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Abstract—Mainstream indoor localization technologies rely on RF signatures that require extensive human efforts to measure and

periodically recalibrate signatures. The progress to ubiquitous localization remains slow. In this study, we explore Sextant, an

alternative approach that leverages environmental reference objects such as store logos. A user uses a smartphone to obtain relative

position measurements to such static reference objects for the system to triangulate the user location. Sextant leverages image

matching algorithms to automatically identify the chosen reference objects by photo-taking, and we propose two methods to

systematically address image matching mistakes that cause large localization errors. We formulate the benchmark image selection

problem, prove its NP-completeness, and propose a heuristic algorithm to solve it. We also propose a couple of geographical

constraints to further infer unknown reference objects. To enable fast deployment, we propose a lightweight site survey method for

service providers to quickly estimate the coordinates of reference objects. Extensive experiments have shown that Sextant prototype

achieves 2-5 m accuracy at 80-percentile, comparable to the industry state-of-the-art, while covering a 150� 75 mmall and

300� 200m train station requires a one time investment of only 2-3 man-hours from service providers.

Index Terms—Smartphone indoor localization, triangulation method, lightweight site survey, benchmark image selection

Ç

1 INTRODUCTION

INDOOR localization [1], [2], [3] is the basis for novel fea-
tures in various location based applications. Despite

more than a decade of research, localization service is not
yet pervasive indoors. The latest industry state-of-the-art,
Google Indoor Maps [4], covers about 10,000 locations in 18
countries, which are only a fraction of the millions of shop-
ping centers, airports, train stations, museums, hospitals
and retail stores on the planet.

One major obstacle behind the sporadic availability, is
that current mainstream indoor localization technologies
largely rely on radio frequency (RF) signatures from certain
IT infrastructure (e.g., WiFi access points [1], [2] and cellular
towers [5]). Additionally, obtaining the signature map usu-
ally requires dedicated labor efforts to measure the signal
parameters at fine grained grid points. Because they are
susceptible to intrinsic fluctuations and external distur-
bances, the signatures have to be re-calibrated periodically
to ensure accuracy. Some recent research [6], [7], [8] has
started to leverage crowd-sourcing to reduce site survey
efforts, but incentives are still lacking for wide user adop-
tion. Thus the progress is inevitably slow.

Localization also requires more than mere network
connectivity. For example, six strongest towers are usually

needed [5] for GSM localization, but the obstruction of walls
may deprive many places signals from enough number of
towers. WiFi localization also requires enough number of
access points in signatures to effectively distinguish differ-
ent locations. Thus places with network connectivity may
not always be conducive to localization.

In this paper, we explore an alternative approach that has
comparable performance but without relying on the RF
signature. Specifically, we leverage environmental physical
features, such as logos of stores or paintings on the walls, as
reference objects. Users use the smartphone to measure their
relative positions to physical features, and the coordinates
of these reference objects are used to compute user loca-
tions. This has a few advantages: 1) Physical features are
part of and abundant in the environment; they do not
require dedicated deployment and maintenance efforts like
IT infrastructure; 2) They seldom move and usually remain
static over long periods of time. They are not affected by
and thus impervious to electromagnetic disturbances from
microwaves, cordless phones or wireless cameras. Once
measured, their coordinates do not change, thus eliminating
the need for periodic re-calibration.

The realization of such benefits, however, turns out to
be a non-trivial journey. First, we need to identify a suit-
able form of relative position that can be effectively
measured by smartphones with accuracies favorable for
localization. Second, the abundance of physical features
is not always a blessing: users need some guidelines to
decide which ones to measure for smaller localization
errors. Third, to enable fast deployment, service providers
have to obtain the coordinates of reference objects in a new
environment with low human efforts. Finally, the system
has to know which reference objects are selected by users.
Relying on explicit user input can be a nonstarter. Ideally,
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the system should gain such input with as little efforts
from users as possible.

Our investigation leads us to the localization method of
Sextant.1 In the prototype we build on smartphones [9], the
user takes a picture for each of three nearby reference
objects one by one. The photos are matched against the
benchmark images of each reference object, to identify
which reference objects are selected; thus their coordinates,
together with relative position measurements, are used to
triangulate the user’s location.

The main source of inaccuracy in Sextant is the imper-
fection of image matching algorithms. Their accuracy is
affected significantly by which images are used as bench-
mark for reference objects. An image taken from extreme
angles or distances may lead to significant matching
errors. Then the system does not have the coordinates of
the correct reference objects for localization. Had the
matching been perfect, Sextant could have achieved much
higher accuracy.

Thus we also propose two methods to systematically
address the image matching errors [10]. First, we study
how to select the best images as the benchmark when
multiple are available for each reference object. The pur-
pose is to minimize “cross matching” where one reference
object’s photo is incorrectly matched to the benchmark
of another. Second, we impose additional constraints
to correct wrong matching results. This is based on the
observation that those reference objects chosen by the
user are usually close to each other. Given even one cor-
rect match, the unknown reference objects can be inferred
with much higher probability from a nearby range. Proto-
type experiments in large indoor environments have
shown promising results, with 80-percentile accuracy at
2-5 m, comparable to Google Indoor Maps(�7 m).

Our Sextant prototype is described in Fig. 1. Service pro-
vider selects certain benchmark images for each reference
object, and estimates their coordinates; photos and gyro
data from user smartphones are used as inputs in Sextant
system. Sextant leverages image matching techniques to
identify those chosen reference objects, infers the unknown
ones after user feedback, and then computes user location
using a triangulation method.

We make the following contributions in this work:

� We identify a form of relative position measurement
and its respective triangulation method suitable for
modern smartphone hardware. We also analyze the
localization errors and devise a simple rule of refer-
ence object selection to minimize errors.

� We leverage image matching techniques to identify
the chosen reference objects, formulate their bench-
mark selection as a combinatorial optimization
problem and prove its NP-completeness. We then
propose and evaluate a heuristic algorithm based on
iterative perturbation for realistic solutions.

� We propose a lightweight site survey method such
that a service provider can quickly obtain the coordi-
nates of reference objects in a previously unmapped
environment with reasonable accuracy (�1 m at 80-
percentile). Our experiments find that it takes a
one time investment of 2-3 man-hours to survey a 150
� 75 m shopping mall or a 300 � 200 m train station.

� We propose several geographical constraints that
help make much informed decision about the
identities of incorrectly matched reference objects.
Together they greatly improve the inference accu-
racy of the system.

� We build a Sextant prototype, and conduct extensive
experiments in large complex indoor environments
that shows 2-5 m accuracy at 80-percentile using the
estimated coordinates, which are comparable to the
industry state-of-the-art.

In the rest of the paper, we study the forms of relative
positions and the accuracies of suitable sensors (Section 2).
We then describe the localization operations, study the opti-
mal reference object selection and demonstrate the feasibil-
ity of the operations as a localization primitive (Section 3).
We propose a lightweight approach for estimating the coor-
dinates in an unmapped environment (Section 4), describe
the automatic recognition of chosen reference objects using
image matching algorithm (Section 5), address the bench-
mark selection problem for reference objects (Section 6), and
use geographical constraints to lower localization errors
caused by image matching mistakes (Section 7). We discuss
our limits (Section 8) and review related work (Section 9),
then conclude the paper (Section 10).

2 RELATIVE POSITION MEASUREMENT

Relative positions include the distance and orientation
between the user and the reference object. Although smart-
phones can measure their pairwise distance easily [11], they
are not equipped with a sensor to directly measure the dis-
tance to a physical object. While orientation can take two
forms, absolute and relative angles, both of which can be used
to triangulate the user.

Absolute angle based localization. As shown in Fig. 5, given
the coordinates of two reference objects R1, R2 and the abso-
lute angle a, b (w.r.t. an axis in the coordinate system), the
user P is at the intersection of two rays from R1, R2.

Relative angle based localization. Given the coordinates of
two reference objects R2, R3 and the relative angle a (i.e.,
ffR2PR3) between them, the edge R2R3 and a can uniquely
determine a circle where R2R3 is the subtense and a is the

Fig. 1. Relationship among different components in Sextant prototype.
Each component uses images or gyro data and output from the previous
component.

1. Sextant is commonly used by sailors to determine their longi-
tude/latitude by measuring the angle between visible objects, usually
celestial ones like the Sun.
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interior angle (see Fig. 6). The user is located along the arc of
the circle. With three such reference objects (R1; R2; R3) and
two relative angles (a;b), two circles are determined and
the user P is at the intersection of the circles.

Modern smartphones are usually equipped with a digital
compass that gives the absolute angle with respect to
geographic north, and a gyroscope that measures the rotated
angle of the phone between two positions.2 Although there
has been some reports [8] on the error of the compass, it is
not immediately clear to us whether the accuracies of
the compass and gyroscope are consistent under various
factors. To this end, we conduct an experiment using an
iPhone 4 in a 20:4m� 6:6 m office area where 50 test loca-
tions are evenly distributed.

Moving the phone along a straight line. When the phone is
moved along a one-meter straight line at 25 cm step-
lengths (shown in Fig. 7a), the compass or gyroscope read-
ings are expected to remain the same. Thus the drift, the
difference of two consecutive sensor readings, should be
close to zero. From Fig. 2, we can see that the compass has
quite significant drifts (e.g., 6 degree at 75-percentile);
it also has large outliers (e.g., 18-40 degree) due to electro-
magnetic disturbances such as nearby electric wires. How-
ever, the gyroscope has consistently small (e.g., maximum
at 2 degree) drifts.

Rotating the phone on radial lines. Next we align the phone
along radial lines separated by 30 degree in a semi-circle
(shown in Fig. 7b). We define the measured angle (expected
to be close to 30 degree) between two adjacent radial lines
as the difference between two respective sensor readings.
The drift is how much the measured angle deviates from
30 degree. From Fig. 3, we make similar observations to
those of Fig. 2. The gyroscope still has consistently small
drifts while the compass is unsuitable for accurate angle
measurements.

Time, building, orientation and rotation speed. We repeat the
second experiment for the gyroscope at 10 AM, 2 PM and
10 PM, and in rooms of three buildings (classroom, lab,
indoor stadium). From Fig. 4, we find similar small drifts
(� 1 degree). We place the phone at a test location, and
point the phone to four vertically-intersected directions,
east, south, west, and north (as shown in Fig. 7a). Then we
rotate the phone by �d degree where �d degree is a clock-
wise and þd degree a counter-clockwise rotation, and

d ¼ 15; 30; 45. This is repeated three times. We find that the
error is at most 1 degree and more than half of them have
less than 1 degree errors. We place the phone at a fixed loca-
tion, and rotate the phone at two different speeds, finishing
a 10 degree rotation in 2 and 5 seconds. This is intended to
see how it behaves under different user operations. Again
we find consistently small drift in both cases.

From the above study, we find that the compass has quite
large drifts caused by ferromagnetic materials (e.g., mag-
nets, floor tiles, decorative marble) and electrical objects
(e.g., electric appliances, electric wires under the floor),
whose disturbances are impossible to eliminate. Thus we
conclude that the gyroscope has consistently high level of
accuracy, and decide to use the relative angle based locali-
zation as shown in Fig. 6.

3 TRIANGULATION METHOD

3.1 User Operations and Location Computation

Given the triangulation method in Sextant, the user needs to
measure two relative angles between three reference objects.
He can stand at his current location, spin his body and arm
to point the phone to these reference objects one by one (as
illustrated in Fig. 8). Given the two angles a, b and the coor-
dinates of the three reference objects (as illustrated in
Fig. 6), the user location can be computed as:3

x ¼ x0
x3�x2

a � y0
y3�y2

a þ x2;
y ¼ x0

y3�y2
a þ y0

x3�x2
a þ y2;

�
(1)

where

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx3 � x2Þ2 þ ðy3 � y2Þ2

q
;

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þ ðy1 � y2Þ2

q
;

x0 ¼ ab½ sin ðbþuÞ cotaþ cos ðbþuÞ�½a sin b cotaþb cos ðbþuÞ�
½b sin ðbþuÞ�a sin b�2þ½b cos ðbþuÞþa sin b cota�2 ;

y0 ¼ ab½ sin ðbþuÞ cotaþ cos ðbþuÞ�½b sin ðbþuÞ�a sinb�
½b sin ðbþuÞ�a sin b�2þ½b cos ðbþuÞþa sin b cota�2 ;

u ¼ arccos ½ðx3�x2Þðx1�x2Þþðy3�y2Þðx3�x2Þ
ab �:

8>>>>>>>>>>><
>>>>>>>>>>>:

(2)

For the above operations to become a reliable localiza-
tion primitive, we need to address localization errors from

Fig. 2. Compass/gyroscope drifts (in degrees 	) when moving the phone
along a straight line.

Fig. 3. Compass/gyroscope drifts (in degree 	) when the phone is placed
on radial lines.

2. To be exact, the gyroscope measures the rotation rates of the
phone in radian/sec around its x-, y-, and z-axes. The angle is obtained
by integrating the rotation rate against time between the two positions.

3. Because an object (e.g., a door) might be large, pointing to differ-
ent parts (e.g., left versus right edge) can incur different angle readings.
We impose a default convention of always pointing to the horizontal cen-
ter of an object.
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two more sources other than angle measurements (studied
in Section 2): 1) We use obvious environmental features
such as store logos as reference points. In a complex envi-
ronment most locations have multiple of them around.
The user needs to select three that lead to smaller localiza-
tion errors. 2) The error introduced by imperfections in
user pointing (e.g., various wrist/arm/foot gestures) and
device hardware. We study these two issues in the next
two sections.

3.2 Criteria for Users to Choose Reference Objects

Impact of rotated angle drift. To understand the impact of the
drift on localization errors, we conduct a numerical simula-
tion for an a m�b m rectangle area with four corners as ref-
erence objects. We repeat the localization computation at a
grid of test locations at ðmd; ndÞ where d is the grid cell size,
and m 2 ½1; a=d�, n 2 ½1; b=d�. Although this is a rather sim-
plified case, we want to find guidelines for combinations of
reference objects that lead to higher localization accuracy.

We use Skewness/Kurtosis tests (a.k.a. SK-test) [12] on
the gyroscope readings and find that the drift conforms
to normal distribution. The mean is close to zero, and the
95 percent confidence interval is about �6 degree. Thus we
use �6 degree to evaluate worst-case localization errors in
the following simulation.

Choose a fixed set of reference objects.We first study a simple
rule: always choose a fixed set of three reference objects
(e.g., corner A, O, B). We set the area size a ¼ 10; b ¼ 5, grid
size d ¼ 0:2, then vary the drift as Da ¼ 0;�6 degree,
Db ¼ 0;�6 degree, and show the average localization
error of the eight combinations of Da and Db (except
Da ¼ Db ¼ 0) in Fig. 9a as a 3d plot. We observe that the
localization error is small (e.g., <1m) when the test location
is close to the center reference object O; it becomes much
larger when the location moves farther away from object O.
We observe similar patterns with areas of other sizes and
drifts of other values.

Small acute angles lead to larger errors. Intuitively, a dis-
tant test location tends to have a small acute angle
between two reference objects. The distant location can
have a larger displacement while still incurring a small
angle drift. As illustrated in Fig. 10, the same error d is
added to two angle measurements b1 and b2. The localiza-
tion error is roughly how much the user location P can

Fig. 7. Two experimental scenarios for angle measurements using
smartphones.

Fig. 5. Absolute angle based.

Fig. 6. Relative angle based.

Fig. 4. Gyroscope drifts (in degree 	) versus time of the day and building
types.

Fig. 8. The main steps of user operations: three reference objects are
chosen by the user; two rotated angles a and b are measured by the
phone gyroscope. Assuming the coordinates of O, A and B are known,
the user’s location can be calculated.

Fig. 9. Average localization error when Da;Db ¼ 0;�6 degree.
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move when the radial line R1P rotates angle d around
center R1. Over the same rotated angle d, a larger radius
leads to longer displacement of P , thus larger localization
error. We have conducted further tests and validated the
intuition. This is similar to GDOP in GPS localization [13].

Closest reference object rule. From the above observation,
we come up with a simple rule: choose the closest refer-
ence object and its left, right adjacent ones as three refer-
ence objects. Such closer objects lead to larger angles,
thus avoiding the small acute angles that cause large
localization errors. We repeat the simulation using this
simple rule in the same rectangle area. Fig. 9b shows that
the average localization error is no more than 1 m at all
test locations. This clearly demonstrates the effectiveness
of this simple rule. Simulations of other area sizes also
confirm our discovery.

3.3 Robustness of the Localization Primitive

We further investigate the impact of a number of practical
factors on localization error. We find that all of them can be
addressed and the operations described in Section 3.1 can
be made a robust primitive for localization.

Impact of pointing gestures. To study the error caused by
various user pointing gestures, we recruit ten volunteers to
point using three types of gestures with an iPhone4. The
first two types require a user to stand still and only spin his
arm or wrist to point to objects; the third requires a user to
spin his body and arm together.

Fig. 11a shows the angle drift from each type of gesture.
By only twisting the wrist, users make relatively large errors
(�8 degree), while spinning body and arm leads to the least
error (�2 degree). Thus we recommend the third gesture for
pointing.

Impact of the phone’s altitude. While spinning the arm, a
user may not be able to keep the phone in a horizontal

plane. He may unwittingly raise or lower the phone. Thus
the difference between two gyroscope readings may not
accurately reflect the horizontal rotated angle. To avoid
such inaccuracies, we use the horizontal component of the
gyroscope readings to accurately measure the angle in the
horizontal plane.

We recruit four test groups of users to point the phone
with different altitude trajectories: 1/2) raise/lower the
phone with a random upwards/downwards altitude; 3) ran-
domly raise and lower the phone during rotation; and
4) absolutely horizontal using a water level device. From
Fig. 11b, we observe that the average angle drift in the two
groups of “upwards” and “downwards” is just 1 degree
more than those in the other two groups, owing to our
method of calculation using the horizontal component. In
the following experiments we also find that the pointing
altitude trajectories have little impact on localization errors.
We ask the same four test groups of users to repeat the
experiments in the meeting room mentioned in Fig. 12, the
90-percentile accuracy is below 0.5 m for all groups.

Impact of the area size, shape and reference object width. We
conduct experiments in two rectangle areas (a 6.6 m � 4.2 m
meeting room and a 14.4 m � 13.2 m hospital hall). We use
the closest reference object rule, repeat the experiment three
times at each test location on a grid of �1 m cell size. The
CDFs of average errors are shown in Fig. 12. We find that
the 80-percentile accuracy is around 0.2 and 0.6 m, respec-
tively. Due to the linear scaling, the larger hall has slightly
larger errors.

We test in a polygon room (roughly 7.6 m � 5.7 m) and
find similar results (e.g., 0:7 m at 90-percentile). We also test
in two large outdoor areas of 30 m�30 m and 20 m � 40 m
sizes. The 80-percentile error is �1 m and maximum at
1:5 m, slightly larger than that of indoor environments
because it scales to the area size. Finally we try reference
objects of some widths (e.g., 1 m wide posters), and find
that when users aim at the center of reference objects during
pointing, the accuracy is not affected much (�0.5 m for 90-
percentile). The above shows that the pointing primitive’s
accuracies are not affected much by the size, shape of the
enclosing area and widths of reference objects.

Impact of user efforts. How carefully the user points to ref-
erence objects inevitably influences the accuracy of angle
measurements. We employ three groups of users to evalu-
ate the impact of user efforts: “normal” users use the closest
reference object rule and point with certain care; “savvy”
users pay more attention to measure the angles very care-
fully; while “impatient” users tends to finish the operations
quickly and cursorily.

Fig. 13 shows the CDF results in the meeting room. We
make several observations: a savvy user obtains the best

Fig. 10. The same angle drift d on a smaller angle b1 causes a larger
localization error e1 than that on a larger angle b2, because the longer

R1P distance leads to more displacement.

Fig. 11. The rotated angle drift under: (a) various types of users’ pointing
gestures, and (b) different pointing altitude.

Fig. 12. The CDF of error distribution for two rectangle rooms.
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accuracy (e.g., �0:3 m for 90-percentile); a normal user can
achieve comparable accuracy; and an impatient user has
lower but still reasonable accuracy with the closest reference
object rule (e.g., 0:9 m at 90-percentile). These show that:
1) The pointing primitive can achieve reasonable accuracy
with various degrees of use efforts; and 2) the closest refer-
ence object is an effective rule-of-thumb. We repeat the
same experiments in the hall and have similar observations
with that in the meeting room.

Impact of mobile device hardware. Gyroscope in different
phones have varying qualities. We pick four popular devi-
ces (iPhone4, iTouch4, Samsung i9100, Samsung i9100g) to
compare their performance. Fig. 14a shows that iPhone4,
iTouch4 and i9100g almost have the same expected perfor-
mance at a high level of accuracy (e.g., � 0:4 m at 90-percen-
tile). However, i9100 shows the worst results (over 1:2 m).

We place the i9100 phone at a static location and record
the readings once the gyroscope is turned on (at time 0 in
Fig. 14b). We find the value declines at the very beginning,
and then starts increasing (as shown in Fig. 14b). This is
caused by the relatively lower quality of the STMicroelec-
troinics K3G gyroscope in i9100. To compensate for such
intrinsic drifts, we use curve fitting methods to derive equa-
tions that characterize the variations over time to calibrate
the gyroscope reading. We then repeat the experiments and
the results (“Adjusted i9100” curve in Fig. 14a) show that
after calibration it has accuracy comparable to the other
three devices. For the other devices i9100g, iPhone4,
iTouch4, same experiments are repeated and the curves
tend to be flat horizontal lines, showing little drift over time.

From the above study, we conclude that the pointing
operations can be made a robust localization primitive pro-
vided that the user follows the guidelines with certain care.
In the next two sections, we investigate how a service pro-
vider can quickly obtain the coordinates of reference objects,
and how the system can gain input of which reference
objects the user has chosen.

4 SITE SURVEY FOR REFERENCE OBJECTS

COORDINATES

Sextant needs the coordinates of reference objects to com-
pute user location. The most straightforward method is to
manually measure the distances, thus coordinates directly.
Although this is a one-time investment because reference
objects do not move, it still consumes time when there are
many of them. In this section, we present a method for a ser-
vice provider to significantly reduce the human effort.

4.1 Location Estimation in Unmapped
Environments

In an unmapped environment, two workers4 of a service
provider first choose two pair-wise visible reference objects,
say A and B, called starting pairs (step1 in Fig. 15). They
each stand at A and B, then measure the distance a between
them (e.g., by counting floor tiles, using a tape measure or
techniques such as BeepBeep [11]). We can set a coordinate
system with A at the origin ð0; 0Þ and B at ða; 0Þ. We call
objects A and B as positioned objects.

Then, the workers select a third un-positioned object C
and determine its coordinates ðx; yÞ. When C is visible from
A and B , the worker at A points the phone to B, and then C
to measure ffBAC. Similarly, the other worker can measure
ffABC. The two angles a ¼ ffBAC and b ¼ ffABC can be
used to calculate the coordinates of C: x ¼ ða tan bÞ=ðtan a

þ tan bÞ, and y ¼ ða tan a tan bÞ=ðtan aþ tan bÞ.
The positioned object C together with A and B form a tri-

angle, and the distance AC (or BC) can be easily derived
using the estimated coordinates of C. The worker at A can
then move to C, and repeat similar processes to locate addi-
tional objects D;E (steps 2 and 3 in Fig. 15), and so on. The
coordinates of each additional positioned object can be
uniquely determined in this coordinate system.

Blocked positioned objects. During the process when the
direct line of sight between B and C is blocked (step2-b in

Fig. 15), one of BD, CD plus angle ffBDC are measured,

together with BC (known already), the coordinates ofD can
be determined by the law of sines.

Blocked unpositioned objects. When an unpositioned objectD
is blocked from both B and C (step2-c in Fig. 15), one worker
has to move along the line between C andB to find an appro-
priate locationC
 where objectD is visible. Theymeasure dis-

tanceCC
, the angle g ¼ ffCC
D, andC
D to locateD relative

Fig. 13. The CDF of error distribution by different types of users.

Fig. 14. Experiments using different types of devices in the meeting
room. (a) The CDF of error distribution, and (b) Angle drift vs. time for
i9100.

Fig. 15. Procedure to estimate the coordinates of reference objects.

4. The procedure can be conducted by one worker with more walk-
ing, or multiple workers in parallel.
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to C, thus eventually its coordinates. We omit the case when
D is blocked fromonly one ofB,C, which is similar to step2-b.

New starting pairs to control the error accumulation. One prob-
lem arises from such hop-by-hop estimation: the coordinates
of a new object may contain error; when they are used to posi-
tion another object, the error may grow. To control such accu-
mulation, a simple method is to use a new starting pair after a
few hops to reset the error back to zero.

4.2 Experiments on Site Survey

We conduct experiments in two large indoor environments,
a 150� 75 m shopping mall (Fig. 16a) and a 300� 200 m
train station (Fig. 16b).

Accuracy. When only one starting pair is used (reference
points f�1 �6 g in Fig. 16a and f�1 �13 g in Fig. 16b, shown in
green or slightly darker color), errors are small (<2 m) up to
4 � 6 hops away, beyond which they quickly grow to more
than 12 m. Obviously such large errors are not acceptable.
After we add 2, 3 more starting pairs in these two environ-
ments (f�7 �9 g and f�19 �20 g in the mall, f�27 �42 g, f�17 �19 g and
f�8 �9 g in the station), the 80-percentile errors are within
1 m, while the maximum about 2 m (Fig. 16c). They eventu-
ally lead to satisfactory localization accuracy (Section 5.2).

Human efforts. In the mall each of the 63 reference objects
takes about 2 minutes to measure the angle(s) and/or dis-
tance(s); in the station each of the 53 objects takes about 3
minutes due to longer walking distances. In total they cost
2, 2.6 man-hours. Assuming WiFi signatures are measured
2 m apart and each location takes 10s, excluding inaccessible

areas 5;200 m2 and 23;700 m2 areas need to be covered,
resulting in 3.6, 16.5 man-hours. Thus the cost is roughly
16-55 percent that of WiFi. Note that over long time WiFi
incurs periodic re-calibration costs each of similar amounts,
while we pay only a one-time effort.

If brute-force measurements are used, each reference
point takes 50 percent more time when regular floor tiles
are available to count the coordinates; otherwise using a
tape measure can triple the time. Although the quantifica-
tions are quite rough, they show that our site survey
method can significantly reduce the human efforts com-
pared to those of brute-force or WiFi.

5 IDENTIFYING CHOSEN REFERENCE OBJECTS

The Sextant system has to know which reference objects are
selected by the user. However, it is impractical to require

every user to explicitly tell the system about her/his choice.
Thus how to identify chosen reference objects with less user
efforts becomes a quite challenging problem in a complex
environment with many reference objects.

We explore image matching algorithms to handle this
issue. The user takes one photo (i.e., test image) for each of
the three chosen reference objects one by one, which are
matched with benchmark images to identify the corre-
sponding reference objects. Nevertheless, we find that the
matching algorithms make wrong identifications in certain
situations. Next we will explain how we use the algorithms
and classify error situations in this section. We also address
matching errors with some heuristic algorithms in Section 6
and Section 7.

5.1 System Architecture and Work Flow

We have prototyped our Sextant system consisting of a
smartphone for gyroscope data and image acquisition,
a back-end server for image matching against a collection
of benchmark images of reference objects (taken by a service
provider during site survey).

Image capture via finger taps. To accommodate test images
taken from different angles, we take three benchmark
images for each reference object. The user uses the same
spin operations. He taps the phone’s screen to take a test
image when a chosen reference object is centered on the
camera. The tapping also triggers the capture of gyroscope
readings. The test image is immediately sent to the server as
the user continues for the next reference object.

Image matching and ranking. We examine two most popu-
lar image feature vector extraction algorithms, Scale Invari-
ant Feature Transform (SIFT) [14] and Speeded Up Robust
Features (SURF) [15]. Comparison [15] has shown that
SURF is much faster while achieving comparable accuracy
to SIFT. Thus we decide to use SURF in the prototype.
Meanwhile, we use the same procedure used in [15] to rank
benchmark images based on the number of matched feature
vectors. We apply RANdom SAmple Consensus (RANSAC)
[16] that uses the relative position constraints among feature
vectors to detect and filter wrong feature vector matches.

For each test image, the server ranks the reference
objects in descending order of the matching metric, the
number of matched feature vectors, then returns this
ranked list of [ID: matching metric value] tuples to the
phone. The phone presents the results as a 4 � 3 thumb-
nail matrix (Fig. 17), with the top row showing the three

Fig. 16. Floor map of a mall (a) and station (b), as well as their estimated coordinates errors (c). The vertical bars on (a) and (b) show the errors in
estimated coordinates; those<1m are not shown.
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test images, below each is a column of three best matched
reference objects. By default the top match is highlighted.
The user can tap the correct one if the top match is
wrong. Then the user taps the ‘confirm’ button, and the
phone computes the user location based on the corrected
matching results and the angles. If none of the top 3
match is correct, the user taps the test image before pro-
ceeding with ‘confirm’. The phone applies a heuristic that
takes the feedbacks and the ranked list to search for a bet-
ter match, and displays the final localization result.

Online and offline modes. Image matching algorithms inev-
itably make mistakes. Multiple benchmark images taken
from different angles of a reference object improves accu-
racy significantly. However, more benchmarks lead to
higher computing overhead. Thus in Sextant the number of
benchmark images for each reference object is limited to a
small number. When many candidate images are available,
which images to select as benchmarks to match incoming
test images greatly impact the matching accuracy. Thus we
should select the subset of images leading to the best match-
ing accuracy.

In Sextant depending on whether there is network con-
nectivity, the phone can work in online or offline modes.
Due to the complexity in image matching algorithms, the
preferred location for matching computation is on a back-
end server. This is when the phone has network connectiv-
ity and can upload test images to the server to identify
chosen reference objects. This is the online mode.

It is not uncommon that many locations do not have
network connectivity due to the lack of WiFi APs or
strong enough cellular signals. Sextant can still work if
the computation is done locally. A couple of challenges
have to be addressed: 1) The phone must have enough
storage to store the benchmark images of reference
objects. In reality we found this is not a problem, and
they can be downloaded on demand before the user
enters the environment while there is still network con-
nectivity. 2) To reduce the latency, each reference object
has to use less, ideally only one benchmark image. Never-
theless we have to provide enough matching accuracy.
Thus the benchmark must be selected carefully to maxi-
mize correctness. This is what we address in the offline
mode in Sextant.

Data stored on the phone. The implementation requires the
phone to store the IDs, coordinates, small image icons and
benchmark images of reference objects. Since each icon is
about 3 KB, it takes about 200 and 150 KB for 63, 53 refer-
ence objects in the mall and train station. . An 800 � 600
benchmark image is only about 30 KB, while 50-60 reference
objects are sufficient for a large mall or train station. Thus
the total storage is less than 2 MB. Such data can be down-
loaded on demand before the user enters the building. Hav-
ing the phone doing the localization computation avoids a
second interaction to send the corrected results to the server
for final results, thus reducing the latency.

5.2 System Performance

We conduct experiments with the prototype in both the
mall (63 reference objects, 41 in stores and 22 outside) and
train station (53 reference objects), with 108 and 46 test
locations scattered around the environment (see Figs. 16a
and 16b).

Image quality versus accuracy. First we examine the impact
of image resolution on the matching accuracy. A higher res-
olution has better accuracy but larger size as well. The origi-
nal JPEG image has about 3,200 � 2,400 resolution at 3 MB.
JPEG images have a “quality” parameter that can be tuned,
which affects the resolution and size. We vary the “quality”
parameter from 0 to 100 in steps of 10, and see how image
size and matching accuracy change for the 22 reference
objects outside stores in the mall. We find that quality
40 achieves a desirable balance: the image size is only 30 KB
(about 800 � 600 resolution), while the accuracy is about
88 percent. Thus we set the metric at 40 for images uploaded
by the phone.

Image matching accuracy. Table 1 shows the probability
that the top M matched reference objects contain the correct
one in offline mode (each reference object with three bench-
mark images). We find that there is certain increase up to
top 3, beyond which the improvements are minimal. That is
why the UI presents the top 3 matches for the user: it
achieves a balance between users’ correction needs and
cognitive efforts.

When a test image’s correct match is in top 3, the system
knows the correct reference object after user feedback (i.e.,
tapping the correct thumbnail from top 3). We call such a
test image “correctable”. Next we examine (in Table 2) the
fraction of test locations having 3, 2, 1 or 0 correctable test
images. We find that 92.7 and 90.3 percent of the test loca-
tions in the mall and station have three correctable test
images. The system knows all the three reference objects
after user feedback. Less than 10 percent of test locations
have two correctable test images. For the uncorrectable test

Fig. 17. The UI presented to the user for correction of image matching
results. The top row are the three test images taken by the user, below
each are the top 3 matched reference objects. The user can denote the
correct match by tapping the thumbnail images.

TABLE 1
Image Matching Accuracy in Offline Mode

TopM Results Mall Station

Top 1 90.3% 88.2%
Top 2 95.4% 94.1%
Top 3 97.2% 96.8%
Top 4 97.8% 96.8%
Top 5 97.8% 96.8%
Top 6 97.8% 96.8%
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image, the phone has to rely on the heuristic (Section 7) to
“guess” a better match. Luckily we have not found test
locations with only one or zero correctable test images.
This means the phone has to make at most one guess for a
test location.

Latency. The latency includes three components: user
operation, transmission delay and image matching time. It
takes a user a few seconds to take photos of three reference
objects. The transmission delay for a 30 KB photo is less
than a second. Latest image retrieval [17] can match a photo
against a million images in about 0:5 s. Thus the localization
takes only a few seconds.

Initial localization results. We examine the localization
results in offline mode using the correct match when it is in
top 3, and the top 1 (incorrect) match if it is not. Fig. 20
shows the CDF of the localization accuracy for both envi-
ronments (the portion of 0�6 m enlarged in the small
embedded figure), using both real and estimated coordi-
nates of reference objects.

We make several observations: 1) The 80-percentile errors
are around 2 and 4.5 m for the mall and train station, which is
comparable to the industry state-of-the-art Google Indoor
Maps [18] (�7 m). The larger errors in the train station are due
to larger distances between the user location and reference
objects: the distances are around 10 and 30 m at 80-percentile
for the mall and station, as illustrated in Fig. 19. 2) The tails of
the curves are long, reaching 40m for both the station and
mall. These are because the correct match is not in top 3,
which we further classify and address using the heuristic.
3) The differences between the results using real and esti-
mated coordinates are not that much. This means that
our coordinate estimation method can achieve reasonable
localization performancewhile cutting down human efforts.

The last observation is further confirmed by the ideal
localization error (shown in Fig. 18) assuming perfect image
matching. Fig. 18 also shows that 80-percentile errors simi-
lar to those in Fig. 20, which is because the majority of test
locations already have three correct matches in top 3. It

shows how much improvements we may gain by further
correcting image matching errors: the maximum error can
be reduced to 5-6 m.

Matching error classification. We examine the test locations
with large localization errors (i.e., those >6 m) one by one
and classify them into several categories based on the
causes, with the worst case shown in Table 3.

Extreme angle or distance. We find that in eight cases, some
chosen reference objects can be very far (e.g., >50 m), or the
test image taken from extreme angles (e.g., <30 degree or
almost completely from the side). Although SURF descriptors
are rotation-invariant, test images from such distances or
angles exceed their limit and lead towrongmatching results.

User error or obstruction. In one case the chosen reference
object is not at the center of its test image, leading to both
incorrect match and large angle errors. In another case
obstacles (e.g., people) obstruct the view to a reference
object, resulting in wrong match.

Reference objects of similar appearances. We also find that
some reference objects (e.g., two information desks in the
train station) may have similar appearances. The bench-
mark images of them are inevitably difficult to distinguish
even to the human eye.

Multiple reference objects in one test image. Sometimes due to
the proximity and angle of photo taking, a test image may
include two reference objects. The best match may be the
unintended one, while the truematch is ranked out of top 3.

6 BENCHMARK SELECTION OF REFERENCE

OBJECTS

In Sextant, the user takes one photo (i.e., test image) for each of
the three chosen reference objects, which are then matched
against benchmark images to identify the corresponding ref-
erence objects. We find that the selected benchmarks are

TABLE 2
Fraction of Test Locations Whose Test Images’

Correct Matches in Top 3

Environment 3 in top 3 2 in top 3 1 in top 3 0 in top 3

Mall 91.7% 8.3% 0% 0%
Station 90.3% 9.7% 0% 0%

Fig. 18. Ideal localization error with perfect image matching.

Fig. 19. Pointing distance between user location and reference objects.

Fig. 20. Initial system localization error with image matching.
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crucial in improving imagematching accuracy. In this section,
we model the benchmark selection problem, prove its NP-
completeness, and propose heuristic algorithms to solve it.

6.1 Benchmark Selection Problem

We formally define the problem of benchmark selection
(notations in Table 4): Given m reference objects f1; . . . ;mg,
and a set of ni candidate images for reference object i, find
one image for each reference object such that the total num-
ber of matching errors is minimized.

We denote the decision variables, the labels of the chosen
benchmark for each reference object as

B ¼ fbij1 � i � m; 1 � bi � nig: (3)

Given the candidate images, we could profile the num-
ber of incorrectly matched images for each reference object,
as Fig. 21 shows. When reference object i and j choose x
and y as its benchmark respectively, an incorrect match
from i to j means an image l for reference object i is incor-
rectly matched to reference object j. We use pi;x;j;y to
denote the number of images for reference object i incor-
rectly matched to reference object j, and P ¼ ðpi;x;j;yÞ as the
model given input.

The objective is to find the label selectionB thatminimizes
the number of total incorrectly matched images. We denote
Cobj as the objective value. Given P ¼ ðpi;x;j;yÞ, the Cobj could
be computed by eachB ¼ ðbiÞ, as:

CobjðBÞ ¼
X
i6¼j

pi;bi;j;bj: (4)

And i; j 2 f1; 2; . . . ;mg. Thus our objective is formulated
as:

min
B

CobjðBÞ: (5)

6.2 NP-Completeness Proof

We formulate its corresponding decision problem, called
Benchmark Selection Decision (BSD) problem: Given P ¼
ðpi;x;j;yÞ and integer c, determine whether there exists
B ¼ ðbiÞ, such that X

i 6¼j

pi;bi;j;bj � c: (6)

And we denote its instance as BSDðP;B; cÞ.
First we show that BSD problem belongs to NP. Given its

instance, it’s easy to verify whether Cobj ¼
P

i6¼j pi;bi;j;bj � c
is satisfied in polynomial time.

To prove BSD problem is NP-complete, we prove that
the quadratic assignment problem (QAP), which is known
to be NP-complete [19], is reducible in polynomial time to
BSD problem. The decision problem of QAP describes that
there are two sets: M ¼ f0; 1; . . . ;m� 1g and N ¼ f0; 1; . . . ;
m� 1g, two functions: wði; jÞ : M �M ! Rþ, and dðx; yÞ :
N �N ! Rþ, and a constant c; it determines whether there
exists an one-to-one mapping f : M ! N , such thatP

i6¼j wði; jÞ 
 dðfðiÞ; fðjÞÞ � c.

Based on the following BSD construction, we could
reduce the decision problem of QAP to our BSD problem

M ¼ f0; 1; . . . ;m� 1g; N ¼ f0; 1; . . . ;m� 1g; (7)

i; j 2 M; x; y 2 N; (8)

pi;x;j;y ¼ wði; jÞ 
 dðx; yÞ; if x 6¼ y;
h; if x ¼ y:

�
(9)

We set h as a sufficient large constant, e.g. h ¼ P
i6¼j

P
x;y

wði; jÞ 
 dðx; yÞ, to guarantee the solution of BSD problem is
an one-to-one mapping from M to N . Its solution also
corresponds to the solution of decision problem of QAP.

Thus the BSD problem is NP-complete, and we will pres-
ent our heuristic algorithm to find an approximated solu-
tion in reasonable time.

6.3 A Heuristic Algorithm

We here propose a heuristic algorithm to select the best
benchmark image for each reference object, the intuition is
that the selected image should be similar to other images of
its own reference object, and distinct to images of other
reference objects.

Profiling. This part is the preparation for our algorithm,
aiming to measure the distinction between two candidate
images.

TABLE 3
Large Error Classification in Offline Mode

Cause Number of cases Worst loc error

Extreme angle 4 36.7 m
Extreme distance 4 39.1 m
Not centered 1 9.3 m
Obstructions 1 41.2 m
Similar appearance 1 10.1 m
Multiple points 3 19.6 m

TABLE 4
Notations

M ¼ f1; . . . ; mg,
i 2 M , j 2 M

Reference objects

Ni ¼ f1; :::; nig Candidate images of reference object i
B ¼ fbig Label of selected benchmark images for

reference object i
P ¼ fpi;x;j;yg,
x 2 Ni, y 2 Nj

Number of images for i incorrectly matched
to j, when x and y are selected benchmark
images for i and j respectively.

K ¼ fki;x;j;yg Number of matched feature vectors
between image x for i and image y for j

uð:Þ Unit step function, equals 0 when input
is less than 0, and equals 1 otherwise

Fig. 21. An example of where x and y denote the chosen benchmark
(marked yellow) of reference object i and j respectively, and l denotes
an image of i being matched to both x and y.
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Algorithm 1. Benchmark Selection Heuristic Algorithm

1: compute ki;x;j;y for each two candidate images;
2: for each reference object i do
3: for each benchmark x do
4: compute Sþ

i;x according to Equation (12);
5: compute S�

i;x according to Equation (13);
6: compute Scorei;x according to Equation (14);
7: end for
8: bi ¼ arg max Scorei;x;
9: end for
10: time ¼ 0;
11: while time � X do
12: randomly select several chosen benchmarks in B, replace

each with a random image of its same reference object;
13: compute objective value Cobj according to Equation (4);
14: if Cobj is decreased then
15: update B based on the random benchmarks;
16: update Cobj;
17: time ¼ 0;
18: else
19: timeþþ;
20: end if
21: end while
22: ifmore benchmark is used then
23: for each reference object i; j and benchmark x; y do
24: ki;x;j;y ¼ maxfki;x;j;y; ki;x;j;bjg;
25: end for
26: remove B from candidate image set;
27: go to Step 2 to find the second best benchmark;
28: end if

According to [15], we first extract feature vectors on each
candidate image, and calculate distance between two
feature vectors to measure their similarity. The number of
matched feature vectors between image x for reference
object i and image y for reference object j can be computed
beforehand and denoted as:

K ¼ fki;x;j;yj1 � i; j � m; 1 � x � ni; 1 � y � njg: (10)

As Fig. 21 shows, an image l for i is incorrectly matched
to jwhen it has more matched feature vector with j’s bench-
mark y than with i’s benchmark x. Thus pi;x;j;y, how many
i’s images are incorrectly matched to j, can be computed as:

pi;x;j;y ¼
Pni

l¼1 uðki;l;j;y � ki;l;i;xÞ; if i 6¼ j;
0; if i ¼ j:

�
(11)

Thus we could compute P beforehand. Next we will
present how to choose the best benchmark set B, aiming at
the minimum objective value Cobj which is calculated from
Equation (4).

Benchmark initialization. Initially, each reference object is
assigned the ”best matching” image as its benchmark,
meaning its other images are very similar to the benchmark,
and the benchmark is very distinct to images of other refer-
ence objects. Thus its own images match well while other
reference objects’ images do not match this chosen bench-
mark. We use two metrics below to measure its similarity
to its own reference object’s images and its interference to
images of other reference objects.

For a chosen benchmark x of reference object i, we use the
number of images for i correctly matched to x, rather than
chosen benchmark t of reference object j, as the similarity
metric. The metric is summed over all possible combinations
of fj; tg pairs, shown in Equation (12):

Sþ
i;x ¼ 1

ni

Xni
s¼1

Xm&j 6¼i

j¼1

Xnj
t¼1

uðki;s;i;x � ki;s;j;tÞ: (12)

Similarly, we use the number of images for another refer-
ence object j incorrectly matched to x, rather than the cho-
sen benchmark t of j, to measure the interference of x to j.
This is also summed over all possible combinations of fj; tg
pairs, shown in Equation (13):

S�
i;x ¼ 1Pm&j6¼i

j¼1 nj

Xm&j 6¼i

j¼1

Xnj
t¼1

Xnj
s¼1

uðkj;s;i;x � kj;s;j;tÞ: (13)

Then, we could score the efficiency of each benchmark x
for reference object i, calculated as:

Scorei;x ¼ Sþ
i;x=S

�
i;x: (14)

For benchmark initialization, we select the image with
highest score as chosen benchmark for reference object i.

Random perturbation. Since the initialization does not nec-
essarily give the overall optimal solution, we use random
perturbation to continue improve the solution. Each time we
randomly replace a chosen benchmark with an unchosen
image of the same reference object, and check if the objective
value decreases. If so, we update both the chosen benchmark
set and objective value. This is repeated until the objective
value decreases less than a threshold Cth after X times of
continuous replacements. Then we stop the random pertur-
bation and output the chosen benchmark set. In our imple-
mentation we use Cth ¼ 0 andX ¼ 100.

6.4 Image Matching Accuracy

We compare the image matching accuracy of our heuristic
and random selection of benchmark images.

Benchmark and test image dataset. In the mall we captured
362 photos of 63 reference objects at different places, while
in the station we captured 441 photos of 53 reference
objects, and each reference object has four � nine photos
taken at different places. We use these photos as candidate
images. In online and offline modes each reference object
should select three and one benchmark, respectively. We
also have 324 test images taken at 108 locations in the mall,
and 138 test images taken at 46 locations in the station. We
match the test images against benchmarks and measure
the fraction of test images whose correct match shows in
top 1-3 matching results.

Image matching accuracy. Compared with random bench-
mark selection, our heuristic improves image matching accu-
racy by more than 20 percent in offline and 10 percent in
online, both in the mall and station (shown in Fig. 22). The
chance that the correct match is in top 3 results in offline
mode can reach 82.1 percent in the mall and 81.2 percent in
the station, and that in top 3 in online mode can reach 98.2
and 97.3 percent, respectively.
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Next we examine the fraction of test locations having 3,2,1
or 0 “correctable” test images. A test image is “correctable” if
its correct match is within the top 3 results, where a user can
click and indicate to the system. After the user feedback the
system knows the truematch.

According to Fig. 23, we find that in offline mode, 52.8
and 46.8 percent of test locations in mall and station have
three correctable test images, while in online mode the
number is 94.4 percent in mall and 91.9 percent in station.
The system then knows all the 3 reference objects after user
feedback. For those with 2 or 1 correctable test images, the
system uses additional constraints (Section 7) to guess a bet-
ter match for the unknown reference object(s). Only less
than 2 percent of offline test locations in mall suffer from 0
correctable test images, where users may need to take pho-
tos of another set of reference objects.

7 IMPROVE LOCALIZATION WITH GEOGRAPHICAL

CONSTRAINTS

Even with optimized benchmarks, there are still test images
whose correct match does not show up in the top 3 results.
For such images, we make informed guesses based on an
observation: the three chosen reference objects by a user are
usually close to each other. We propose two heuristics to
estimate unknown reference objects when there are one and
two “uncorrectable” test images.

7.1 Experiments and Problems in Early Prototype

We conduct experiments in two large indoor environments,
a 150� 75 m shopping mall and a 300� 200 m train station.
We test our system in both online and offline modes.

Fig. 24 shows the CDF of localization errors in offline and
online modes for both the mall and station. We make a cou-
ple observations. First, the online mode has much smaller
errors, with 80-percentile localization error within 2 m in
mall and 5 m in station. This is because three benchmarks are
used for each reference object, leading to very high image
matching accuracy (e.g., more than 97 percent). However,
the offline mode has 80-percentile error of 14 m in both the
mall and station, with large errors reaching tens of meters.
This is simply because a single benchmark has much lower
matching accuracy even after user feedback (e.g., �81 per-
cent according to Fig. 22). Had all test images been perfectly
matched, there would be less than 2 m localization error at
80-percentile in mall and 4 m in station; while the maximum
error would be around 5 m both in mall and station. Thus
there is quite some space for improvements.

7.2 Geographical Constraints

To better infer the identify of unknown reference objects
whose correct match does not appear in top 3 results, we
propose a couple geographical constraints, including cluster
partition, distance metric measurement and scoring.

7.2.1 Cluster Partition

Due to the obstructions of walls, some reference objects are
unlikely visible to and chosen by the user at the same time.
For example, a user in a store can only see reference objects
inside but not those outside. If the system knows any
correctly matched image inside, the unknown ones must be
inside as well.

Accordingly we cluster reference objects based on
geographical layout, e.g. wall obstruction. Thus all objects
inside the same store are in one cluster, those outside are in
another cluster. Given any correctly matched image, we
search the unknown ones within the same cluster using the
following two measurements.

7.2.2 Distance Metric Measurement

When two test images are matched to their correct reference
objects (denoted as A and B), we find the unknown refer-
ence object by computing a metric for each possible refer-
ence objectX in the same cluster with A and B

DX ¼ ðjAXj þ jBXjÞ=2: (15)

When only one image is matched correctly to its reference
object A, we compute the following metric for each possible
reference object pairX and Y in the same cluster asA

DX;Y ¼ ðjAXj þ jAY j þ jXY jÞ=3: (16)

Fig. 22. Image matching accuracy where the correct match is contained
in top 3 results, between random benchmark selection versus our heuris-
tic, for the mall and train station, both online and offline modes.

Fig. 23. Fraction of test locations with top 3 correctly matched test
images.

Fig. 24. System localization error after benchmark selection heuristic.
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7.2.3 Scoring

Then we score the possible candidate(s) according to both
their image matching degree and distance metric. The score
is defined as follows:

scoreX ¼ KX;1

D2
X

; for 1 unknown reference object; (17)

scoreX;Y ¼ KX;1 þKY;2

D2
X;Y

; for 2 unknown reference objects;

(18)

where Ki;j is the number of matched feature vectors
between the benchmark image(s) of reference object i and
the test image of label j (j ¼ 1 or 2). The candidate(s) with
the highest score is chosen as the unknown reference object
(s). The detailed description of the algorithm is shown in
Algorithm 2. Note that when there are two unknown refer-
ence objects, scoreX;Y and scoreY;X are different due to
different pairings betweenX;Y and test image 1; 2.

Algorithm 2. Heuristic Algorithm for Geographical
Constraints

1: cluster reference objects based on geographical layout;
2: find the cluster T of correctly matched reference object(s)

after user feedback;
3: if number of unknown reference objects ¼1 then
4: for each reference objectX in T do
5: computeDX according to Equation (15);
6: compute scoreX according to Equation (17);
7: end for
8: XEst ¼ arg max scoreX ;
9: else if number of unknown reference objects ¼ 2 then
10: for each reference object pairX, Y in T do
11: computeDX;Y according to Equation (16);
12: compute scoreX;Y according to Equation (18);
13: end for
14: fXEst; YEstg ¼ arg max scoreX;Y ;
15: end if

7.3 System Localization Performance

We find that the geographical constraints improve our
image matching accuracy to 91.7 percent (from 82.1 percent)
in the mall and 87.6 percent (from 81.2 percent) in the sta-
tion in offline mode, while 99.4 percent (from 98.2 percent)
in the mall and 97.9 percent (from 97.3 percent) in the
station for online use.

Fig. 25 shows the CDF of localization errors after the
constraints. Compared with earlier system without geo-
graphical constraints (Fig. 20), localization error is reduced
to around 3 m in mall and 8 m in station (both from 14 m) at
80 percent percentile in offline mode; the maximum error is
cut to 20 m (from 118 m) in the mall and 36 m (from 76 m) in
the station for offline use. For online use, the 80 percent
error does not reduce much (around 2 m in the mall and
5 m in the station), but the maximum error is lowered to
about 7 m (from 41 m) in the mall and 19 m (from 30 m) in
the station. These show that the geographical constraints
are effective in greatly cutting down maximum error, and
improves the general case for offline mode significantly.

8 DISCUSSION

Physical features selection for reference objects. Users need to
understand which physical features are likely reference
objects included by the system. We choose obvious ones
such as store logos, information desks and find 50-60 refer-
ence objects can cover the mall and train station. However,
users may still occasionally pick an object not in the refer-
ence object set. Even after the heuristic the system cannot
obtain the correct coordinates. We plan to investigate
methods to add such objects into the set incrementally.

Continuous localization. Sextant provides localization after
a user completes the operations. It does not yet provide con-
tinuous localization when the user is in continuous motion.
We plan to investigate how to combine other techniques
(e.g., dead-reckoning [20]) to infer user locations in moving.

Energy consumption. The collection of image and inertial
data costs some energy. According to specifications of main-
stream smartphones, the power consumption for gyroscope
sampling is quite low (about 30 mW), and users customarily
take three photos. Sextant uses downsized images of
800� 600 resolution, each about 30 kB. Based on WiFi radio
transmission power around 700 mW and practical speed of
2MB=s, uploading three photos takes about 0.035 Joule.
Compared to the battery capacity of 20 k Joules, we believe
the collecting and uploading of three images with inertial
data do not constitute any signification energy consumption
for a smartphone.

9 RELATED WORK

Smartphone localization has attracted lots attention due to
the explosive growth of location based phone applications.
We describe those most relevant to Sextant and provide a
comparison that is far from exhaustive.

Signature-based localization. A vast majority of existing
research efforts depend on RF signatures from certain IT
infrastructure. Following earlier studies that utilize WiFi sig-
nals [1], [2] for indoor localization, Liu et al. [3] leverages accu-
rate acoustic ranging estimates among peer phones to aid the
WiFi localization for meter level accuracy. Accurate GSM
indoor localization is feasible in largemulti-floor buildings by
using wide signal-strength fingerprints that include signal
readings from more than six-strongest cells [5]. Sextant does
not rely on such signatures for localization. It uses network
connectivity only for computation offloading.

Some work takes advantage of other smartphone sensing
modalities for different signatures. SurroundSense [21] com-
bines optical, acoustic, and motion sensors to fingerprint
and identify the logical environment (e.g., stores). UnLoc

Fig. 25. System localization error with geographical constraints.
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[22] proposes an unsupervised indoor localization scheme
that leverages WiFi, acceleromter, compass, gyroscope and
GPS to identify signature landmarks. Sextant does not use
such signatures but static environmental reference objects
for triangulating user locations.

Building the signature map. Some recent work has focused
on methods for reducing the laborious efforts for building
and maintaining signature maps. LiFS [6] leverages the user
motion to construct the signature map and crowdsources its
calibration to users. EZ [7] proposes genetic-based algo-
rithms to derive the constraints in wireless propagation for
configuration-free indoor localization. Zee [8] tracks inertial
sensors in mobile devices carried by users while simulta-
neously performing WiFi scans.

However, since most of those signals are susceptible to
intrinsic fluctuations and external disturbances, they must
re-calibrate the signature map periodically to ensure accu-
racy. This incurs periodic labor efforts to measure the signal
parameters at fine grained grid points. Compared to these
signatures, the physical features (e.g., store logos) we use
are static. Jigsaw [23] uses crowdsensed images to recon-
struct the floor plan, while Sextant only requires a one-time
effort to estimate the coordinates of reference objects, signif-
icantly reducing the measurement efforts.

Computer vision based work. OPS [24] allows users to locate
remote objects such as buildings by taking a few photos
from different known locations. It uses computer vision
algorithms to extract the 3D model of the object and maps it
to ground locations. Structure from Motion [25] is a mature
technique in computer vision to build the 3D model of an
object, it relies on large numbers of images and heavy
optimization method. We use image matching algorithms
for identifying chosen reference objects, not 3D models. We
also propose a lightweight site survey method to quickly
estimate the coordinates of reference objects.

Simultaneous localization and mapping (SLAM) [26] is a
technique for robots to build the model of a new map and
localize themselves within that map simultaneously. For
localization the robots’ kinematics information is needed.
Although smartphones carried by people can provide
sensory data, accurate kinematics information remains a
challenge. In computer vision, extracting 3D models could
estimate locations based on captured images. OPS [24]
allows users to locate remote objects such as buildings by
taking a few photos from different known locations. Com-
pared to them, our localization is based on triangulation
from angle measurements by the gyroscope. We use image
matching algorithms only for identifying which reference
objects are chosen by the user.

User efforts. Explicit user effort such as body rotation has
been adopted for different purposes recently. Zhang et al.
[27] show that the rotation of a user’s body causes dips in
received signal strength of a phone, thus providing direc-
tions to the location of an access point. SpinLoc [28] lever-
ages similar phenomena to provide user localization at
accuracies of several meters.

10 CONCLUSION

In this paper, we explore a new approach that leverages
environmental reference objects to triangulate user locations
using relative position measurements from smartphones.

Because the reference objects seldom move, it avoids exten-
sive human efforts in obtaining and maintaining RF signa-
tures in mainstream indoor localization technologies. We
have described the triangulation principle, guidelines for
reference object selection and shown the feasibility of point-
ing operations as a localization primitive. Then we propose
a lightweight site survey method to quickly estimate the
coordinates of reference objects in unmapped environ-
ments. We also adopt image matching algorithms to auto-
matically identify the selected reference objects by users.

Finally we study two issues: image matching mistakes
and inferring unknown reference objects. We formulate the
benchmark selection problem, prove its NP-completeness
and devise a heuristic algorithm that selects benchmark
images of reference objects for high image matching accu-
racy. We also propose a couple of geographical constraints
to infer the identities of unknown reference objects that can-
not be corrected by user feedback. Extensive experiments
conducted in two large indoor environments, a 150 � 75 m
shopping mall and a 300 � 200 m train station, have demon-
strated that Sextant achieves comparable performance to the
industry state-of-the-art, while requiring only a one-time
investment of 2-3 man-hours to survey complex indoor
environments hundreds of meters in size.
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