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Abstract. Recently, deep convolutional neural networks (CNNs) have
achieved excellent performance in many modern applications. These high
performance models normally accompany with deep architectures and
a huge number of convolutional kernels. These deep architectures may
cause overfitting, especially when applied to small training datasets. We
observe a potential reason that there exists (linear) redundancy among
these kernels. To mitigate this problem, we propose a novel regularizer to
reduce kernel redundancy in a deep CNN model and prevent overfitting.
We apply the proposed regularizer on various datasets and network archi-
tectures and compare to the traditional L2 regularizer. We also compare
our method with some widely used methods for preventing overfitting,
such as dropout and early stopping. Experimental results demonstrate
that kernel redundancy is significantly removed and overfitting is sub-
stantially reduced with even better performance achieved.

1 Introduction

Recently, various deep CNN architectures have been widely proposed for modern
applications, such as image classification and semantic segmentation. Most state-
of-the-art CNN models tend to employ a lot of stacked layers along with a huge
number of parameters, such as deep residual network [3], which has included
more than 100 layers. Normally, it is easier to result in overfitting with more
parameters included, especially on small training datasets. Thus, it has become
one obstacle to apply these complicated models on many practical problems.

In the past few years, research works have been proposed to prevent over-
fitting by reducing Co-dependence in deep CNNs. Hinton et al. [4] introduced
“dropout” to prevent overfitting. Srivastava et al. [10] show that dropout has
a regularizing effect, leading to less correlated features. Cogswell et al. [1] find
correlation between the cross-covariance of hidden unit activations. Then, they
propose a loss function termed DeCov to prevent overfitting, which is based
on the covariance matrix of the activation. Inspired by these works, we pro-
pose a novel regularizer to prevent overfitting in this work. Different from prior
approaches, we concentrate on reducing the kernel redundancy instead of Co-
dependence in deep networks. More specifically, we propose a new regularizer
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called correlationloss, which encourages kernels that have less (linear) correla-
tion. In addition, this regularizer is applied to convolutional layers rather than
fully-connected layers.

We apply the proposed regularizer on different network architectures using
various datasets, which include CIFAR10/100 and ImageNet. Experimental
results show that kernel redundancy is significantly removed and overfitting is
substantially reduced. Comparison with L2 penalty demonstrate the advantage
of using our approach over traditional approaches. In addition, we even achieve
a higher accuracy on CIFAR100 dataset than the previous state-of-the-art result
(81.03 % vs. 75.72 %).

The rest of this paper is organized as follows. In Sect. 2, we present how to
calculate correlation coefficients between two kernels. Based on this, we visual-
ize features and convolutional kernels to show kernel redundancy. In Sect. 3, we
propose our novel regularizer termed correlationloss. In Sect. 4, we provide com-
prehensive experimental results over a range of datasets, followed by a conclusion
in Sect. 5.

2 Exploring Kernel Redundancy in Deep CNNs

In this section, we first quantitatively define redundancy between two convolu-
tion kernels using correlation coefficient. Then, we demonstrate kernel redun-
dancy in real CNN models.

2.1 Correlation Between Two Kernels

First, we explain how to compute the correlation coefficient between two vectors
denoted as x, y. Let fcor(x, y) denote the Pearson’s correlation coefficient [7] of
two vectors,

fcor(x, y) =

∑

i

(xi − x)(yi − y)
√∑

i

(xi − x)2
∑

i

(yi − y)2
, (1)

where x and y denote the average of elements in vector x and y, respectively.
Here we denote two given convolutional kernels as S1 and S2. We first flatten

S1, S2 to S1flatten, S2flatten. The correlation is computed between two flattened
vectors. We use the computed correlations as a metric of similarity between
two kernels. For simplicity, we denote cor(S1, S2) as the similarity metric. The
computing formula is listed as follows:

cor(S1, S2) = fcor(S1flatten, S2flatten) (2)

2.2 Distribution of Correlations in a Real CNN Model

We apply the proposed cor(Si, Sj) on a VGG19 [9] model trained on ImageNet.
We calculate the correlation coefficients among all pairs of kernels i and j from
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the same layer in VGG19. The histogram of correlation coefficients for all kernel
pairs is shown in Fig. 1. For the first convolution layer, we can observe that
the distribution of cor(Si, Sj) is zero centered. But a number of kernel pairs
gather at both ends in the histogram. This indicates that there are many kernel
pairs, which have high correlation coefficients in the first convolution layer of the
VGG19 model. While going deeper into the network, we find that the numbers
of high correlation kernel pairs decrease sharply. An interesting observation is
that this trend is similar to that found in Shang’s work [8]. Shang et al. propose
a new activation to eliminate this phenomenon. In this work, we will address
this issue by minimizing the correlationloss (will be introduced in Sect. 3).

(a) conv1 1 (b) conv1 2 (c) conv2 1 (d) conv2 2

Fig. 1. Histograms of the correlation coefficients from conv1 1 to conv2 2 in VGG19.
There are many kernel pairs with high correlation coefficient in conv1 1. Numbers of
high-correlation pairs gradually decrease when going deeper into the network.

2.3 Visualizing High-Similarity Kernels and Features

Based on the above observation, we select some high-correlation kernel pairs for
visualization in Fig. 2. We put kernel pairs with high-correlation together and we
find that they have a similar pixel distributions. For comparison, we select some
high-similarity kernel pairs from VGG19 [9] and AlexNet [6] in Figs. 3 and 4,
respectively.

Fig. 2. Illustration of kernel pairs with high-correlation.
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Fig. 3. Some high-correlation pairs of kernels from the same layer of AlexNet.

In Fig. 4, column 2 and column 3 demonstrate the features that extracted by
the kernels from high-similarity pairs. It is difficult for human to distinguish two
generated features from the same image.

Fig. 4. Demonstrate the features extracted by high-similarity pair of kernels.

Inspired by these observations, we can treat these pairs with high correlation
as a (linear) redundancy in deep CNNs. To address this issue, we minimize the
correlationloss to eliminate the (linear) redundancy of convolution layer in deep
CNNs. The correlationloss will be introduced in next section.

3 Correlationloss

We collect correlation coefficients among all pairs of kernels from same convo-
lution layer and form a matrix G listed as follows. Si and Sj represent the i-th
kernel and j-th kernel of a convolution layer in a deep CNN.

Gi,j = cor(Si, Sj) (3)

As discussed in last section, we try to minimize the correlations among these
kernels. Thus, we can treat the Frobenius norm of G as a regularizer. Since the
diagonal of G is the self-correlation coefficients, we can subtract the term from
the matrix norm to calculate a final penalty term as follows:

correlationloss =
1
2
(‖G‖2F − ‖diag(G)‖22) (4)

where || · ||F is the Frobenius norm.
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We can find that correlationloss is different from LDeCov introduced in [1].
Instead, it is similar to the L2 or L1 regularizers because it is a function purely
based on weight vectors. We can simply implement the regularizer and apply it
to any layer in a deep CNN. We add this loss with classification loss and get total
loss with following equation. l represents the l-th layer in a deep CNN model.

totalloss = Lclassification + λ ∗
∑

l

correlationloss (5)

4 Experiment Results

4.1 CIFAR10 and CIFAR100

CIFAR10 and CIFAR100 datasets each consist of 50,000 training and 10,000 test-
ing images evenly drawn from 10 and 100 classes respectively. For preprocessing,
we subtracted the mean and divide by the variance. We also use random hori-
zontal flip and change the contrast for data augmentation.

We conduct experiments with VGG16 [9] and 34 layers Res-Net [3] on these
two datasets. We add batch normalization [5] after each convolutional layers.
For correlationloss, we set λ = 0.01 in Eq. (5).

We refer corloss to correlationloss in the result table for simplicity. In this
paper, we use the gap between train and test accuracy for evaluating overfitting.
We conduct a serial of experiments to compare different strategies for preventing
overfitting. Firstly, we compare our proposed regularizer with the traditional L2
regularizer. In Tables 1 and 2, we observe a significant improvement when using
correlationloss on these two models. We see that using correlationloss instead
of L2 weight decay has obviously decreased the gap (between train accuracy and
test accuracy) while obtaining a better test accuracy.

Table 1. Results on CIFAR10

Model corloss L2 Train Test Train-test

VGG16 No Yes 98.78 85.45 13.33

VGG16 Yes No 95.24 90.28 4.96

ResNet-34 No Yes 100 91.13 8.87

ResNet-34 Yes No 99.45 93.45 6.00

To compare our method with previous methods for preventing overfitting,
We conduct experiments with 34 layers ResNet [5] on cifar10 dataset. For fair
comparison, we add L2 regularizer in all these experiments. Table 3 shows the
results.

From the experimental results in Table 3, our method has a slight improve-
ment compared to dropout. We find that using both our method and dropout
can further improve the accuracy.
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We also combine early stopping with our method and dropout to see if it
can provide improvement. In our experiment, 10% of the original training set is
split into a validation set. We find that using early stopping doesn’t improve the
generation of such a complicated deep convolutional neural network. In [10], the
authors also mentioned this issue.

Table 2. Results on CIFAR100

Model corloss L2 Train Test Train-test

VGG16 No Yes 99.45 75.50 8.01

VGG16 Yes No 85.34 81.03 4.31

ResNet-34 No Yes 100 66.6 33.4

ResNet-34 Yes No 95.43 72.24 23.19

Table 3. Comparative Experiments with dropout based on Resnet-34.

Dataset corloss Dropout Early stopping Train Test Train-test

Cifar10 No Yes No 98.97 93.02 5.95

Cifar10 Yes No No 98.22 93.20 5.02

Cifar10 Yes Yes No 97.32 94.18 3.14

Cifar10 Yes Yes Yes 97.12 93.41 3.71

4.2 ImageNet

Imagenet [2] is a large labeled dataset. In our experiment, we select the validation
set of ImageNet2012 as testing dataset and the ILSVRC12’s training data as the
training dataset. We test our new regularizer on VGG19 [9] and find once again
that the corloss gives improvement over the baseline model with L2 regularizer.

Table 4. ImageNet Benchmark set results

Models Top1 Top5 Train-val (Top1)

VGG19 with L2 68.44 88.37 15.27

VGG19 with corloss 69.52 88.47 11.84

Even more interesting thing is that we observe the phenomenon discussed in
Sect. 3 vanishes when we use the correlationloss instead of the L2 regularizer.
It proves that this new regularizer is effective for reducing the (linear) kernel
redundancy.
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5 Conclusion

In this paper, we propose a new regularizer called correlationloss, which explic-
itly penalizes correlations among kernels in convolutional layers. Our new reg-
ularizer has demonstrated a strong ability to prevent overfitting. We show that
using correloationloss achieves better performance than traditional regularizer
with different datasets and model architectures.
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