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Abstract. In-memory Key-Value stores (IMKVs) provide significantly
higher performance than traditional disk-based counterparts. As mem-
ory technologies advance, IMKVs become practical for modern Big Data
processing, which include financial services, e-commerce, telecommuni-
cation network, etc. Recently, various IMKVs have been proposed from
both academia and industrial. In order to leverage high performance
random access capability of main memory, most IMKVs employ hashing
based index structures to retrieve data according to keys. Consequently,
a regular memory access pattern can be observed in data retrieval from
those IMKVs. Normally speaking, one access to index (hash table), which
is also located in main memory, is followed by another memory access to
value data. Such a regular access pattern provides a potential opportu-
nity that data prefetching techniques can be employed to improve mem-
ory access efficiency for data retrieval in these IMKVs. Based on this
observation, we explore various data prefetching techniques with proper
architecture level modifications on memory controller considering trade-
off between design overhead and performance. Specifically, we focus on
two key design issues of prefetching techniques: (1) where to fetch data
(i.e. data address)? and (2) how many data to fetch (i.e. data size)?
Experimental results demonstrate that memory access performance can
be substantially improved up to 35.4 %. In addition, we also demonstrate
the overhead of prefetching on power consumption.

Keywords: In-memory key-value store · Data prefetching · Memory
controller optimization

1 Introduction

As we have moved into the era of Big Data, a huge number of modern applica-
tions that relies on large-scale distributed storage systems have emerged. How-
ever, traditional relational database management systems (RDBMS) may be
inefficient for many of them mainly due to the fact that features of RDBMS,
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such as support of complicated SQL queries, are no longer necessary [4]. There-
fore, the key-value (KV) store has become popular and been widely adopted in
modern data centers to support various Internet-wide services. These well-known
KV stores include BigTable [5], Cassandra [11], Dynamo [7], etc. Although these
KV stores can provide higher performance and better scalability than traditional
RDBMS, their performance is still limited by their underneath storage infrastruc-
ture that is based on hard disk drives (HDD). Thus, in order to satisfy increasing
performance requirement of modern applications, the so-called in-memory KV
stores (IMKVs) have attracted attention of storage researchers [20].

IMKV normally refers to a Key-Value (KV) store that uses main memory
for data storage rather than disk-based storage. As the access speed to main
memory is several orders faster than that to disk storage, IMKVs are usually
employed for storage systems where response time is critical. These systems are
widely adopted in financial services, e-commerce, telecommunication network,
etc. [16] Recently, IMKVs become more and more attractive mainly because of
advances in memory technologies. On the one hand, the decreasing price per bit
of DRAM technology makes it possible to employ IMKVs for modern Big Data
applications. On the other hand, various non-volatile memory technologies have
potential to improve durability in IMKVs. Consequently, many IMKVs have
been proposed from both academia and industry, which demonstrate 10-100x
performance improvements over traditional disk-storage counterparts [2,3,18].

Since data are maintained in main memory, the efficiency of data accesses
to memory is important for performance of these IMKVs. Compared to disk
storage (either HDDs or SSDs), main memory has an intrinsic advantage that
it supports high performance random accesses. Thus, unlike disk storage based
databases, many IMKVs prefer using hash function based index structure to
speed up index processing. Using such a hash index structure, we observe that
the access pattern to main memory become more regular than that to traditional
databases. Specifically, for those key-value stores based on IMKVs, one memory
access to index is followed by another memory access to value data. The data
access pattern provides a potential opportunity that data prefetching can be
leveraged to improve performance of data retrieval in these IMKVs.

In fact, prefetching techniques have been widely researched in memory
architecture design to improve efficiency of data access. Today, commercial
microprocessors are equipped data prefetch engines to improve performance
of memory-intensive workloads [1,23]. Based on hardware prefetcher, previous
works [9,14] evaluate accurate measurement of performance metrics by prefetch-
ing technologies. The basic idea of prefetching is to predict data that may be
accessed in future according to current states or execution history. Then, these
data are loaded in advance into on-chip caches [25] or memory controller [28] to
hide access latency. Obviously, the efficiency of prefetching relies on temporal
or spatial locality of data access pattern to main memory. For data accesses in
IMKVs, the regular access pattern enables the potential of employing prefetching
techniques.
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Through various different prefetching techniques, there are two major design
issues in common. First, how to detect which data should be prefetched (e.g.
prefetching address). Second, how many data should be loaded in prefetching
(e.g. prefetching size). Previous approaches normally depend on execution states
or history to predict prefetching address and prefetching size. However, it is not
straightforward to directly apply existing techniques on IMKVs. In order to
efficiently handle above design issues, we extensively explore data structures of
IMKVs and propose several design techniques optimized for different working
environments. The main contributions of this work are summarized as follows,

– With careful analysis of data accesses to in-memory KV stores, we reveal the
fact that a regular access pattern can be observed, which can be leveraged for
efficient data prefetching.

– Considering the data structure of KV stores, we propose a simple but efficient
extension to memory controller to predict the prefetching size.

– In order to identify the prefetching address, we propose two techniques, which
are suitable for different cases. The design trade-off between these two tech-
niques is also analyzed.

– Comprehensive experimental results are provided to evaluate efficiency of
applying our methods on a real in-memory KV stores.

2 Background and Motivation

In this section, we will present a brief review of data retrieval in hash-indexing
based IMKVs using a state-of-art representative. In addition, we will reveal the
fact that a regular access pattern to main memory can be observed.

In recent times, various IMKVs have become vital components in modern dat-
acenter storages, including Memcached [2,18], Redis [3], MICA [15], MemC3 [8],
and RAMCloud [22]. In these systems, all data are kept in DRAM at all times to
provide the lowest possible storage latency for different applications. And most
of these systems employ hashing based index structures as it provides a O(1)
lookup time. In the rest of this section, we will use RAMCloud as a representative
example to introduce how hash indexing works [22].

RAMCloud adopts a simple key-value data model consisting of binary objects
that are associated with variable-length keys. Each RAMCloud server contains a
collection of objects stored in a log area of DRAM via a log-structured approach
and a hash table that points to every live object. As shown in Fig. 1, objects can
only be accessed by their keys. It means that every object operation (access)
interacts with the hash table. For example, in a read request from a client, the
server must use the hash table to locate the object in the in-memory log area.

RAMCloud uses an open hashing method, in which there is only one possible
bucket for a specific object in the table. If a bucket is full, additional chained
entries are allocated separately to store more object references in the same
bucket. RAMCloud servers will have tens or hundreds of gigabytes of DRAM,
but the size of each object is likely to be quite small (a few hundred bytes or less).
Therefore, the hash table may contain tens or hundreds of millions of individual
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Fig. 1. Hash Table & Log in RAM-
Cloud [22]

Fig. 2. Hash table bucket in RAM-
Cloud.

entries. This means that the hash table working set is probably too large to be
held in the processor’s cache, and cache misses become unavoidable. RAMCloud
expects each lookup will cause no more than two cache misses: one miss in the
hash table bucket, and another to verify the key matches the object in log.

Several optimizations are applied in RAMCloud to reduce cache misses. As
show in Fig. 2, each key is hashed into a specific bucket, which contains up to
eight 47-bit direct pointers to objects within the in-memory log area. Each hash
table bucket is aligned to a CPU cache line (64 bytes on current x86 processors,
or eight hash entries). The hash table consists of a continuous array of such
buckets. Accessing a bucket will often result in a cache miss, which loads a full
cache line from memory. RAMCloud will then traverse all hash entries in the
loaded cache line when doing a lookup.

To avoid retrieving each object referenced in the bucket in order to verify a
match (i.e. to compare the key stored within the object in the log area), which
would likely cause a cache miss, RAMCloud uses the upper 16 bits of each hash
table pointer to store a partial hash of the key of the object referred. At this
rate, if a bucket contains several valid entries, it is highly possible that at most
one will have a matching partial hash in the bucket, so only one object will need
to be accessed to compare the key. The remaining 47 bits are sufficient to locate
the object within the in-memory log, and the 1-bit “C” flag indicates whether
the bucket is chained due to overflow.

In summary, the most common memory access pattern in RAMCloud is:
access one of hash table buckets, find one of hash entries in the bucket that
matches the partial hash of the object’s key, and then follow the pointer to
retrieve the object in log area to compare the key and utilize the value of the
object. It is confirmed by the memory trace we collected using Pin instrumen-
tation tool [17].

For example, the traces of seven memory requests in a RAMCloud get oper-
ation are shown in Table 1. The first five traces represent memory requests in
hash indexing, while the other two represent the data retrieving in log area.
First, RAMCloud loads a bucket, which is exactly a cache line, into the cache. It
then scans the entries in the bucket sequentially to find an entry with matching
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Table 1. Trace example.

No. Inst. Count Inst. Addr. Type Mem. Addr. Req. Size

1 15767034 0x473c10 R 0x82cfc300 64

2 15767695 0x473560 R 0x82cfc300 8

3 15767715 0x473560 R 0x82cfc308 8

4 15767735 0x473560 R 0x82cfc310 8

5 15767792 0x47352a R 0x82cfc310 8

6 15767872 0x4a5a7a R 0x7099a5c0 64

7 15767876 0x4a5a7a R 0x7099a600 64

partial hash, as shown in Trace 2–4. After three failed attempts, RAMCloud
finds the right hash, unpack the entry, and follow the pointer to retrieve the
key-value pair stored in the log area in Trace 5. Finally it fetches the corre-
sponding records in the log, extract the key, and make a comparison with given
key as shown in Trace 6–7.

From this example, we can find that it takes more than eight hundred instruc-
tions between the access to the hash table and the one to data. Thus, if we can
prepare data in advance before data access requests happen, the memory access
performance can be improved. In the next section, we will introduce how to
achieve this with data prefetching.

3 Prefetching Architecture Design

In this section, we first provide an overview of prefetching architecture proposed
in this work. Then, the key components employed in this architecture are intro-
duced in details.

3.1 Structure Overview

A computer system running IMKV is illustrated in Fig. 3. Note that other cache
levels other than last level cache (LLC) are hidden to save space. As shown
in Fig. 3, in order to enable dedicated prefetching mechanisms in IMKV, sev-
eral extra components are added into the memory controller. These compo-
nents include “index range registers” (IRRs), a “prefetching address control
unit” (PACU), and a “prefetching size control unit” (PSCU). The basic flow
of prefetching is described in details as follows.

As shown in Fig. 4, while a memory request is processed to access mem-
ory (step 1), it is sent to IRR at the same time (step 2). The purpose of IRRs
is to detect whether the memory request is accessing the hash index or not.
If the request is accessing index, a data prefetching process is triggered. The
index data retrieved from memory are sent to PACU to detect the addresses to
prefetch data (step 3). Then, these addresses are sent to PSCU to identify the
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Fig. 3. Architecture overview. Fig. 4. Memory access flow with
prefetching.

size of data to be prefetched (step 4). Note that both PACU and PSCU may also
access memory based on the mechanisms adopted in them (steps 5 and 6). With
information of prefetching addresses and sizes, the corresponding prefetching
requests are generated (step 7). Note that one or multiple prefetching requests
may be generated based on output from PACU and PSCU.

Apparently, the efficiency and design overhead of prefetching depends on
design of these components. In following subsections, design details of these
components will be introduced. Especially, for PSCU and PACU, different archi-
tectures are explored.

3.2 Index Range Register (IRR)

As mentioned before, we rely on IRRs to determine whether a memory request
is trying to access the hash table of an IMKV so that a proper prefetching is
triggered. This modification to memory controller is feasible. In fact memory
controllers provide sets of software accessible registers [23]. Since the hash table
usually accommodates a contiguous range of virtual addresses, we need two
programmable Index Range Registers (IRRs) to keep the start and end address
of the hash table. Note that we assume that all memory resource with a memory
controller is allocated to one IMKV. Thus, only one set of IRRs are needed.

We address that one obstacle of using IRR is that physical addresses instead
of virtual addresses of memory requests are sent to the memory controller for
response. One possible solution is to modify hardware to send both physical and
virtual addresses to memory controller. However, the design overhead is non-
trivial. Instead, we modify the kernel library of memory allocation to ensure
that a contiguous range of physical addresses is allocated to hash table during
initialization of an IMKV.

We design a set of system calls that allow applications to change the value
of IRRs. Currently we have modified applications by hand to insert the system
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calls to set the lower/upper bound when the IMKV requests memory allocation
for the hash table. Note that this process can be automated by compiler in the
future. With the help of IRRs, all memory requests whose addresses are in the
hash table range are forwarded to the PACU, which is introduced in the next
subsection.

3.3 Prefetching Address Control Unit (PACU)

With the help of IRR, each access to the index of IMKV has potential to trigger
a data prefetching to speed up the following request of value retrieval. In order
to achieve efficient data prefetching, the first critical design issue is to find out
the starting address of value data from index information. However, this process
is not straightforward. For example, in RAMCloud, each hash bucket has eight
index entries. It means that, there are eight prospective addresses of value data
in a single bucket.

Naive Exhausted Prefetching. One simple solution is to prepare all potential
value data within the same hash bucket before the address of correct value is
computed. For example, in RAMCloud, all value data indexed by valid entries
in the same bucket are prefetched. Although these indexes are located in the
same bucket, the data may be distributed in different ranks or banks. Thus, it
is possible to leverage the parallelism of main memory.

This method works efficiently when the index utilization is low. In other
words, if there are too many valid entries in a bucket, we may not gain any
benefits from data prefetching. The reason can be explained in two-folds. First,
due to limited memory rank and bank numbers, the more values we prefetch at
the same time, the higher probability they may conflict during prefetching. Thus,
the efficiency decreases as the utilization of index memory increases. Second,
prefetching too many data at the same time will also impact other memory
accesses. In Sect. 4, we will demonstrate that this simple method cannot work
well when the average utilization is more than 50 %.

In order to identify proper value to be prefetched rather than prefetching all
of them, we further propose two types of techniques in this work: in-situ index
processing and value address prediction.

In-situ Index Processing. In-situ index processing architecture is extended
from the accelerator design called Widx [10]. The basic idea is to processing
hash index lookup inside memory controller with dedicated hardware design.
Then, the corresponded data is prefetched. Similar to Widx, dedicated process-
ing logic are required to perform hash index lookup. However, the Widx archi-
tecture needs to be substantially modified when being adopted in our design.
It is mainly because Widx is proposed as a co-processor for relational DBMS,
which is different from our target, in-memory KV store, in this work.

First, since the prefetching is simply triggered by accessing hash table, the
accelerator for hash index lookup is not explicitly controlled by IMKV. In addi-
tion, the extra overhead for communication between CPU and accelerator is
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significantly reduced. However, we need a dedicated RAM in memory controller
to store the instructions for processing hash function. Second, Widx only works
with linked-list style hash index structure. Thus, modification is needed to make
our design work with bucket data structure like that in RAMCloud. The advan-
tage of RAM is that in-situ index processing can be extended to work with
different hash index structure through uploading dedicated instructions. Third,
different with Widx, which only returns index lookup result to processor, our
design needs to issue memory prefetching requests based on the lookup result.

Value Address Prediction. Obviously, in-situ index processing can always
find out the correct address to prefetch data. However, its major drawback is
that substantial design overhead may be induced due to several reasons. First,
since the original key is normally required in memory controller for further index
processing, extra hardware support is required. In addition, software level modifi-
cation is needed to identify the key to be forwarded. Second, the design overhead
inside memory controller for index processing (e.g. hash function) is non-trivial.
In order to overcome this limitation, we further propose alternative techniques
based on prediction.

The prediction technique is to leverage the temporal locality in data access
patterns. In other words, for data indexed in the same hash bucket, one of them
may be accessed repeatedly during a period. For such access patterns with good
temporal locality, there is high possibility that the entry containing correct data
addressed in the last access will be accessed again. Thus, it is beneficial to
prefetch data indexed by this entry.

The key issue of prediction is to indicate the entry containing correct address
in the last data retrieval. We propose to design additional hit table in hardware
to record the hit history of these index entries. One critical issue is to decide
the size of hit table. For example, in RAMCloud, a 2 GByte hash table requires
a 12 MByte hit table to fully record hit history of all hash entries. To fully
integrate such size hit table in memory controller is not feasible due to both area
and scalability issues. Like Centaur [24], we design hit table in a memory buffer
between memory controller and main memory, rather than in memory controller
or main memory. The hit table shares the same index from key hashing. PACU
can acquire hit table entry off-chip when it is triggered by IRRs. Advantages to
implement hit table in memory buffer is faster access than in main memory and
better scalability than fixed size in memory controller. In case that we have to
consider overhead of hit table to reduce its size at huge hash table, it is possible
that it cannot fully cover all hashing entries. In such cases, if the key hashing
index is out of the range of hit table, a default prediction scheme of loading
the first entry in the hash bucket can be employed. In Sect. 4, we evaluate hit
table in constant latency, and also maximum size to cover whole hash table.
The other critical issue is how to update hit table. Through modification of
get operation, we propose IMKVs to update hit table every time when data
retrieving finish. By this way, hit table contains latest access entries in hash
table. Although interferences from different threads and bad temporal or spatial
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locality in data retrieving reduce predication accuracy, as show in Sect. 4, we will
demonstrate that this simple method still works well when accuracy is as low as
20 %. Especially, the fact that accuracy of predication is increased as hash table
utilization is decreased opens a door for IMKVs to control accuracy in need.

3.4 Prefetching Size Control Unit (PSCU)

With the help of PACU, we can decide where to prefetch data. Then, the next
critical issue is to determine how many data we should prefetch from main
memory. As shown in Fig. 3, we rely on the component called prefetching size
control unit (PSCU) in this work. There are two corresponding choices for design
of PSCU, which are introduced in the following two paragraphs. Although the
determination of prefetching size is orthogonal to the design of PACU, these two
components affect each other on the efficiency of prefetching.

Run-Time Size Determination. Similar to in-situ index processing, we can
leverage the accelerator in memory controller to detect the prefetching size based
on the data stored at prefetching address. In other words, we employ dedicated
logic to obtain the size of value dynamically. This method is feasible because
the size of a value is normally stored together with value data in KV store. For
example, the first several bytes of value data in RAMCloud contains the size
information. Obviously, if in-situ processing accelerator is employed in PACU,
the hardware can be shared with PSCU to accurately determine prefetching
address and prefetching size.

Average Size Profiling. When the naive prefetching or the address prediction
technique is employed, it is not efficient to add an accelerator just for determi-
nation of prefetching size. Thus, a profiling based technique is preferred for in
these two cases.

– Static Profiling. A simple but efficient method is to perform static profiling
in advance to calculate the average value size. This static method is preferred
when the size of values do not vary a lot.

– Dynamic Profiling. An alternative is to determine the run-time average value
dynamically. This method is more efficient than static one when the value sizes
vary significantly. However, it requires extra support to record the history of
value size. In order to reduce hardware overhead, we propose software method
profiles past accessed size of KVs and update PSCU periodically.

Both static and dynamic profiling methods are based on facts that in parts
of IMKVs application, such as financial services, KV-pair’s size does not show
big variations. When the prefetching size does not match the value size, the
efficiency of prefetching is decreased. If the size of prefetched data is smaller
than the real value size, supplementary memory request from CPU is needed
to fetch the rest of value data. On the contrary, if the prefetching size is larger
than the real value size, memory bandwidth is wasted and other normal memory
requests may be affected.
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4 Evaluation

In this section, we first introduce the setup for experiments. Then, we provide
comprehensive results and analysis. In addition, the design overhead is discussed.

4.1 Experiment Setup

We conduct the experiment on customized trace-driven cycle-accurate simu-
lator, which supports a full CMP architecture, including out-of-order multi-
issue multi-processors, two-level cache hierarchy, shared-cache coherent protocol,
2-D mesh NOC, main memory controller and DRAM device. Be specific, CPU,
cache hierarchy and NOC are modeled by home-made simulator, while the mem-
ory controller and DRAM device are modeled by DRAMSim2 [21], and power
is evaluated on DRAM device. Performance is evaluated by average memory
request latency. The detailed configuration of the experiment and parameters
used in simulation are shown in Table 2.

Table 2. Detailed configuration of experiment platform

Unit Configurations

CPU 8 Intel cores, 4 GHz, 128 instruction windows, 4issue/4commit
(one memory op) per cycle, 16 MSHR

L1 Private 16 KB 4-way set associative, 64 B line, LRU, R/W 1/
1-cycle

L2 Shared 4 MB 16-way set associative, 64 B line, LRU,

Cache-coherent Directory based cache-coherent protocol: MESI

NOC 2× 4 mesh NOC, one router per node, x-y direction based
routing, 8 flits per data packet, 1 flit per control packet

Memory controller 2 memory controllers, 16 GB, 32 entries transaction queue,

32-entry command queue, FR-FCFS scheduling, open page
policy, rank-interleave address mapping

DRAM device Micron DDR3-1333 Mhz, x8, 8Banks, 32768 Rows/Bank,
1024 Columns/Row, 1 KB page size, BL = 8

The benchmarks are run on RAMCloud [22], which is a widely-adopted mul-
tithread IMKV application. We use typical IMKV requests (128 B, 256 B and
512 B value size) from YCSB [6] benchmark to drive KV operations in RAM-
Cloud. To setup initial database in RAMCloud, we generate sufficient KV pairs
to initialize RAMCloud’s memory, in total 1 GB segmented log and 100 MB hash
table. Based on execution of RAMCloud, we collect traces of multithreaded KV
operations on real CMP machine and feed traces to simulator. During simula-
tion, we execute 10 billion instructions of KV benchmarks for rapid estimation.
Table 3 shows 12 typical mixed workloads of KV operations in IMKV requests,
which have an increasing size of average value size in Byte.
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4.2 Experiment Results

In order to address the impact of each design factor related to design of PACU
and PSCU, the synthetic workloads are first simulated. Then, the evaluation
using real workloads is discussed. Note that we use normalized average “memory
request latency” as the metric of memory access performance.

Synthetic Workloads Results. In Fig. 5, the impact of prefetching size on
performance is evaluated. There are three sets of workloads, in each of which
the value size is fixed. Assume that the static profiling method is employed.
The prefetching size varies from 128 B to 1024 B to demonstrate its impact. In
this experiment, the correct prefetching address is always provided to isolate the
effect of PACU. For comparison, the baseline without using any prefetching is
also presented and all results are normalized to it.

As shown in the Fig. 5(a), the best performance is achieved when the prefetch-
ing size matches the value size. In addition, we can observe that the efficiency of
prefetching increases with value size. When the prefetching size is smaller than
the value size, the efficiency of prefetching decreases. But, we can find that per-
formance is still improved compared to the baseline. It is because part of value
data is prefetched and the rest is requested by CPU through normal access. The
results also show that prefetching efficiency is reduced when more data than
value are prefetched. It is because its effect on memory bandwidth and other
normal requests has offsets its benefits from data prefetching.

In Fig. 5(b), the efficiency of naive exhausted prefetching is evaluated. Similar
to last experiment, there are three sets of workloads with fixed value size. In
order to isolate the effect of prefetching size, we assume that prefetching size
always matches the value size. For each workload, we vary the average hash
bucket utilization through software level control, so that prefetching size by
naive exhausted method varies from 2 KVs to 8 KVs. Besides the baseline, we
also present one set of result using in-situ hash processing when utilization is
4 KVs per hash index. Here, we skip 1 KV case, because hash table utilization is
too low, and exhausted method always prefetch correct data as in-situ method.
From the results we can tell that the efficiency of naive exhausted prefetching
decreases as the utilization of bucket increases. Normally, we cannot gain any
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Fig. 5. (a) Effect of prefetching size. (b) Efficiency of naive exhausted prefetching.
(c) Effect of prefetching accuracy.
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Table 3. Detailed configuration of workloads

Workloads 128B-R 128B-W 256B-R 256B-W 512B-R 512B-W Avg(Byte)

mix1 96.7 % 0.8 % 1.5 % 0.1 % 0.6 % 0.5 % 134.1

mix2 70.0 % 9.5 % 7.4 % 2.4 % 8.2 % 2.7 % 182.3

mix3 34.1 % 34.0 % 10.4 % 5.5 % 10.3 % 5.7 % 210.1

mix4 37.2 % 19.3 % 24.4 % 5.1 % 8.7 % 5.3 % 219.5

mix5 13.4 % 10.5 % 61.6 % 12.5 % 1.5 % 0.5 % 230.5

mix6 15.0 % 10.0 % 37.5 % 27.5 % 7.5 % 2.5 % 249.6

mix7 17.4 % 6.6 % 38.2 % 15.6 % 15.2 % 7.1 % 282.5

mix8 8.0 % 5.0 % 32.5 % 22.5 % 27.0 % 5.0 % 321.3

mix9 17.1 % 5.1 % 13.1 % 5.0 % 58.6 % 1.3 % 380.8

mix10 7.5 % 2.5 % 15.0 % 10.0 % 37.5 % 27.5 % 409.6

mix11 5.7 % 1.1 % 19.8 % 7.7 % 54.8 % 11.2 % 416.1

mix12 6.4 % 5.2 % 7.3 % 6.8 % 37.8 % 36.8 % 432.0

benefits when the utilization is higher than 50 %. In addition, we can tell that
its impact on performance increases with the value size.

In Fig. 5(c), the efficiency of address prediction is evaluated, in respect of pre-
diction accuracy. In this experiment, we assume that the value size is fixed and
is known in advance for each workload. Thus, the performance is only affected
by the prefetching address prediction. For each workload, we vary the prediction
accuracy from 10 % to 100 %. Note that the case of 100 % accurate reflects the
result when the in-situ hash processing is employed. We can find that perfor-
mance is improved by more than 20 % for all workloads when the prediction accu-
racy is higher than 50 %. In worse case, 20 % predication accuracy still achieves
about 10 % improvement. The reason is the temporal locality in IMKVs is differ-
ent from scientific applications, thus the replacement of cache line by prefetched
data doesn’t impact much on miss rate of last level cache. It proves the feasibility
of prefetching address prediction in PACU, such as hit table method, especially
for large value size.

Real Workloads Results. In this section, we present performance simulation
results based on real workloads listed in Table 3. In addition, the energy overhead
caused by prefetching is also included.

We repeat an experiment similar to that in Fig. 5(a), in which different
prefetching sizes are applied with real workloads. Normalized performance results
are shown in Fig. 6. Besides the baseline without using prefetching, the in-situ
case using in-situ processing for both prefetching address and size is also com-
pared in the Fig. 6. We can find that the efficiency of prefetching relies on proper
prefetching size. In-situ case gains best performance due to accuracy. The second
optimized prefetching sizes found in the figure for different workloads are closed
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Fig. 6. Effect of prefetching size with real workloads.
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Fig. 7. Efficiency of naive exhausted prefetching with real workloads.
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Fig. 8. In-situ processing vs. prediction.

to the average value sizes calculated in Table 3. It proves average size profiling
method can achieve improvements on performance.

In Fig. 7, the naive exhausted prefetching with in-situ method is applied with
real workloads. We can draw the similar conclusion that it only works when the
bucket utilization is lower than 50 %, and its offsets impact on performance
increases with the average value size. Basically, it is hard for hash table with full
utilization of buckets to gain benefits through naive exhausted prfetching.

In Fig. 8, we compare the in-situ case with best performance to case with
lowest design overhead. As mentioned before, the in-situ case is to use in-situ
processing for both prefetching address and size with most accuracy. The case
with lowest overhead is to use dynamic profiling and the prefetching address pre-
diction (e.g. hit table method). Experiment shows hit table method can achieve
about 50 % accuracy of address predication on average. We find that the prefetch-
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Fig. 9. Extra power consumption.

ing based on simple profiling and prediction can also improve performance. On
average, performance is improved by 35.4 % in in-situ case and is improved by
21 % in the latter case.

Although prefetching can help improve performance of IMKV, it also induces
extra power consumption. In Fig. 9, we demonstrate the normalized power results
for different workloads. We can find that the power overhead is trivial for in-
situ prefetching case. It is because prefetching only changes the sequence of
load data value without inducing extra memory requests. However, with the
prediction based prefetching, the power consumption is not always negligible
due to incorrect prediction and dynamic profiling.

5 Related Work

Most in-memory stores using hash table as indexing structure: Memcached [2,
18], Redis [3], RAMCloud [22], MemC3 [8], and MICA [15] all exploit hashing to
achieve low latency and high performance. Standard Memcached uses a classical
hash table design to index the key-value entries, with linked-list-based chaining
to handle collisions. Its cache replacement algorithm is strict LRU, also based
on linked lists. RAMCloud [22] employs a cache-optimized hash table layout
to minimize the memory cache misses. MemC3 [8] is optimized for read-mostly
workload by applying CLOCK-based eviction algorithm and concurrent opti-
mistic cuckoo hashing. MICA [15] enables parallel access to partitioned data,
utilizes lossy concurrent hash indexes, and bulk chaining techniques to handle
both read- and write-intensive workloads. These mechanisms could be layered
on top of our data prefetching schemes to achieve the same goals.

Prefetching is a commonly used method to hide the increasing latency of
accesses to main memory. Various studies have been conducted to investigate the
benefits of prefetching. These techniques can be classified as software-controlled
or hardware-controlled. Software-controlled prefetching techniques [19,26] use
special prefetch instructions to asynchronously pre-load cache blocks. Addi-
tional instructions must be inserted and executed in the applications. Unlike
software-controlled method, hardware-controlled prefetching techniques [12] con-
struct pre-fetcher triggered by dedicated conditions to retrieve data in advance.
PADC [12] estimates the usefulness of prefetch requests, adaptively priori-
tize between demand and prefetch requests, and drop useless prefetches. Lee
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et al. [13] study the DRAM bank-level parallelism issues in the presence of
prefetching. Based on commercial microprocessors equipped with data prefetch
engines [23], [9] evaluate accurate measurement of performance metrics through
adaptive prefetching scheme depending workloads natures. According to location
of prefetching initiator, memory-side prefetching [27], in tandem with processor-
side prefetcher to leverage knowledge of DRAM state, answers what/when/where
to prefetch. In contracts, our work focuses on hash table prefetching in IMKVS
and therefore has the application-specific knowledge of regular access pattern in
workloads to improve memory access performance.

Co-processor has been widely used for acceleration of specific applications.
Recently, for hashing index based IMKV, Babak et al. propose Widx [10], an
on-chip accelerator for database hash index lookups. Widx uses a custom RISC
core to achieve high-performance hashing computation. Widx walks multiple
hash buckets concurrently to exploit the inter-key parallelism. We extend Widx
in memory controller as in-situ method to cover not only linked-list style, but
also bucket style hash index structure, to issue accurate prefetching requests to
improve data retrieving based on hash lookup result.

6 Conclusion

In-memory KV stores have been extensively employed for modern applications
for high performance data retrieval. Since hashing based index is widely adopted
in these KV stores, the memory access patterns for data retrieval are regular.
Thus, data prefetching technique can be employed to improve performance of
memory access. In this work, with detailed analysis of data access pattern in
real IMKVs, we propose several practical prefetching techniques. The in-situ
processing based prefetching can achieve the best performance but also induces
most overhead. The prediction and profiling based prefetching can also improve
performance with moderate design overhead. However, it may induce non-trivial
power overhead. Considering the trade-off, proper prefetching should be adopted
in real cases for different design goals.
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