
tors. The additional benefit of uniform programming interface
with GPU platforms makes CUDA implementation even more
attractive. However, although the FCUDA tool assisted in this
achievement, it is important to note that this manual process
still requires some effort in the mapping process and there will
be challenges in fully automating this flow for multiple depen-
dent CUDA kernels.

IV. CHALLENGES: MULTI-KERNEL CUDA PROGRAMS TO
HARDWARE

We have identified some challenges for fully automating our
manual design flow for multiple dependent CUDA kernel syn-
thesis. We divide the challenges into two main categories: 1.
challenges in improving FCUDA individual kernel synthesis,
and 2. challenges in multi-kernel analysis. Although the first
category of challenges are primarily for single kernel synthe-
sis, the fact that we are duplicating the initial solutions many
times makes the efficiency of single kernel synthesis even more
critical than in the original FCUDA implementation.

A. Single Kernel Synthesis

In realistic CUDA kernels, thread indexing is often a com-
plex combination of the block and grid dimensions. Simple
data-parallel indexing computation is supported efficiently by
FCUDA, but more complex indexing schemes can both in-
crease computation resources to implement index calculation
and increase the difficulty of determining access orders, data
dependencies, and loop iteration bounds. For FCUDA, im-
proved analytical techniques to optimize index computations
and/or transform access patterns to lookup tables could signifi-
cantly improve the resource use per kernel and thus the design
space exploration flexibility. Furthermore, improved optimiza-
tion of index computations will also improve the opportunity
to apply other optimizations such as array partitioning.

Similarly, many applications (such as the stereo matching)
use constant multiplications and divisions for signal process-
ing computations. When these constants are powers of two,
FCUDA and AutoPilot correctly convert the operation to shifts
with little resource consumption. However, other constants
generate inefficient implementations that consume many DSP
units — efficient alternative implementations can significantly
reduce resource consumption (e.g. table-based constant di-
viders [28]).

Finally, FCUDA and AutoPilot do not currently support au-
tomatic translation from floating-point to fixed-point compu-
tation. Transformation to fixed-point computation can be par-
ticularly beneficial to meet area constraints and thus allowing
more instantiated parallelism. However, it is difficult to auto-
matically determine if such a transformation is feasible, func-
tionally correct or desirable for the implementer.

B. Multiple Kernel Synthesis

The first challenge in multiple kernel synthesis relates to the
selection of the initial single-core implementation for each of
the sub-kernels. Because these single-core implementations
will be duplicated many times, it is important to select an area

efficient implementation. In this work, we do this manually,
but in an automatic flow this would require a complex value
function and iteration of the entire design flow to improve the
single-core latency of critical kernels. Additionally, this would
require integrated knowledge of critical resource use so that
optimization decisions can effectively decide whether an opti-
mization impacts implementation choices for the multi-kernel
design.

The next challenge in multiple kernel synthesis is the auto-
matic buffer generation and insertion. This process requires
complex memory access pattern analysis to determine what
data is required by groups of threads, the access order, over-
lap between adjacent regions, and ability to partition the com-
putation into sequential independent computations. This needs
to be done individually for each pair of communicating ker-
nels and then collectively among all kernels to find a least-
common-multiplier of buffer sizes that meets all of the access
limitations, communication quantum limitations, and partition-
ing limitations. In the manual flow, we are able to use designer
knowledge of the algorithm to assist in this analysis, but an au-
tomated flow will require significant improvements to statically
guarantee all these properties.

Another significant challenge in multi-kernel synthesis re-
lates to performance estimation within the synthesis process.
In this work, we use full AutoESL synthesis followed by Sys-
temC simulation of produced designs in order to gather latency
information for individual kernel choices, and then we extrapo-
late those latencies based on buffer sizes and dividing the buffer
into a sequence of operations. However, in a fully automated
system, it is more desirable to analytically determine candi-
date performance without performing AutoESL synthesis and
simulation for any candidate component. These performance
modeling improvements will require improved analytical abil-
ities for determining loop bounds and trip counts in situations
in which loop parameters are statically determinable through
simple analytical modeling.

Finally, a major challenge in multi-kernel synthesis relates
to sub-kernel optimizations that could be performed in order to
better match pipeline stage latency throughout the design. In
this work, we pipeline each stage, but there is no implementa-
tion to combine two or more small pipeline stages into a single
stage or divide a large pipeline stage into two or more stages.
These optimizations increase complexity by requiring the syn-
thesis tool to automatically select synchronization points and
generate buffers between the new stages. In some cases, it
needs to perform the data access pattern analysis to allow mul-
tiple stages to be combined with intervening buffers merged.
However, with this ability, multi-kernel optimizations could be
yet more efficient by automatically generating a well-balanced
pipeline implementation.

V. CONCLUSION

We have demonstrated a manual process for mapping mul-
tiple dependent CUDA kernels to an FPGA using the FCUDA
tool that acheives performance parity with GPUs while con-
suming over 16X less energy than the GPU. Our analytical
model for simultaneous design space exploration of multiple
kernels allows efficient implementation decisions that balance
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the communication resources and computation resources in or-
der to find design points that effectively use all FPGA resources
to best minimize total computation latency. Through a case
study of applying this technique on a multi-kernel implemen-
tation of a stereo matching application, we have demonstrated
the potential for multi-kernel synthesis: starting with a data-
parallel input language, we can achieve performance parity
with GPUs with significantly reduced energy consumption, and
this implementation also represents a significant speedup over
HLS of a sequential C++ implementation of the same algo-
rithm. Finally, through this case study, we have identified the
key challenges in fully automating this multi-kernel process.
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