
Toss-up Wear Leveling: Protecting Phase-Change
Memories from Inconsistent Write Patterns

Xian Zhang†

zhang.xian@pku.edu.cn
Guangyu Sun†,‡

gsun@pku.edu.cn
†Center for Energy-Efficient Computing and Applications, Peking University, Beijing 100871, China
‡Collaborative Innovation Center of High Performance Computing, NUDT, Changsha 410073, China

ABSTRACT
Limited write endurance is one of major obstacles to
adopt Phase Change Memories (PCMs) in practice as
future main memory. Considering process variation (PV)
and non-uniform write intensity, PCM cells with low en-
durance (i.e. weak cells) can wear out in seconds under
intensive writes. To prolong PCMs’ lifetime, many PV-
aware wear leveling schemes have been proposed fol-
lowing a common idea: intensive writes are predicted
and allocated to cells with high endurance (i.e. strong
cells) based on the write intensity distribution, which
should be consistent at predicted intervals. However,
we discover that this idea leaves a serious vulnerabil-
ity against a malicious program, which is designed to
have an inconsistent write intensity distribution. Prior
wear-leveling schemes can even be leveraged to speed up
wearing out weak cells. To counteract this attack, we
propose Toss-up Wear Leveling (TWL), a novel scheme
that randomly allocates writes between two bond blocks
discounting the consistency of write distribution. Ex-
periment results demonstrate that, compared to prior
works, TWL can improve lifetime substantially with
negligible overhead in performance and hardware cost.

1. INTRODUCTION
Phase Change Memories (PCMs) have been increas-

ingly proposed as a competitive candidate for future
main memories of servers [10, 12, 9, 16]. However, lim-
ited write endurance has impeded the adoption of PCMs
in practice. A PCM cell is supposed to sustain only
about 108 writes before a permanent failure occurs [1,
12]. To tackle the problem, many wear leveling schemes
are proposed to uniformly distribute writes [10, 12, 7].

Unfortunately, when process variation (PV) is consid-
ered, some cells may be inherently susceptible to writes,
which are called weak cells. And traditional wear lev-
eling, which leads to an even write intensity, may real-
locate writes to the weak cells to speedup their wear-

This work was supported by NSF China 61572045.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC’17, June 18-22, 2017, Austin, TX, USA
c©2017 ACM. ISBN 978-1-4503-4927-7/17/06 ...$15.00

DOI: http://dx.doi.org/10.1145/3061639.3062329.

out [6, 15, 13]. Therefore, PV-aware wear leveling are
widely studied, such as wear-rate leveling, bloom-filter
based leveling and etc [14, 6, 13, 15].

A general flow of PV-aware wear leveling includes
three phases: prediction, swap, running [6]. In the pre-
diction phase, hot/cold addresses are figured out ac-
cording to the write traffic. In the swap phase, hot
addresses are mapped to strong cells and vice versa.
In the running phase, if the distribution of write in-
tensity is consistent, strong cells are intensively writ-
ten while weak cells suffer a much lower write traffic.
Therefore, weak cells are protected and PCM’s lifetime
is prolonged.

Unfortunately, the bedrock of these techniques, namely
the consistency of write intensity distribution before
and after swaps, may be incorrect for malicious pro-
grams. For a malicious program, in order to wear-out
the PCM, it may cheat in the prediction phase and show
a reverse distribution of write intensity in the running
phase. As a result, intensive writes are imposed on the
weak cells resulting in a quick wear-out.

To mitigate the “inconsistent write” attack, we pro-
pose a novel PV-aware wear leveling, which does not
rely on the consistency of write distribution but ran-
domly reallocates the writes according to cells’ endurance.
The core idea of our design is straightforward: a strong
page (page-A) is bond with a weak page (page-B) to
be a “toss-up pair”. Every time a write is to be al-
located to any page in the pair, with a probability of

Endurance−A
Endurance−A+Endurance−B , the write will be reallocated
to page-A otherwise page-B. The process is like playing
a ”toss-up” to decide which page to write. The page
with high endurance in a pair are likely to be written
more frequently. Thus, our design is PV-aware and im-
mune to the “inconsistent write” attack. Further op-
timizations called inter-pair swap, strong-weak paring
and interval-triggered toss-up are also proposed.

Our contributions can be summarized as follows:

• We introduce a novel wear-out attack with inconsistent
write patterns to circumvent existing PV-aware wear
leveling schemes.

• We propose an efficient countermeasure named Toss-
up Wear Leveling (TWL) to mitigate the attack .

• We further optimize TWL for better robustness and
less write overhead.

• We evaluate TWL in the overhead of lifetime, perfor-
mance and design overhead .

The rest of the paper is organized as follows: In Sec-
tion 2, we introduce the related work of PV-aware wear
leveling schemes. In Section 3, we present an effective

attack to existing PV-aware wear leveling schemes. Sec-
tion 4 introduces Toss-up wear leveling to counteract
the inconsistent write attack. Comprehensive results
are provided in Section 5, followed by our conclusion.

2. RELATED WORK
Due to the immature fabrication process and lim-

itations of materials, the write endurance of a PCM
cell is about 108, several order of magnitude lower than
DRAM’s [1, 12]. To prolong PCM’s lifetime, traditional
wear leveling schemes are widely studied, which aim to
uniformly distribute writes among arrays [10, 12, 7].

Unfortunately, process variation (PV) can aggravate
the wear-out problem and severely degrade the efficiency
of traditional wear leveling schemes [14, 15, 5, 1, 13] .
Some cells may tolerate much less writes [1, 14, 6] and
therefore a uniform write distribution will speed up the
wear-out of weak cells, which leads to a shorter PCM
lifetime. Consequently, PV-aware wear leveling is pro-
posed [15, 6, 13, 14, 1].

Prediction Phase Swap Phase Running Phase
(a)

(b) PCM
data1
data2
data3
data4

ET
40
60
80
120

WNT
9
4
4
2

PA1
PA2
PA3
PA4

RT
PA1
PA2
PA3
PA4

LA1
LA2
LA3
LA4

(c) PCM
data4
data2
data3
data1

PA1
PA2
PA3
PA4

RT
PA4
PA2
PA3
PA1

LA1
LA2
LA3
LA4

Predicted
hot

addr

cold
addr

weak
page

strong
page

20
40
40
90

Expected #
of writes

Abbreviations in this figure: PA = physical address ET = endurance table
LA = logical address RT = remapping table WNT = write number table

Figure 1: Illustration of a typical PV-aware wear
leveling (Wear Rate Leveling): (a) The basic
flow (b) states of PCM in the prediction phase
(c) states of PCM in the running phase

Wear rate leveling [6] is used to illustrate the basic
flow of PV-aware wear leveling schemes. As shown in
Figure 1 (a), the basic flow includes three phases: pre-
diction, swap and running. The initial endurance is
supposed to be tested by the manufacturers [6, 14] and
stored in the endurance table (ET). The mappings be-
tween logical address (LA) and physical address (PA)
are recored in the remapping table (RT) [15, 14, 6]. In
the prediction stage, the write number to every LA is
recorded in the write number table (WNT) (Figure 1
(b)). If the write distribution is consistent in the next
period, the future hot/cold addresses can be predicted.
As shown in Figure 1 (b), LA1 is predicted to be a hot
address while LA4 is a cold address. Then, by swap-
ping the blocks, hot/cold addresses are reallocated to
the strong/weak cells. As illustrated in Figure 1 (c),
the LA1 is mapped to PA4 while LA4 to PA1. The
last phase is the running phase, in which cells are writ-
ten according to the updated RT. Note that running
phase is much longer than the prediction phase (e.g.
10X in [6]). As shown in Figure 1 (c), endurance of
PAi(i = 1, 2, 3, 4) is supposed to afford the expected
number of writes.

Other PV-aware wear leveling schemes follow a sim-
ilar flow. Yun et. al. further optimizes the flow us-
ing bloom filters and dynamic thresholds to identify
hot/cold addresses and strong/weak cells [13]. Thus,
the cycles of three phases may dynamically change and

the sorting overhead in wear rate leveling is reduced.
Zhao et. al. follow the same idea of Figure 1 considering
the hybrid memory with MLC and SLC [15]. An OS-
assisted scheme is proposed by Zhang et. al. to achieve
the hot/cold to strong/weak mapping [14]. Asadinia et.
al. have proposed a dynamic remapping scheme to slow
the permanent failures related to process variation [1].

3. WEAR-OUT ATTACK BASED ON INCON-
SISTENT WRITE PATTERNS

In this section, we illustrate the details of our wear-
out attack. We first describe the attack model. Then,
we present our “inconsistent write attack”.

3.1 Attack Model
We adopt an attack model similar to prior work [12,

7]. As shown in Figure 2, a PCM is employed as the
main memory of a server. And the PCM is escorted by a
PV-aware wear leveling scheme. The attacker can send
malicious codes to compromise the OS remotely (e.g.
via buffer overflow). And the CPU cache and DRAM
buffer can be turned off by the OS. Arbitrary memory
commands (op,data,addr) tuple can be sent to the PCM
main memory. Here op is read or write. And data is the
data to write (data is null when op is read). addr means
the logical address to read or write. In addition, we
assume that the attacker can use some instructions (e.g.
rdtsc()) to measure the memory response time. The in-
ner states within the PCM and the wear leveling circuits
are not exposed to anyone.

Malicious code

Servers Adversary

Compromised OS
with wear-out

attack programs
PCMs

PV
-a

w
ar

e
w

ea
r l

ev
el

in
g (op, LA, data)

Memory response

Figure 2: The attack model

3.2 Deliberate Inconsistent Write Patterns
As addressed before, prior PV-aware wear leveling

schemes [14, 6, 13] share a basic assumption: write dis-
tribution is consistent. Thus, the hot/cold addresses
of next running phase are determined according to the
WNT during prediction phase. While the assumption is
true for most normal benchmarks, it can be leveraged by
a malicious program to speedup the wear-out of weak
cells. The malicious program can quickly wear-out a
memory page by repeating two steps as follows:

• Step-1: Write LAi for Wi times (i = 1, 2, ..., N). En-
sure that W1 < Wk < WN (k = 2, ..., N − 1). Mean-
while, keep detecting the start and end of swap phase
by measuring the memory response time1.

1Memory swaps will block all memory requests to ensure
memory integrity, which leads to an increase in memory re-
sponse time [7, 12].

• Step-2: When swap phase ends, write LAi for W ′
i

times (i = 1, 2, ..., N) with W ′
N < W ′

k < W ′
1(k =

2, ..., N − 1). Detect the swap phase as in Step-1.

Step-1 is to mislead the prediction that LA1 is a cold
address. Meanwhile, the page at LAN is heavily writ-
ten. Thus, after the swap phase, LA1 should be mapped
to a weak page. In step-2, the malicious program im-
poses intensive writes to LA1 which is a weak page.
And LAN plays the same role as LA1 in step-1. When
step-1 is executed again, the weak page corresponding
to LAN will be heavily written. Consequently, the weak
page is always under intensive writes. It is like that PV-
aware wear leveling“exposes”the weak page to intensive
writes, which speeds up the wear-out of weak pages.

(a) Before swap phase

Send (write, LA1, data) 9 times
Send (write, LA2, data) 4 times
Send (write, LA3, data) 4 times
Send (write, LA4, data) 2 times

(b) After swap phase

Send (write, LA1, data) 20 times
Send (write, LA2, data) 40 times
Send (write, LA3, data) 40 times
Send (write, LA4, data) 90 times

REVERSE write intensity distribution

Detect
swaps

Detect
swaps

Figure 3: Inconsistent write attack towards
prior PV-aware wear leveling schemes: (a) step-
1 (b) step-2

Figure 3 illustrates a successful attack to wear rate
leveling in Figure 1. The write distribution in Fig-
ure 3 (a) is the same with that in Figure 1 (b). After
the swap phase, LA4 is mapped to a weak page at PA1

(Figure 1 (c)). Then, in Figure 3 (b), 90 times of writes
will wear-out the page at PA1.

The attack still works when other PV-aware wear lev-
eling schemes (e.g. bloom-filter based wear leveling [13])
are adopted because of two reasons: (1) our attack does
not rely on the fixed length of prediction phase or run-
ning phase, and (2) the write number to every page can
be properly set to make LAN or LA1 detected as cold
addresses by the bloom filters.

4. TOSS-UP WEAR LEVELING
In this section, we propose a novel wear-leveling

scheme called Toss-up wear leveling (TWL) to coun-
teract inconsistent writes. First, we present the core
idea of TWL. Then, we establish a simple mathematical
model of TWL’s write overhead. Based on the model,
we propose two optimizations to lower write overhead.
Last, we present the overview of TWL read/write flows.

4.1 The Basic Idea of TWL
According to the last section, it is dangerous to rely

on the consistency of write distribution when malicious
program exploits an inconsistent write pattern. There-
fore, we propose a PV-aware wear leveling scheme NOT
based on the prediction of the future write distribution,
but based on a more intrinsic idea of PV-aware wear lev-
eling: the stronger the page, the more writes it should
undertake.

As shown in Figure 4 (a), we assume that page-A
and page-B are bond as a toss-up pair. And page-A’s
endurance is EA while page-B’s is EB . If there is a write
toward page-A or page-B (i.e. Addrwrite = AddrA or

Page A

Page B

EA

EB

Prob(write page-A) =

Prob(write page-B) =

Addrwrite= AddrA or AddrB “Toss up”

(a)

“Toss-up”

Addrwrite
Addrchoose

Equal?

(c)

Swap

“Swap judge”

RNG(b)
>?
α

Yes
Write Addrchoose

No YesNo

Addrchoose= AddrA Addrchoose= AddrB

EA

EA+EB

EA

EA+EB

EB

EA+EB

α ∈ [0,]

Figure 4: The core idea of TWL: (a) the
overview (b) illustration of “toss-up” (c) illus-
tration of “swap judge”

AddrB), the core idea of TWL is to randomly reallocate
the write to page-A or page-B with the possibility of

EA

EA+EB
and EB

EA+EB
, respectively. This process is like

playing a “toss-up” and ensures that stronger pages are
allocated more writes, without relying on the prediction
of write intensity distribution.

To implement the core idea, two components are re-
quired. The first one is called “toss-up”, which is shown
in Figure 4 (b). We employ a random number generator
(RNG) which can generate a random number α ∈ [0, 1].
Then, the random number is compared with EA

EA+EB

to decide which address (denoted as Addrchoose) to un-
dertake the write. When α < EA

EA+EB
, page-A is cho-

sen otherwise page-B. However, when Addrchoose differs
from Addrwrite, the data stored at Addrchoose previ-
ously will be lost if we directly write Addrchoose with
data of Addrwrite.

To solve this problem, the second component called
“swap judge”is proposed, which is shown in Figure 4 (c).
If Addrchoose = Addrwrite, the page at Addrchoose is
written directly. Otherwise, a swap between page-A and
page-B is triggered followed by a write to Addrchoose
(“swap-then-write”). In fact, the overhead of the “swap-
then-write” can be reduced. We suppose the address of
the unchosen page is Addrnot choose. “swap-then-write”
can be done as follows: data at Addrchoose is migrated
to the page at Addrnot choose followed by a write to
Addrchoose. Thus, three writes introduced in original
‘swap-then-write” are reduced to two writes.

Figure 4 does not specify the rule how writes are real-
located between toss-up pairs. To distribute the writes
between pairs, we adopt a straightforward scheme called
inter-pair swap: the page is swapped with a page at a
random address every “Inter-pair-swap-interval”writes.

Toss-up can introduce enormous swaps. Theoreti-
cally, if the endurance of page-A or page-B and the
write sequence are random, the possibility of swap is
about 1

2 , which introduces a considerable write over-
head [6, 13]. To mitigate the overhead, we should first
analyze the factors affecting the swap frequency. In the
next section, we establish a simple model to investigate
factors influencing the possibility of the swap.

4.2 Theoretical Analysis of Swap Frequency
We can use a simple mathematical model to analyze

the probability of the swap. As shown in Figure 4 (a),

without loss of generosity, we suppose EA ≥ EB . And
we suppose that the probability of“Addrwrite = AddrA”
is p, therefore the probability of “Addrwrite = AddrB”
is 1 − p. Then, we calculate the chance of a swap in a
single write as follows:

Prob(swap) = p× EB

EA + EB
+(1− p)× EA

EA + EB
(1)

=
p+ (1− p)× (EA/EB)

1 + (EA/EB)
(2)

According to Equation 2, there are four typical con-
ditions regarding the values of p and EA

EB
:

• Case-1: If EA ≈ EB , Prob(swap) ≈ 1
2 .• Case-2: If EA � EB and p → 1, Prob(swap) ≈ 0.

• Case-3: If EA � EB and p → 0, Prob(swap) ≈ 1.
• Case-4: If p → 1

2 , Prob(swap) ≈ 1
2 .

Case-1 indicates that when EA and EB are close, the
probability of swap is approximately 1

2 . Case-2 is the
most preferred scenario with nearly no swap. “p → 1”
indicates the writes are consistent. After Case-3 occurs,
page-A and page-B swap with each other and the sit-
uation turns into Case-2. For Case-4, if the Addrwrite

keeps switching between AddrA and AddrB , the fre-
quency of swap is always close to 1

2 . This occurs when
the write addresses are consecutive or random.

Based on the above analysis, we conclude as follows
and propose two optimizations in the next section:
1. According to Case-1, Case-2 and Case-3, to reduce

the swap frequency, two pages with distinct differ-
ent endurance should be bond. Thus, we propose
Strong-Weak Paring (SWP) to pair pages.

2. According to Case-4, to avoid that the swap fre-
quency is always close to 1

2 , we can reduce the swap
frequency by triggering the toss-up with an inter-
val called Toss-up Interval. We call this technique
Interval-triggered Toss-up.

4.3 Optimizations to Toss-up Wear Leveling
In this section, we specify Strong-Weak Paring (SWP)

and Interval-triggered Toss-up, which are introduced to
reduce the overhead of TWL’s swap operations:

• Strong-Weak Paring: Pages are first sorted by their
endurance. We suppose the sorted endurance table
is {(PAi1 , Ei1), (PAi2 , Ei2), ..., (PAiN , EiN)}. Then,
pages at PAik and PAiN+1−k

are bond with each other
as a toss-up pair.

• Interval-triggered Toss-up: “Toss-up” in Figure 4
(b) is triggered every “Toss up Interval” writes. Obvi-
ously, only when “Toss-up” functions, there is a possi-
bility of Addrchoose �= Addrwrite which triggers a swap
(Figure 4 (c)). Therefore, the frequency of swap oper-
ations is reduced.

SWP can also improve the lifetime of PCM. If strong
pages are coupled with weak ones, writes are dispatched
to strong pages. Thus, weak pages are likely to suf-
fer less writes. Effectiveness of above optimizations are
evaluated in Section 5.

4.4 Overview of Read/Write Flow
In this section, we introduce the read flow and the

write flow of PCM after TWL is adopted, which is
shown in Figure 5. An entry of any tables in Figure
5 corresponds to a page. And LA/PA corresponds to
logical/physical page address. In this work, we suppose
that the granularity of writes is a memory page and
data comparison write is employed [16].

(b)

RT TWL
Engine

PA, PApair LApair
SWPT

WCT

updateupdate

PA, PApair From write queue
LA

LA

Write or
swap

(a) From
read queue

RT
To PCM

To PCM

Read PA

LA
ET

E, Epair

update

LA = logical address SWPT= strong-weak pair table PA = physical address
ET = endurance table RT = remapping table WCT = write counter table

Figure 5: The overview of Toss-up Wear Lev-
eling: (a) the flow of a read (b) the flow of a
write

As shown in Figure 5 (a), the read flow is straightfor-
ward. Remapping table (RT) is queried with LA from
the read queue. Then, PA is sent to PCM for corre-
sponding data. The write flow is illustrated in Figure
5 (b). The LA to write is first sent to strong-weak
pair table (SWPT). Then, LA’s paired address LApair

is found and forwarded to RT together with LA. Af-
ter that, PA and PApair are sent to endurance table
(ET) for corresponding endurance information E and
Epair. Then, TWL engine, which is shown in Figure 4,
can perform swap or write operations to PCM regard-
ing PA , PApair, E and Epair. The write counter table
(WCT) are also queried to determine if “toss-up” should
be triggered or not according to the Toss up Interval.

5. EVALUATION
In this section, experimental setup is first introduced.

Then, we present the lifetime of PCM under various
kinds of attacks to demonstrate the robustness of TWL,
along with the vulnerability of prior works. We also il-
lustrate the effects of our optimizations in swap over-
head and lifetime. Last, we use PARSEC benchmark
to evaluate the lifetime and performance overhead, fol-
lowed by an analysis of TWL’s hardware overhead.

5.1 Experiment Setup
Detailed parameters are listed in Table 1. A 8-core

O3 CPU and a 32GB PCM are employed to represent
a typical application scenario for servers [9]. For the
PCM, we adopt parameters from [9, 7] as the state-of-
the-art configurations. We assume that the endurance
variation follows a Gauss distribution while endurance
information is tested and stored at the granularity of
page-size [1]. The mean endurance is 108 and the stan-
dard variation is 11% of the mean [6].

We adopt Bloom-filter based wear leveling (BWL)
[13] and Security refresh (SR) [12] as the state-of-the-
art works of PV-aware and traditional wear leveling
schemes, respectively. In order to maximize the effi-
ciency of BWL and SR, we also derive suggested param-
eters in [13] and [12]. For Toss-up wear leveling (TWL),
we set the technology node at 32nm and derive the la-
tency and logic gates with Synopsys [2]. To provide a

Table 1: Detailed simulation setup.
Processor Configuration
8-cores, ALPHA, Out-of-Order, 2GHz, Issue Width: 16,
Fetch Width: 16, INT/FP FUs: 8/8, LD/ST: 24/24
Cache Configurations
DL1/IL1: 32/32KB, 2-way, 64B, R/W: 2/2-cycle, private
L2: 2MB, 8-way, 128B, R/W: 10/10-cycle, share
PCM Configurations [7, 9]
32GB PCM, 4KB-page, 128 Byte per line, 4 ranks, 32 banks
read/set/reset latency: 250/2000/250-cycle
TWL Configurations [12, 10]
Inter-pair swap interval: 128, RNG latency: 4-cycle
TWL control logic latency/ table latency: 5/10-cycle

fair comparison, we fix the inter-pair swap interval (Sec-
tion 4.1) at 128 [12]. We also list results of lifetime and
performance when wear leveling is not adopted, which
is labeled as “No wear leveling (NOWL)”.

For benchmark evaluation, we choose PARSEC bench-
mark suite [3] which is shown in Table 2. We calculate
the ideal lifetime, the time when all pages are worn
out under corresponding write bandwidth. We first col-
lect memory access traces from gem5 [4] by running
each benchmark for one billion instructions. Then, we
use the trace to simulate each benchmark’s execution
in loops until a PCM page wears out. We record the
execution time as the lifetime of PCM. Table 2 lists the
lifetime without wear leveling execution. For perfor-
mance evaluation, we employ the full system mode of
gem5 which is connected to NVMain [8].

Table 2: Benchmarks used in this work
Benchmark
(PARSEC)

Write Bandwidth
(MBps)

Ideal lifetime
(years)

Lifetime w/o
WL (years)

blackscholes 121 446 14.5
bodytrack 271 199 8.0
canneal 319 169 2.9
dedup 1529 35 2.5
facesim 1101 49 3.0
ferret 1025 52 1.2

fluidanimate 1092 49 2.0
freqmine 491 110 6.4
rtview 351 154 5.4

streamcluster 12 4229 132.2
swaptions 120 449 12.8

vips 3309 16 0.9
x264 538 100 2.0

5.2 Evaluation of Attacks

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

repeat random scan inconsistent Gmean L
ife

tim
e

un
de

r
at

ta
ck

s
 (y

ea
rs

)

BWL SR TWL_ap TWL_swp NOWL
Ideal lifetime = 6.6 years

 worn out quickly

Figure 6: Lifetime under attacks using different
wear leveling schemes

To comprehensive illustrate the robustness of TWL,
we use four attack modes. The first three are from [11]
and the last one is inconsistent write which is proposed
in this work:

• Repeat write mode : Fix one address to write.
• Random write mode: Write addresses are random.
• Scan write mode: Write addresses are consecutive.
• Inconsistent write mode: The distribution of write

intensity reverses before and after swaps (Section 3.2).

In Figure 6, we illustrate the years to wear-out the
PCM under above attacks. Here we assume that the
write stream is nonstop with an approximate 8GB/s
write bandwidth, which indicates an ideal lifetime of
6.6 years. To demonstrate the improvement of strong-
weak pairing (labeled as “TWL swp”), we also evaluate
the lifetime when adjacent (physical) pages are paired
(labeled as “TWL ap”), which is a naive scheme. In
inconsistent write mode, PCM adopting BWL breaks
down in 98 seconds since the prediction is always misled.
SR achieves a lifetime of approximate 2.8 years under
all attacks, which is mainly due to the wear-out of the
weakest page. Compared to ‘TWL ap”, a 21.7% lifetime
improvement is achieved by “TWL swp” on average .
Among all the attacks, “TWL swp” achieves minimum
lifetime of 4.1 years under scan attack since enormous
swaps are introduced (Section 4.2).

2.0
3.0
4.0
5.0

1 2 4 8 16 32 64 128 L
ife

tim
e

un
de

r
 a

tt
ac

k
(y

ea
rs

)

Toss-up interval

scan

0.0
0.1
0.2
0.3
0.4

Sw
ap

/w
ri

te

 r
at

io

Gmean of PARSEC Benchmarks

(a)

(b) Minimum requirement = 3 years

Figure 7: Metrics to choose the suitable toss-up
interval: (a) swap/write ratio and (b) lifetime

We also evaluate the number of writes introduced by
swaps when different toss-up intervals (Section 4.3) are
employed. Figure 7 (a) shows the average ratio of swap
writes (= the number of swaps) to the number of write
requests using PARSEC benchmarks to make sense. For
simplicity, in Figure 7 (b) we only list the lifetime un-
der scan attack since lifetime under other attacks are
higher and show a similar trend. When toss-up interval
is one, the ratio can be as much as 37.9%, which intro-
duces unacceptable write overhead. The ratio drops in
proportion as the toss-up interval increases. However,
as shown in Figure 7 (b), the lifetime of PCM also de-
creases. To meet the minimum requirement for servers’
replacement cycles which is three to four years [12], we
set the toss-up interval as 32 for the rest of evaluation,
which incurs about 2.2% additional writes due to swaps.

5.3 Benchmark Evaluation
In Figure 8, lifetime are all normalized to the ideal

lifetime in Table 2. We can find that security refresh
achieves an approximate 44% lifetime of ideal. A mani-
fest improvement in lifetime is demonstrated when Toss-
up wear leveling or bloom-filter based wear leveling are
adopted. On average, BWL achieves 75.6% of ideal life-
time while TWL achieves 79.6% .

We illustrate the performance overhead of wear lev-

0
0.2
0.4
0.6
0.8

1
N

or
m

al
iz

ed
 L

ife
tim

e
BWL SR TWL NOWL

Figure 8: Normalized lifetime

eling schemes in Figure 9. All the execution time are
normalized to that of “NOWL” scheme. For BWL, two
bloom filters and a cold-hot list are accessed during ev-
ery write [13]. By contrast, TWL engine functions only
when write counter equals the toss-up interval, which in-
troduces less write overhead. Timing overhead of TWL
is at most 2.7% (vips). On average, TWL introduces
1.90% timing overhead while BWL and SR introduce
6.48% and 1.97% overhead, respectively.

1
1.02
1.04
1.06
1.08

1.1

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

BWL SR TWL

Figure 9: Normalized execution time with dif-
ferent countermeasures

5.4 Evaluation of Design Overhead
We also evaluate the design overhead of TWL in stor-

age and logic gates. For TWL, as shown in Figure 5, a
7-bit write counter table entry, a 27-bit endurance ta-
ble entry, a 23-bit remapping table entry and a 23-bit
strong-weak pair table entry should be reserved for ev-
ery PCM page. Thus, the storage overhead is about
80bits/4KB = 2.5× 10−3.

TWL mainly consists of two logic parts. One is the
random number generator and the rest includes a di-
vider and several comparators. In our design, an 8-bit
width Feistel Network is adopted to generate random
numbers, which costs less than 128 gates [10]. The rest
of logics costs 718 gates according to our synthesis re-
sults. Thus, 840 logic gates are estimated for the total
logic gate cost of our design.

6. CONCLUSION
In this paper, we propose a novel wear-out attack to-

wards previous PV-aware wear leveling, which explores
the vulnerability of “prediction-swap-running”flow. We
demonstrate that the vulnerability can be utilized by
inconsistent write patterns to speedup the wear-out of
weak cells. To mitigate the attack, we propose Toss-up
Wear Leveling to impose writes according to the ratio of
endurance within a bonding pair. Experiments demon-
strate that Toss-up Wear Leveling can ensure PCMs’
adequate lifetime under various attack, with negligible
overhead in performance and hardware design.

7. REFERENCES
[1] M. Asadinia, M. Arjomand, and H. Sarbazi-Azad. Od3p:

On-demand page paired pcm. In Proceedings of the 51st
Annual Design Automation Conference, pages 1–6. ACM,
2014.

[2] H. Bhatnagar. Advanced ASIC Chip Synthesis: Using
Synopsys R© Design CompilerTM Physical CompilerTM and
PrimeTime R©. Springer Science & Business Media, 2007.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec
benchmark suite: characterization and architectural
implications. In Proceedings of the 17th international
conference on Parallel architectures and compilation
techniques, pages 72–81. ACM, 2008.

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, et al. The gem5 simulator. ACM SIGARCH
Computer Architecture News, 39(2):1–7, 2011.

[5] M. Cintra and N. Linkewitsch. Characterizing the impact
of process variation on write endurance enhancing
techniques for non-volatile memory systems. In ACM
SIGMETRICS Performance Evaluation Review,
volume 41, pages 217–228. ACM, 2013.

[6] J. Dong, L. Zhang, Y. Han, Y. Wang, and X. Li. Wear rate
leveling: lifetime enhancement of pram with endurance
variation. In Proceedings of the 48th Design Automation
Conference, pages 972–977. ACM, 2011.

[7] F. Huang, D. Feng, W. Xia, W. Zhou, Y. Zhang, M. Fu,
C. Jiang, and Y. Zhou. Security rbsg: Protecting phase
change memory with security-level adjustable dynamic
mapping. In Parallel and Distributed Processing
Symposium, 2016 IEEE International, IEEE, 2016.

[8] M. Poremba and Y. Xie. Nvmain: An architectural-level
main memory simulator for emerging non-volatile
memories. In 2012 IEEE Computer Society Annual
Symposium on VLSI, pages 392–397. IEEE, 2012.

[9] M. K. Qureshi, M. M. Franceschini, A. Jagmohan, and
L. A. Lastras. Preset: Improving performance of phase
change memories by exploiting asymmetry in write times.
In Computer Architecture (ISCA), 2012 39th Annual
International Symposium on, pages 380–391. IEEE, 2012.

[10] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan,
L. Lastras, and B. Abali. Enhancing lifetime and security of
pcm-based main memory with start-gap wear leveling. In
Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 14–23. ACM, 2009.

[11] M. K. Qureshi, A. Seznec, L. A. Lastras, and M. M.
Franceschini. Practical and secure pcm systems by online
detection of malicious write streams. In 2011 IEEE 17th
International Symposium on High Performance Computer
Architecture, pages 478–489. IEEE, 2011.

[12] N. H. Seong, D. H. Woo, and H.-H. S. Lee. Security refresh:
Prevent malicious wear-out and increase durability for
phase-change memory with dynamically randomized
address mapping. In Proceedings of the 37th Annual
International Symposium on Computer Architecture, ISCA
’10, pages 383–394. ACM, 2010.

[13] J. Yun, S. Lee, and S. Yoo. Bloom filter-based dynamic
wear leveling for phase-change ram. In Proceedings of the
Conference on Design, Automation and Test in Europe,
pages 1513–1518. EDA Consortium, 2012.

[14] W. Zhang and T. Li. Characterizing and mitigating the
impact of process variations on phase change based
memory systems. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on
Microarchitecture, pages 2–13. ACM, 2009.

[15] M. Zhao, L. Jiang, Y. Zhang, and C. J. Xue. Slc-enabled
wear leveling for mlc pcm considering process variation. In
Proceedings of the 51st Annual Design Automation
Conference, pages 1–6. ACM, 2014.

[16] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and
energy efficient main memory using phase change memory
technology. In In International Symposium on Computer
Architecture, 2009.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 18.00 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

