requires
complex memory access pattern analysis to determine what
data is required by groups of threads, the access order, over-
lap between adjacent regions, and ability to partition the com-
putation into sequential independent computations. This needs
to be done individually for each pair of communicating ker-
nels and then collectively among all kernels to find a least-
common-multiplier of buffer sizes that meets all of the access
limitations, communication quantum limitations, and partition-
ing limitations. In the manual flow, we are able to use designer
knowledge of the algorithm to assist in this analysis, but an au-
tomated flow will require significant improvements to statically
guarantee all these properties.

Another significant challenge in multi-kernel synthesis re-
lates to performance estimation within the synthesis process.
In this work, we use full AutoESL synthesis followed by Sys-
temC simulation of produced designs in order to gather latency
information for individual kernel choices, and then we extrapo-
late those latencies based on buffer sizes and dividing the buffer
into a sequence of operations. However, in a fully automated
system, it is more desirable to analytically determine candi-
date performance without performing AutoESL synthesis and
simulation for any candidate component. These performance
modeling improvements will require improved analytical abil-
ities for determining loop bounds and trip counts in situations
in which loop parameters are statically determinable through
simple analytical modeling.

Finally, a major challenge in multi-kernel synthesis relates
to sub-kernel optimizations that could be performed in order to
better match pipeline stage latency throughout the design. In
this work, we pipeline each stage, but there is no implementa-
tion to combine two or more small pipeline stages into a single
stage or divide a large pipeline stage into two or more stages.
These optimizations increase complexity by requiring the syn-
thesis tool to automatically select synchronization points and
generate buffers between the new stages. In some cases, it
needs to perform the data access pattern analysis to allow mul-
tiple stages to be combined with intervening buffers merged.
However, with this ability, multi-kernel optimizations could be
yet more efficient by automatically generating a well-balanced
pipeline implementation.

V. CONCLUSION

We have demonstrated a manual process for mapping mul-
tiple dependent CUDA kernels to an FPGA using the FCUDA
tool that acheives performance parity with GPUs while con-
suming over 16X less energy than the GPU. Our analytical
model for simultaneous design space exploration of multiple
kernels allows efficient implementation decisions that balance
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the communication resources and computation resources in or-
der to find design points that effectively use all FPGA resources
to best minimize total computation latency. Through a case
study of applying this technique on a multi-kernel implemen-
tation of a stereo matching application, we have demonstrated
the potential for multi-kernel synthesis: starting with a data-
parallel input language, we can achieve performance parity
with GPUs with significantly reduced energy consumption, and
this implementation also represents a significant speedup over
HLS of a sequential C++ implementation of the same algo-
rithm. Finally, through this case study, we have identified the
key challenges in fully automating this multi-kernel process.
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