
A Fast and Simple Block-based Approach for
Common Path Pessimism Removal in Static Timing Analysis

Guojie Luo1,2,3, Baihong Jin1*, Wentai Zhang1

1 Center for Energy-efficient Computing and Applications, School of EECS, Peking University, Beijing, China
2 PKU-UCLA Joint Research Institute in Science and Engineering

3 Collaborative Innovation Center of High Performance Computing, National Univ. of Defense Tech., Changsha, China
e-mail: gluo@pku.edu.cn, happyucb@gmail.com, rchardx@gmail.com

Abstract—The “early/late split” in delay modeling is an effective
approach to handle the variability in deep submicron integrated
circuits. However, static timing analysis with early/late split is
often too conservative due to the common path pessimism,
where the common path pessimism removal (CPPR) technique
is helpful to eliminate the unnecessary pessimism. In this paper,
we propose a fast and simple CPPR algorithm with sub-
quadratic time complexity.

Keywords-VLSI; Static Timing Analysis (STA); Common
Path Pessimism Removal (CPPR)

I. INTRODUCTION

Timing closure has always been the main concern of
digital designers. A design team may spend months [1] on the
design iterations to achieve the timing target. Static timing
analysis (STA) is an approach to estimate the maximum
frequency of a digital circuit, while an accurate estimation will
reduce the design iterations and improve the design quality.

As device scaling continues, the process variation has
become more and more significant. As a result, complex
models are introduced to characterize the on-chip variation
(OCV). OCV can be classified into chip-to-chip variation and
within-chip variation. Multi-corner timing is an effective
approach to handle chip-to-chip variation, and early/late split
provides a simple approach to handle within-chip variation.

With early/late split, each timing edge in the timing graph
has the early-mode and the late-mode delays. Independent
analysis of timing paths introduces common path pessimism,
since the early-mode and late-mode delays cannot occur at the
same time on the common portion of two paths. Thus,
common path pessimism removal (CPPR) is necessary.

In this paper, we develop a new block-based STA
algorithm that can produce accurate post-CPPR results
directly. Our algorithm has sub-quadratic time complexity
with respect to the circuit size. As far as we know, this
algorithm has not been presented in existing literature.

II. PRELIMINARY BACKGROUND

We generalize the post-CPPR timing analysis problem in
the TAU 2014 Contest [3] as follows: given the netlist and the
early/late delays per timing edge of a sequential circuit,
calculate the post-CPPR setup/hold slacks of the � most
critical paths ending at each flip-flop (FF).

1* Baihong Jin involved in this project as an undergraduate student at PKU. He is now a PhD student at University of California, Berkeley.

A. Review of Pre-CPPR Timing Analysis
In this paper we use upper-case letters to represent the

constant delay values that known before computation, and use
the lower-case letters to represent the intermediate delay
values during the computation of STA.

Assume we only concern the delay of the most critical
path, we can find the worst negative slack (WNS) for the
setup-time constraints using the following equation. ��� = ����	
 − ��
�
� − max�∈���{�� − ��	�→�:��
��	� }

where ��� = ��	�→�:��	��
 + ��:��→�:�	��
 � ∈ ���
�� = max�∈ �!�!(�){�� + ��→�	��
} otherwise

In this equation, the minimum clock period ����	
 and the
setup-time ��
�
� are given, as well as the set of launching FFs
(LFF) and capturing FFs (CFF) and the topology of the timing
graph. The early/late modes of the FF delays and the gate/wire
delays are also given, including the arrival time ��	�→∗:��
from the central clock source to the clock pin of any FF, the
clock-to-Q delay �∗:��→∗:� of any FF, and the delay ��→�
between any neighboring timing nodes # and $.
B. Early/Late Split & Common Path Pessimism

Early/late split provides safety margins for timing analysis
by assigning lower and upper bound to the delay values, but
these safety margins sometimes introduce excessive and
undesired pessimism if two timing paths share a common
portion of the clock network. For example, in the pre-CPPR
timing analysis in the last subsection, we use the late-mode for
the clock signal of the launching FFs and the early-mode for
the clock signal of the capturing FFs when examining the
setup-time constraints. However, if the clock signals of two
FFs share a common portion in the clock network, the clock
signals in the common portion cannot simultaneously express
two different delay modes. Such unnecessary pessimism
should not be reported in the timing analysis results. The hold-
time constraints can be analyzed in a similar manner.

C. Previous Work on CPPR
Although the pre-CPPR slack is a lower-bound of the real

slack, there is usually no known correspondence between a
pre-CPPR slack and its post-CPPR counterpart. Therefore, a
complete CPPR analysis would require investigating all paths
for every failing test [3], which is usually computationally

2015 14th International Conference on Computer-Aided Design and Computer Graphics

978-1-4673-8020-1/15 $31.00 © 2015 IEEE

DOI 10.1109/CADGRAPHICS.2015.52

234

unaffordable. As a result, a set of filters or fast-outs are used
by existing CPPR algorithms to prune the search space.
References [3][2] give an excellent overview of the existing
methods.

The state-of-the-art post-CPPR STA algorithms are based
on path searches, using either the top-k critical path search [4]
or the branch-and-bound path retrieval [5]. In contrast, our
algorithm is compatible to the conventional block-based STA
framework, and can directly obtain the post-CPPR without
path searches.

III. OUR PROPOSED ALGORITHM

Aware of the common path pessimism, we find the WNS
for the setup-time constraints using the following equation. ��� = ����	
 − ��
�
� − max�∈���{��,�}
where ���,� = ��%&�:��,�:��'�* + ��:��→�:�	��
 � ∈ ���

��,� = max�∈ �!�!(�){��,� + ��→�	��
} otherwise
The equation is very similar to the equation in Section

II.A, except that there are more intermediate delay terms. In
the pre-CPPR timing analysis, every timing node $ has only
one intermediate delay term ��; but in our post-CPPR timing
analysis, every timing node $ has - intermediate delay terms ��,�, where - is the total number of capturing FFs in the
downstream paths of this timing node.

By setting ��%&�:��,�:��'�* to ��	�→�:��	��
 − ��	�→�:��
��	� , this
equation generates exactly the same WNS as in Section II.A.
As discussed earlier, the maximum delay for the timing path
ending at �: ./ and the minimum delay for the timing path
ending at 0: ./ will not happen at the same time when they
share common clock paths. Specifically, assume timing node 1 is the most recent common ancestor of �: ./ and 0: ./, we
set ��%&�:��,�:��'�* to ��→�:��	��
 − ��→�:��
��	� in the post-CPPR
timing analysis by removing the common path from 23� to 1.

Although this equation consumes more computation and
memory resources, it is an accurate solution for the post-
CPPR timing analysis. The experimental results in the next
section will also demonstrate its efficiency. It can be easily
extended to analyze the top � critical paths in addition to the
most critical path.

IV. EXPERIMENTAL RESULTS

To validate our proposed algorithm, we implemented it in
C++ and performed the experiments on a Linux server with
dual Intel Xeon E5-2430 2.2GHz CPUs with 32GB RAM. We
use the benchmarks provided by the TAU 2014 Contest.

UI-Timer [4] and iTimerC [5] are the top timers in the
TAU 2014 Contest, and we compare the runtime consumption
between our timer and theirs. Though the runtime of UI-Timer
and iTimerC is extracted from [5], the machine configuration
is similar to ours. Please note that those two timers are multi-
threaded, and our timer runs with a single thread. The results
are shown in Table 1. We can see that our timer is as efficient
as iTimerC, and outperforms the both timers in some cases.

Table 1. Runtime comparisons with data extracted from [5]

Bench type #test #path
UI-

Timer
(s)

iTimerC
(s)

ours
(s)

Combo2

setup 10000 15 15.3 13.69 11.70
20000 1 8.95 6.44 5.93

hold 10000 15 12.5 11.71 9.81
20000 1 7.46 5.87 5.54

Combo3

setup 6000 20 6.89 7.73 6.78
8000 1 2.92 3.60 3.16

hold 6000 20 5.95 6.28 5.32
8000 1 2.18 3.41 2.99

Combo4

setup 15000 15 82.88 90.03 57.99
25000 1 43.55 43.71 28.66

hold 15000 15 67.52 37.79 44.86
25000 1 42.3 17.14 27.37

Combo5

setup 20000 15 222.87 169.23 120.56
35000 1 150.78 89.33 69.38

hold 20000 15 167.84 87.25 90.30
35000 1 134.84 48.97 64.64

Combo6

setup 35000 15 584.83 244.05 253.71
50000 1 433.9 116.48 165.49

hold 35000 15 500.47 173.08 208.93
50000 1 378.29 81.72 154.64

Combo7

setup 35000 20 484.15 364.2 237.26
50000 1 299.6 136.31 135.85

hold 35000 20 383.47 174.92 190.26
50000 1 260.65 66.81 126.61

geomean - 63.46 38.84 38.79

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an algorithm for performing
post-CPPR timing analysis. We show that, with a proper
transformation, CPPR can be implemented within the block-
based STA framework with sub-quadratic complexity. We
will work on parallelizing our algorithm on multi-core CPUs
or GPUs for further accelerating post-CPPR timing analysis.

ACKNOWLEDGMENT

This work is partly supported by National Natural Science
Foundation of China (NSFC) Grant 61202073, Research Fund
for the Doctoral Program of Higher Education of China
(MoE/RFDP) Grant 20120001120124, and Beijing Natural
Science Foundation (BJNSF) Grant 4142022.

REFERENCES

[1] J. Bhasker and R. Chadha. “Static Timing Analysis for Nanometer
Designs.” Springer, 2009.

[2] V. Garg, “Common path pessimism removal: An industry perspective:
Special Session: Common Path Pessimism Removal,” Proceedings of
the 2014 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pp. 592–595, 2014.

[3] J. Hu, D. Sinha, and I. Keller. “Tau 2014 contest on removing common
path pessimism during timing analysis.” Proceedings of the 2014
International symposium on physical design, pp. 153-160, 2014.

[4] T. Huang, P. Wu, and M. D. F. Wong, “Fast path-based timing analysis
for CPPR,” Proceedings of the 2014 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 596–599, 2014.

[5] Yu-Ming Yang, Yu-Wei Chang, and Iris Hui-Ru Jiang. “iTimerC:
common path pessimism removal using effective reduction methods.”
Proceedings of the 2014 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 600-605, 2014.

235

