
FPGA Acceleration for Simultaneous Medical Image Reconstruction and Segmentation

Peng Li1, Thomas Page3,2, Guojie Luo2,4, Wentai Zhang2, Pei Wang2, Peng Zhang1,

Peter Maass3, Ming Jiang2,4 and Jason Cong1,2,4∗
1University of California, Los Angeles, 2Peking University, 3University of Bremen, 4UCLA/PKU Joint Research Institution

I. INTRODUCTION

The conventional approach of computed tomography (CT)
is to solve each image processing task individually in sequence:
1) image reconstruction; 2) post-processing; 3) segmentation.
An obvious drawback is that the measured data is only used
once at the first step, and the possible errors, from noises in
the measured data, inappropriate modeling, or inappropriate
parameters, are not easy to be corrected and will be propagated
into the later steps. As a consequence, approaches that com-
bine the reconstruction and the specific processing task have
become popular [1], [2]. In this work, we adopt an iterative
algorithm with simultaneous reconstruction and segmentation
using the Mumford-Shah model[3], which can be applied
not only to regularize the ill-posedness of the tomographic
reconstruction problem, but also to compute segmentation
directly from the measured data. The Mumford-Shah model
is both mathematically and computationally difficult. In this
paper, we accelerated this computation and data intensive
application by FPGA devices and achieved 9.24X speedup over
the conventional CPU implementation.

II. DESIGN METHODOLOGY AND OPTIMIZATIONS

In this paper, we use high-level synthesis (HLS) flow to
design and implement the FPGA accelerator. The concept-
proofing Matlab programs are first manually translated into an
HLS friendly C programs, and then optimized from algorithm-
level, inner-module and inter-module for efficiency.

Profiling of the algorithm execution shows that for-
ward/backward projections dominate the total execution time
by 97%. The forward projection maps a function f into the set
of its line integrals, while backward projection maps the line
integrals back into an image. The first optimization technique
we develop is to reduce the number of projections using the
linear property of the forward/backward projections to trans-
form some projections to the linear combination of previously
projected images. With the algorithm-level optimization, the
number of projections in one iteration are reduced from four
to two.

The second optimization is to parallelize the computation
kernels: forward/backward projections. The images are parti-
tioned into disjoint tiles and projected separately before the
final accumulation. The boundary calculation for image tiles
with a fixed x-ray beam is complex and resource consuming.
Therefore, we precompute the results and save them in lookup
tables. Two major factors are considered in selecting degrees of
parallelism: resource limitation and communication overhead.
The problem can be formulated as a posynomial optimization
problem and can be solved by geometric programing. For
our target application and platform, the optimal degrees of
parallelism for forward/backward projections are 22 and 16
respectively.

∗ Prof. Jason Cong is a distinguished visiting professor at Peking University.

The last optimization is inter-module optimizations includ-
ing common expression elimination, loop merging and data
streaming. With inter-module optimization, 3 loops and 2
temporal arrays can be eliminated.

III. EXPERIMENTAL RESULTS

Xilinx Virtex-7 board VC707 is selected to be the target
hardware platform in our experiment. Xilinx Vivado Design
Suite 2013.1 is invoked by our automated system level design
tool, which generates the auxiliary modules automatically. The
Shepp-Logan phantom [4] is used as the test input with an
image size of 512*512. The alternate iteration counts and min-
imize image/edge iteration counts are all set to 10. Therefore,
the reconstruction and edge indicator are updated 100 times
each in the entire process. We have implemented several FPGA
designs and also CPU/GPU versions for comparison. Table I
shows the execution time, power and energy consumption
of various implementations. From the table, we can see that
the speedup of the optimized FPGA implementation over a
reference CPU implementation is 9.24X. The energy efficiency
of the optimized FPGA design is 168.9X over the CPU
implementation and 19.2X over the GPU implementation.

TABLE I: Experimental Results of Various Implementations

Implementations
Exe. Speed Power Energy Energy

Time(s) up (W) (kJ) Eff.

CPU (Xeon E5-2430) 453 1 95 43.0 1

GPU (Radeon HD 7850) 17 26.65 289 49.0 8.8

FPGA-Baseline 441 1.03 4.8 2.1 20.3

Algorithm Optimization 221 2.05 4.8 1.1 40.6

Inter Module Optimization 218 2.08 4.8 1.0 41.1

Parallel Kernels 49 9.24 5.2 0.25 168.9

IV. ACKNOWLEDGMENT

This work was supported partly by C-FAR, one of six
centers of STARnet, a Semiconductor Research Corpora-
tion program sponsored by MARCO and DARPA, the Na-
tional Basic Research Program of China (973 Program)
(2011CB809105), the National Science Foundation of China
(61121002, 61202073), and MoE/RFDP 20120001120124.

REFERENCES

[1] R. Ramlau, E. Klann, and W. Ring, “Simultaneous reconstruction and
segmentation for tomography data,” PAMM, vol. 7, no. 1, pp. 1 050 303–
1 050 305, 2007.

[2] Q. Zhang, R. Plemmons, D. Kittle, D. Brady, and S. Prasad, “Joint
segmentation and reconstruction of hyperspectral data with compressed
measurements,” Appl. Opt., vol. 50, no. 22, pp. 4417–4435, Aug 2011.

[3] M. Jiang, P. Maass, and T. Page, “Regularizing properties of the
mumford-shah functional for imaging applications,” Inverse Problems,
in press, 2014.

[4] A. C. Kak and M. Slaney, Principles of Computerized To-
mographic Imaging. IEEE Press, 1998, available online at
http://www.slaney.org/pct/pct-toc.html.

2014 IEEE 22nd International Symposium on Field-Programmable Custom Computing Machines

978-1-4799-5111-6/14 $31.00 © 2014 IEEE

DOI 10.1109/.52

172

2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines

978-1-4799-5111-6/14 $31.00 © 2014 IEEE

DOI 10.1109/FCCM.2014.54

172

