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ABSTRACT
High level synthesis (HLS) is an important enabling technology
for the adoption of hardware accelerator technologies. It promises
the performance and energy efficiency of hardware designs with a
lower barrier to entry in design expertise, and shorter design time.
State-of-the-art high level synthesis now includes a wide variety of
powerful optimizations that implement efficient hardware. These
optimizations can implement some of the most important features
generally performed in manual designs including parallel hardware
units, pipelining of execution both within a hardware unit and be-
tween units, and fine-grained data communication. We may gen-
erally classify the optimizations as those that optimize hardware
implementation within a code block (intra-block) and those that op-
timize communication and pipelining between code blocks (inter-
block). However, both optimizations are in practice difficult to ap-
ply. Real-world applications contain data-dependent blocks of code
and communicate through complex data access patterns. Existing
high level synthesis tools cannot apply these powerful optimiza-
tions unless the code is inherently compatible, severely limiting the
optimization opportunity.

In this paper we present an integrated framework to model and
enable both intra- and inter-block optimizations. This integrated
technique substantially improves the opportunity to use the power-
ful HLS optimizations that implement parallelism, pipelining, and
fine-grained communication. Our polyhedral model-based tech-
nique systematically defines a set of data access patterns, identifies
effective data access patterns, and performs the loop transforma-
tions to enable the intra- and inter-block optimizations. Our frame-
work automatically explores transformation options, performs code
transformations, and inserts the appropriate HLS directives to im-
plement the HLS optimizations. Furthermore, our framework can
automatically generate the optimized communication blocks for
fine-grained communication between hardware blocks. Experimen-
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tal evaluation demonstrates that we can achieve an average of 6.04X
speedup over the high level synthesis solution without our transfor-
mations to enable intra- and inter-block optimizations.

Categories and Subject Descriptors
B.5.2 [Hardware]: [Design Aids] — automatic synthesis

General Terms
Algorithm, Design, Performance

Keywords
Polyhedral, High Level Synthesis, FPGA

1. INTRODUCTION
FPGAs have long been adopted for computation acceleration,

especially in domains that also demand power and energy efficient
computing. Their highly flexible architecture enables significant
optimization opportunities. Designers can implement fine-grained
computation units, highly parallel architectures, fine-grained pipelin-
ing of computation units, efficient communication structures and
customized memory and compute unit partitioning. However, the
flexibility that is a strength for optimization opportunities is also
a challenge for efficient programmability. FPGA implementation
remains a significant challenge for prospective users — manual de-
sign at register transfer level (RTL) is error-prone and difficult to
debug. Such manual design often takes weeks and months in com-
parison to the hours or days to implement an algorithm in software.
Furthermore, efficient manual design typically requires significant
specialized knowledge — efficient FPGA implementations must
consider architecture-specific parameters and implement functions
for efficient mapping to the FPGAs’ fixed-size allocation quota
(LUT, BRAM, DSP, ...).

High level synthesis (HLS) seeks to address these problems. HLS
offers automated translation from high level languages (e.g., C,C++,
SystemC, Haskell and CUDA) to register transfer level (RTL) im-
plementations to reduce the design effort, automated optimization
to reduce the requirement of design knowledge, and FPGA-specific
mapping to automate low-level optimization choices. Thus, HLS
promises to be a critical bridging technology that offers the latency
and power/energy benefits of FPGA-based hardware acceleration
at the design effort (and expertise) of software development. State-
of-the-art HLS tools cover a wide range of input source code and
achieve high-quality results [8].
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(a) Original source code 

for (i = 1; i < N; i++) 

  for (j = 1; j < N; j++) 

{ 

     g[j][i] = f1(u[j][i], u[j-

1][i], u[j+1][i], u[j][i-1], 

u[j][i+1]); 

} 

Block 1 

 Block 2 

Dependence of Block 2 

for (i = 1; i < N; i++) 

  for (j = 1; j < N; j++) 

{ 

     u[j][i] = f2(u[j][i], 

u[j][i+1], u[j][i-1], u[j+1][i], 

u[j-1][i], g[j][i+1], g[j][i-1], 

g[j+1][i], g[j-1][i]); 

} 

(b) Diagonal access (c) Transformed source code 

for (i1 = 1; i1 < 2 * N - 2; i1++) 

  for (j1 = max(i1 – N + 1, 0); j1 < 

min(N - 1, i1); j1++) 

{ 

       g[i1-j1][j1] = f1(u[i1-j1][j1], 

u[i1-j1][j1-1], u[i1-j1-1][j1], u[i1-

j1+1][j1], u[i1-j1][j1+1]); 

} 

Block 1 

Block 2 

for (i1 = 1; i1 < 2 * N - 2; i1++) 

  for (j1 = max(i1 – N + 1, 0); j1 < 

min(N – 1, i1); j1++) 

{ 

     u[i1-j1][j1] = f2(u[i1-j1][j1], 

u[i1-j1][j1-1], u[i1-j1-1][j1], u[i1-

j1+1][j1], u[i1-j1][j1+1], g[i1-

j1][j1-1], g[i1-j1-1][j1], g[i1-

j1+1][j1], g[i1-j1][j1+1]); 

} 

(d) Loop skewing 

j1 

i1 

Diagonal access of Block 2 

j 

i 

j 

i 

(e)Parallelization and pipelining 

Block 1 

…              … 
…              … 

Block 2 

Figure 1: An example of two data-dependent blocks. In sub-figure (e), we assume the parallelization degree is 2.

These tools have achieved significant improvement; however, re-
cent studies show that although these tools can offer high quality
designs for small kernels, there is still a significant performance
gap between HLS and manual design for real-world complex appli-
cations [23, 17, 10]. For example, [23, 17] demonstrated a 40X dif-
ference between HLS and the manual design for a high-definition
stereo matching implementation. Small kernels (often used as sim-
ple HLS benchmarks) contain a single block (a loop nest), but real-
world applications often contain many data-dependent blocks that
communicate through complex data access patterns. Whereas a
video processing kernel may be a single nested loop performing a
median filter, a real application would employ a sequence of data-
dependent blocks, including blocks such as image up/down sam-
pling, cost aggregation, and energy minimization. Video process-
ing applications are often structured so that each processing step is
a loop nest (block) that operates on array inputs and produces ar-
ray outputs such that block i + 1 reads the array variables written
by block i. As seen in efficient manual RTL implementations of
these algorithms, it is crucial to minimize the communication gran-
ularity, pipeline the data-dependent blocks, and duplicate compute
units to improve both throughput and latency. However, existing
HLS tools fail to enable intra-block parallelization and inter-block
pipelining when the data access patterns are complex [23, 17] —
and although advanced commercial tools support these optimiza-
tions, they are not always able to efficiently identify the opportunity
and transform source code to enable such optimizations.

Code transformations to enable these important and powerful
optimizations are thus critical for HLS tools. One of the primary
goals of HLS is to reduce design effort; thus, HLS tools must effi-
ciently support a variety of code — including source code written
by software engineers with little hardware expertise, and software
not written for use with HLS. Software programmers choose data
access patterns based on properties such as intuitive ordering, cache
locality, and code modularity. Even software written for HLS may
still contain loops that demand transformation; efficient inter-block
optimization may demand non-intuitive iteration ordering such that
even experienced hardware designers may have difficulty seeing an
intuitive ordering of blocks that enables optimization. Thus, it is
quite natural that the default data access pattern does not support
intra-block parallelization or inter-block pipelining. Nevertheless,
data access patterns can be altered via loop transformations such as
permutation, reverse, and skewing [24]. Using these transforma-
tions, we can enable intra-block parallelization by reordering loop
iterations so that successive iterations are independent; similarly,
we can enable inter-block pipelining by ensuring that block i pro-

duces data in the order that block i + 1 consumes data (by trans-
forming block i, block i+ 1 or both). Both intra-block paralleliza-
tion and inter-block pipelining are currently supported by existing
HLS tools. The problem is rather that these optimizations cannot
always be enabled with the default data access patterns. Thus, the
goal of this work is to enable efficient integrated use of intra- and
inter-block optimizations through loop transformation.

Motivating Example. We illustrate the concept of intra- and inter-
block optimization using the Denoise [11] application in medical
imaging (Figure 1). The source code in Figure 1 (a) is modified
to highlight the data access pattern, with computation arithmetic
omitted for clarity. The application is composed of two blocks
(loop nests), where the first block writes to the g array that is sub-
sequently read by the second block. Both blocks are representative
of stencil codes where the array update operation follows a fixed
input dependence pattern that reads neighboring elements. In this
example, only the second block has data-dependence between loop
iterations, as shown in Figure 1 (b), and the first block writes the
data array g in the same order that the second block consumes array
g (column order). Thus, in this example, intra-block parallelization
is available in the first block and inter-block pipelining is available
by default between the blocks, but a transform is required to en-
able parallelization in the second block. However, note that if the
second block is transformed to enable parallelization, then the first
block must also be transformed in order to retain the opportunity
for inter-block pipelining.1

Table 1: Comparison of different implementations
Implementation Cycles Frequency Speedup

1 w/o transform, w/o opt 5408 160MHz 1
2 w/o transform, w/ opt 1809 182MHz 3.40
3 w/ transform, w/ opt 250 230MHz 31.09

In Table 1 we can see the performance in cycles and speedup
over the original source for this example. By default, the original
source code supports some optimization, as seen in the second im-
plementation — inter-block pipelining improves the performance,
but the latency of the individual blocks become the performance
bottleneck. Note that in the second implementation, we do not per-
form partial parallelization (e.g., parallelize the first block only)
because if the throughputs are not matched, the buffering between
1For efficient implementation of inter-block pipelining, we also im-
plement memory partition optimization and customized communi-
cation blocks which will be discussed in section 3.3.
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the blocks would not be feasible. In the third implementation, the
loop transformation is used to alleviate the dependence problem
and retain the opportunity for inter-block pipelining. In Figure 1
(c) and (d), we perform loop skewing on both blocks to traverse
the loop in a diagonal fashion from the bottom-right to top-left, as
shown in Figure 1 (b). This loop skewing both preserves the data
dependence and enables parallelization of the inner loop because
the iterations on the same diagonal line are independent. The first
block can also use the loop skewing transformation safely because
it does not have any data dependencies. The optimized execution
schedule is shown in Figure 1 (e). This transformation significantly
improves the speedup opportunity from about 3X to 31X speedup.
In this case, some optimizations were supported by default, but
there was still significant speedup opportunity by ensuring that both
optimizations were enabled. In the experiments section, we will
demonstrate that some source codes support neither parallelization
nor pipelining by default, but loop transformations can enable both
intra-block parallelization and inter-block pipelining.

As this brief motivation discussion demonstrates, real-world ap-
plications commonly contain multiple data-dependent blocks with
communication through complex data access patterns. For such
applications, the powerful optimization functions of existing high
level synthesis tools may not be supported by default due to the
data access patterns. In this paper we develop an integrated method
to model, analyze, and transform block data access patterns to sup-
port these important and powerful optimizations. Using polyhedral
models [24, 13, 20, 6, 5], we represent the loop iteration space,
dependencies, data access patterns, and loop transformations in a
linear algebraic form. For loops amenable to this algebraic rep-
resentation, the polyhedral model allows us to analytically deter-
mine valid loop transformations that best support both intra-block
parallelization and inter-block pipelining. This paper advances the
state-of-the-art of high level synthesis with

• An automated polyhedral model-based framework that sys-
tematically identifies effective access patterns and applies ap-
propriate loop transformations that enable intra- and inter-
block optimizations.

• An automated framework to generate communication inter-
faces between blocks.

We demonstrate that our automated framework achieves an av-
erage of 6.04X speedup over HLS with all available optimizations
but without transformations to enable.

This paper is organized as follows. Section 2 briefly provides the
background of the polyhedral model and introduces the useful no-
tation. Section 3 presents our framework, which defines data access
patterns, identifies data access patterns for effective optimizations,
and discusses the implementation of fine-grained data communi-
cation modules. Section 4 presents experimental results. Section 5
discusses related work, and conclusions are presented in Section 6.

2. BACKGROUND AND NOTATION
In this section we briefly introduce the polyhedral model and the

notation that we will use in this paper. A detailed description of
polyhedral models can be found in [5, 6, 13, 20]. In this work
we are using the polyhedral model to consider data access patterns
for communication between sets of loop nests, and to optimize this
communication ordering in order to perform fine-grained commu-
nication and enable parallelization within a loop nest and pipelining
between loop nests through loop transformation. In particular, in
this work we consider programs that consist of a sequence of data-
dependent blocks, where each block is a loop nest containing mul-

tiple statements, and each statement may have multiple accesses to
data arrays.

2.1 Polyhedral Model
Polyhedral models can be used to represent execution informa-

tion of a program’s loop nests, such as the loop iteration domain,
statement/iteration dependencies, array access functions, and schedul-
ing functions (execution order).

DEFINITION 1 (Polyhedron). The set of all vectors ~x ∈ Zn

such that A~x+~b ≥ 0, where A ∈ Zm×n and~b ∈ Zm.

Each row of A represents a half-space that limits A~x+~b to non-
negative values, and the polyhedron is the intersection of the m
half-spaces represented by the m rows of A. A bounded polyhe-
dron is a polytope.

DEFINITION 2 (Iteration Vector and Domain). The iteration
vector~i of a loop nest represents an execution instance of the loop
nest. ~i contains the values of the loop indices of all the surround-
ing loops. The iteration domain DL of loop nest L is the set of all
iteration vectors that satisfy the loop-bound constraints. Because
an iteration domain is bounded by these loop-bound constraints, it
is a polytope.

DEFINITION 3 (Schedule Function). Given am-dimensional
loop nest, a d-dimensional (1 ≤ d ≤ m) schedule F(~i) is defined
as

F(~i) = S~i+ ~o

=


C11 C12 . . . C1m

C21 C22 . . . C2m

...
...

...
...

Cd1 Cd2 ... Cdm

~i+


C10

C20

...
Cd0


where S ∈ Zd×m, ~o ∈ Zd, and Cij ∈ Z. The schedule function
takes the iteration vector~i as input and produces an ordering of the
loop iterations using the matrix S and an offset vector (~o).

Thus, the schedule function creates a particular ordering of it-
erations by mapping each iteration in the domain to a timestamp,
where mapping m dimensions into fewer (d) timestamps implies
that some of the iterations can be performed in parallel. The sched-
ule function has the additional benefit that the timestamp ordering
also corresponds to a lexicographic ordering. For example, for iter-
ation vectors ~i1 and ~i2, ~i1 is scheduled before ~i2 if F(~i1) < F(~i2).

DEFINITION 4 (Transformation Function). In the polyhedral
model, the transformation function is represented as a sequence of
schedules applied to perform the transformation.

In theory, any loop transformation can be represented in the poly-
hedral model. In this paper we focus on a set of uni-modular loop
transformations [24], including loop reverse (e.g., reverses the tra-
verse direction), loop permutation (e.g., interchange two loops),
and skewing (e.g., make the inner-loop bounds dependent on the
outer-loop bounds) and their composite transformations. The sched-
ule function/execution order of iterations of a loop nest can be al-
tered through loop transformations.

Figure 2 illustrates the polyhedral model using a concrete exam-
ple. The original source code that consists of two data-dependent
blocks (loop nests) is shown in Figure 2 (a). The first block writes
to array B, and the second block subsequently reads from it. With-
out transformation, each individual block can be parallelized, but
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for (i1 = N - 1; i1 >=0;  i1--) 
  for (j1 = 0; j1 < N; j1++) 
    S1 : B[i1][j1] = B[i1][j1] + A[i1][j1]; 
 
 
for (i2 = 0; i2 < N; i2++)  
  for( j2 = 0; j2 < N; j2++) 
     S2: D[i2] = D[i2] + B[i2][j2] * C[j2]; 
    

1 0
−1 0

0 0
1 −1

 0 1
0 −1

0 0
1 −1

𝑖𝑖2
𝑗𝑗𝑗
𝑁𝑁
1

≥ 0  

(a) Original source code (b) Iteration domain  

1 0
−1 0

0 0
1 −1

0 1
0 −1

0 0
1 −1

𝑖𝑖1
𝑗𝑗𝑗
𝑁𝑁
1

≥ 0  𝐹𝐹𝑠𝑠𝑠  𝚤𝚤 = −1 0
0 1 𝚤𝚤  + 𝑁𝑁 − 1

0 , 𝚤𝚤 = 𝑖𝑖1
𝑗𝑗𝑗   

𝐹𝐹𝑠𝑠𝑠  𝚤𝚤 = 1 0
0 1 𝚤𝚤  + 0

0 , 𝚤𝚤 = 𝑖𝑖2
𝑗𝑗𝑗   

(c) Schedule function 

Figure 2: An example of polyhedral representation.

their execution can not be overlapped through pipelining as they
access array B in different order. In Figure 2 (b), we show the it-
eration domain (polytope) of the two blocks which establishes the
lower- and upper-bounds for each loop dimension. In Figure 2 (c),
we show the scheduling function that corresponds to the original
source code for each of the loop nests. In order to transform the
original scheduling function to achieve a desired data access pat-
tern, we can define a desired data access pattern and derive the nec-
essary loop transformations; a proof that this derivation is always
possible is shown in Section 3.

As described above, the polyhedral model (including iteration
domain, iteration vector, scheduling function and transformation
function) describes the iteration domain and order for any loop nest
that has all array accesses as affine expressions of loop indices. In
addition, dependency relations between iterations in the program
can be represented in the polyhedral model. Two iterations of a
loop nest (or two instances of blocks) are dependent if they access
the same array locations, and at least one of the accesses is a write
operation. These dependencies can be represented by additional
rows in the iteration domain to establish constraints between the
loop iterations. Loop transformations are valid only if they also
preserve the additional program dependency constraints.

3. METHODOLOGY
Our integrated intra- and inter-block optimization framework takes

a data-dependent multi-block program as input, and performs three
steps, as shown in Figure 3. The goal of our optimization is to
minimize the overall latency (maximize the performance speedup).
First, we systematically define a set of data access patterns, clas-
sify them, and derive the associated loop transformations (Sec-
tion 3.1). Next, for each loop transformation that validly preserves
data-dependencies, we estimate the performance improvement (Sec-
tion 3.2) and choose the best estimated performance. The perfor-
mance estimation models both intra- and inter-block speedup and
associated implementation overheads. The intra-block paralleliza-
tion degree is determined by the resource usage of the program
and the available resource on the implementation platform. Finally,
for the chosen transformation, we automatically perform the loop
transformations, insert high level synthesis directives, and generate
the communication blocks that interface the data-dependent blocks.
If the communication block is a simple FIFO, we automatically in-
sert FIFO high level synthesis directives; when the communication
interface requires multiple reads or a stencil pattern, we automati-
cally customize the communication blocks (Section 3.3). The final
output of the flow is an optimized RTL design.

Note that in prior works [5, 6, 13, 18, 20, 24], polyhedral mod-
els consider data access patterns for external memory accesses and
loop transformations in order to optimize data localities and maxi-
mize parallelism for CPUs. Optimizations for CPU code attempt to
minimize memory bandwidth and improve cache behavior. In ad-

dition, the transformed CPU code often has complex control flow
that is not suitable for efficient FPGA implementation. Thus, the
transformation chosen for optimization on CPU platform may be
the wrong decision for our HLS optimization.

In this work, we use polyhedral model to define data access
patterns for a different objective. We aim to optimize the inter-
block communication and enable intra-block parallelization and
inter-block pipelining through loop transformation for FPGAs us-
ing HLS. For our objective, we model the FPGA-specific features.
Therefore, although the candidate data access patterns might be the
same as prior work, we apply different transformations in different
combinations in order to meet our optimization objective. Although
the underlying techniques are all based on polyhedral models, dif-
ferent objectives lead to different ways to select data access patterns
and loop transformations.

Define data access pattern and derive 
the associated loop transformation 

Data-dependent multi-block program 

Performance Estimation 

Transform the computation blocks and 
generate the communication blocks 

Optimized RTL design 

Intra-block  Inter-block Overhead 

Figure 3: Optimization Framework.

3.1 Classification of Array Access Patterns
We model the array access patterns using the polyhedral model,

thus we assume that all array accesses are affine expressions of
loop indices and constants. The program inputs are composed of
multiple data-dependent blocks where each block contains a single
multi-dimensional loop nest. Let us consider a loop nest of dimen-
sionalityD that accesses anN -dimensional array. The array access
pattern is defined by matrix M whose size isN×D, where the rows
(i) represent the data access pattern in dimension i of the data array,
and columns (j) represent the access pattern in the loop level j.

Given the array access pattern M, loop iteration vector ~i, and
constant offset vector ~o, the array access vector ~s is defined as

~s = M~i+ ~o

~s is column vector of size N , where each row (i) represents array
accesses in dimension i, and the offset vector is a constant offset
into that dimension. Figure 4 shows an example of array access
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pattern and vector for the writes to array B; similar access patterns
and vectors could be derived for the reads from array A.

for(i =0; i < N; i++) 
  for(j=0; j < N; j++) 
   B[i][j] = A[i][j] + A[i - 1][j]; 

 𝑀 = 1 0
0 1 , 𝑠 =  1 0

0 1
𝑖
𝑗 + 0

0  

Figure 4: An example of array access pattern.

In the following, we demonstrate the data access patterns for 2-
dimensional arrays and 2-dimensional loop-nests. For ease of illus-
tration, we classify the access patterns below; although, the poly-
hedral framework treats these access patterns in a uniform way. In
the framework, we need to define the candidate access patterns that
can be evaluated for the program; in this work we limit the access
patterns to the simple set of access patterns below. The polyhedral
model can be easily extended to handle a wide variety of additional
access patterns, and our work can use any additional access pat-
terns to estimate the performance benefit. We leave the extension
to future work.

Now we will describe how to define the array access patterns
using M. Let

M =

(
a1 b1
a2 b2

)
We classify the array access patterns based on the values of a1,

a2, b1 and b2. For array accesses with non-unit loop strides, we per-
form loop normalization as a preprocessing step so that our analysis
can assume unit loop stride.

Column and Reverse Column.(
±1 0
0 ±1

)
The array access vector can be obtained by M~i. Figure 5 shows

the four patterns in this category, where the signs of a1 and b2 de-
termine traversal direction. For example, with outer loop index i
and inner loop index j, if a1 = 1 and b2 = 1, then the outer
loop traverses increasing values of i, and the inner loop traverses
increasing values of j.

Row and Reverse Row. (
0 ±1
±1 0

)
Similar to column and reverse column, there are four patterns in
this category, and the signs of b1 and a2 determine the traversal
directions.

Diagonal Access. In this category, the loop traverses in a diagonal
line fashion. We further divide this into two cases based on the
slopes of the diagonal lines.

• slope ≥ 1. (
±1 N > b1 ≥ 1
0 ±1

)
The array access vector can be obtained by M~i. The slope
of the diagonal line is determined by b1, and the signs of a1
and b2 determine the traversal directions. When b1 ≥ N , the
traversal order reduces to one of the column access orders.
Figure 6 shows the four data access patterns for slope = 1.

• slope < 1. (
N > a1 > 1 ±1
±1 0

)
The slope of the diagonal line is determined by 1

a1
, and the

signs of a2 and b1 determine the traversal directions. When
a1 ≥ N , the traversal order reduces to one of the row access
orders.

All of the array access patterns defined above are unimodular
matrices where |a1 × b2 − a2 × b1| = 1. Thus, all of these access
patterns can be achieved by unimodular loop transformations of the
block(s) [24].

Loop Transformation. Loop transformations can change the sched-
ule (e.g., execution order) of loop iterations such that the data ac-
cess pattern can be changed. Thus, here we derive the loop trans-
formation given a desired data access pattern.

THEOREM 3.1. The transformation function T required for the
desired data access pattern Mdes can be obtained by

T = M−1
desMoriF−1

ori

where Mori and Fori are the data access pattern and schedule
function of the source code without transformation.

PROOF. Let ~i′ be the loop iterator vector after transformation.
Thus, the desired array access vector after transformation is Mdes

~i′.
Let us assume the schedule function and data access pattern of the
original code are Fori and Mori, respectively. Thus, the sched-
ule function after transformation is TFori. Schedule function maps
the original loop iterations to a new ordering of the loop iterations.
Thus,

TFori
~i = ~i′

Thus,

~i = F−1
oriT

−1~i′

The data accessed by the iterations before and after transformation
is the same

MoriF−1
oriT

−1~i′ = Mdes
~i′

Thus,

T = M−1
desMoriF−1

ori

The data access pattern and loop transformations are all unimod-
ular matrix. For unimodular matrix, we can always derive its re-
verse matrix.

3.2 Performance Metric
In the previous subsection we defined a set of data access pat-

terns that include row, column, and diagonal access with different
slopes and directions. We also described how to derive the re-
quired loop transformation for a given data access pattern. Our
design objective is to maximize the performance speedup. Now,
we will discuss the process of evaluating all of the candidate data
access patterns and choosing the candidate that maximizes appli-
cation speedup. To perform this evaluation, we develop a perfor-
mance metric that combines modeling of both intra- and inter-block
speedup and their associated implementation overhead. We define
that a program is a sequence of K blocks {b1, b2, . . . , bK}, and
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M =  
1 0
0 1

 

(a) left to right (i), bottom to up (j) 

M =  
1 0
0 −1

 

(b) left to right (i),  top to down (j) 

M =  
−1 0
0 1

 

(c) right to left (i), bottom to up (j) 

M =  
−1 0
0 −1

 

(d) right to left (i), top to down (j) 

j 

i 
j 

i j 

i j 

i 

Figure 5: An example of column access pattern. There are 4 patterns with different traverse directions.

M =  
1 1
0 1

 M =  
1 1
0 −1

 M =  
−1 1
0 1

 M =  
−1 1
0 −1

 

(a) bottom-left to top-right (i), 

bottom-right to top-left (j) 

(b) bottom-left to top-right (i), 

top-left to bottom-right (j) 

(c) top-right to bottom-left (i),  

bottom-right to top-left (j) 

(d) top-right to bottom-left (i),  

top-left to bottom-right (j) 

 

Figure 6: An example of diagonal access pattern with slope = 1. There are 4 patterns with different traverse directions.

each block bi has a di dimensional loop nest that accesses an ni di-
mensional data array. In this work we restrict that the loop nest di-
mensionality and data-array dimensionality are equal for all sets of
communicating blocks in the program, so we denote the loop nest
dimensions and data array dimensions as N . The latency in clock
cycles of each block bi without intra-block optimization is lati.
If there is any control flow between the blocks, we consider the
worst-case path; thus, the total baseline program latency in clock
cycles (without any optimization) is the simple sum of the blocks’
latencies

latbase =

i=K∑
i=1

lati

lati for each block is estimated by performing block-wise high
level synthesis, and using the HLS-generated performance estimates2.
When no optimizations are applied, we have verified that these es-
timates are accurate by comparing them with post-synthesis sim-
ulations. However, the HLS performance estimates can be inac-
curate for modeling the parallelism, especially because the inter-
block pipelining hides execution latency. Therefore, we develop an
alternative performance metric that can estimate this optimization
effect. Note that our performance estimation is based on clock cy-
cles only. By default, we apply intra-block pipelining (e.g., loop
pipelining within a block by setting initiation interval (II)) for all
the blocks and set the same target period for all the implementa-
tions. Thus, the clock period tends to be similar across different
implementations, and we ignore the effect of clock period in our
estimation.

Let P be the set of all candidate data access patterns. Given
p ∈ P, we can estimate the performance of each block by the intra-
block parallelization factor, and then the performance of the entire
2We use the commercial AutoPilot [25] HLS tool to estimate lati.

program with the inter-block pipelining that overlaps the blocks’
execution. In this work, we target inter-block pipelining, and cor-
respondingly, it always makes sense to parallelize each block to the
same factor to match the blocks’ throughput and minimize inter-
block buffering. Thus, we can simplify the program performance
estimate in clock cycles as follows

latp =
latbase

Sintra
p × Sinter

p

+ costp

where Sintra
p and Sinter

p represent the intra- and inter-block speedup
(discussed next), respectively and costp represents the implemen-
tation overhead.

For each block, we can fit multiple data processing pipelines for
parallel processing. In high level synthesis, duplicate data process-
ing pipelines are implemented by unrolling the inner loop. As we
discussed above, we want to match the blocks’ parallelism degree;
therefore we search for the maximum unrolling factor where all
blocks in the program can be unrolled to the same factor. For block
bi, we use Ri to denote its resource usage. Ri is a 4-tuple that rep-
resents its resource usage in FFs, LUTs, BRAMs, and DSPs. Then
the total communication cost (in resources) between block i and
block i+ 1 is estimated as another 4-tuple Commi, where we use
the HLS estimates for Ri and Commi. We have observed and ex-
perimentally validated that the HLS resource usage estimates cor-
relate with actual resource after logic synthesis, although they tend
to be conservatively high estimates. In particular, the HLS esti-
mates for FF resource use and LUT resource use tend to be high.
As we scale the unroll factor, this overestimate is compounded due
to underestimation of resource sharing and LUT/FF packing into
Slices. Therefore, we empirically determined another correlation
factor tuple α that represents this scaling; unlike the communica-
tion factor, we use the same α factor for all blocks in a design and
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for all designs in our benchmark set. In total, we predict the actual
resource usage as follows

(

i=K∑
i=1

Ri + Commi)× α× par

where par represents the intra-block parallelization degree.
Then, given the fixed resource budget of the FPGA, we can de-

rive the maximally allowed parallelization degree, Maxpar . We
define Sintra

p as follows

Sintra
p =

 Maxpar pattern p enables parallelization
for all the blocks

1 otherwise

Similarly, for the inter-block pipelining factor Sinter
p , if we can

transform all of the blocks to follow the same data access pattern for
inter-block communication, then we can fully enable inter-block
pipelining. Therefore, we define Sinter

p as follows

Sinter
p =

{
K pattern p enables pipelining
1 otherwise

where K is the number of blocks in the program. Note that we ig-
nore the pipelining fill and drain overhead in the above estimation.

Finally, the implementation of the access patterns may incur ad-
ditional overhead, which can significantly affect the program’s per-
formance estimate. Both row (slope = 0), column (slope = ∞)
and their reverses are easy to implement without any overhead, but
diagonal access patterns require loop skewing, as shown in Fig-
ure 1. Therefore, the inner-loop iteration domains are a function
of outer-loop index values. When slope = 1, we can use min
and max operations to bound the inner-loop iteration domains, as
shown in Figure 1 (c); but with 1 < slope < N or 0 < slope < 1,
we must use a combination ofmin,max, ceil and floor functions
to bound the inner-loop iteration domains. As discussed previ-
ously, we apply intra-block pipelining (e.g., loop pipelining within
a block) for all the blocks by default to improve the performance.
However, to enable intra-block pipelining, the inner-loop bounds
have to be constants for HLS tools. Thus, for diagonal access pat-
terns, we use the maximum loop bound (N) for the inner loop but
add extra if-else conditions to filter out the false loop iterations.
The if-else statement compares the current inner-loop index with
its domain and executes the loop body only if the condition is true.
The if-else comparison to filter out false loop iterations takes extra
cycle and the number of false iterations depends on the domain of
the outer loop. When slope > 1, the domain of the outer loop in-
creases linearly with the slope; when slope < 1, the domain of the
outer loop increases linearly with 1

slope
. Hence, the performance

overhead costp is defined as follows

costp =


0 slope = 0 or slope =∞
C × slope 1 ≤ slope < N
C × 1

slope
0 < slope < 1

where C is a constant.
In our formulation, the intra-block parallelization and inter-block

pipelining are performed globally as a coarse-grained optimization.
It is possible that a fine-grained optimization that selects different
parallelization and pipelining parameters among different sets of
blocks and/or communication paths could yield better performance.
We expect that this could be implemented by applying this tech-
nique separately to subsets of program blocks with additional re-
finement to the performance model and buffers between the blocks;
we leave these tasks for future work.

Pattern Selection. As shown previously, there are multiple data
access patterns that include row, column and diagonal patterns with
a variety of slopes and traversal directions. With high-dimension
loop nests, this can be a large number of candidate patterns; how-
ever, we can easily prune the search space using the data depen-
dencies to prune candidates that would violate dependencies. For
stencil applications, the update of one data item depends on its
neighbors in the surrounding stencil window, which is usually small
compared to the size of the entire array. For diagonal access, we
only need to focus on the data access pattern with 1

n
≤ slope ≤ n,

where n is the stencil window dimension. For all remaining slope
values (n < slope < N and 1

N
< slope < 1

n
), they are equivalent

to slope = n or slope = 1
n

in terms of the traversal order of data
items in the stencil window, except that they incur additional over-
head in implementing the loop bounds. This traversal order is the
only factor that affects the ability to apply intra-block paralleliza-
tion and inter-block pipelining. Using these dependencies to prune
the list, it is in practice feasible to estimate performance for each of
the candidates and choose the best.

Note that we only explore a subset of legal polyhedral transfor-
mations in this work. In theory, it is also possible to select the
optimal pattern following the polyhedral optimization flow in [20]
where all the FPGA-specific features discussed above including re-
source modeling and performance metrics have to be encoded as
constraints and cost functions for the optimization problem. In
practice, our pattern selection solution runs very fast for all the
tested benchmarks.

3.3 Implementation
Our framework is an automatic flow consisting of three logical

steps: we automatically transform source code, use HLS tools to
enable optimizations and synthesis, and generate FIFO interfaces
between computation and communication blocks. If the communi-
cation block requires a large communication buffer and a complex
multi-read communication interface, we automatically insert cus-
tomized communication blocks.

For the first step, we integrate our framework into PoCC poly-
hedral framework [1]. Our framework defines data access pat-
terns, estimates performance, selects desired patterns based on per-
formance metrics and performs loop transformations. The PoCC
framework is at the C-code source level; we have also modified the
framework to automatically produce source code compatible with
our chosen HLS tool, AutoPilot [25]3.

Next, we use the AutoPilot HLS tool to enable optimizations and
synthesize the computation blocks. AutoPilot provides a set of di-
rectives for optimization, including loop_unrolling and pipeline
for the intra-block parallelization and pipelining, and the dataflow
andAP_FIFO directives for inter-block pipelining (with commu-
nication through a FIFO interface). AutoPilot will execute unrolled
loop iterations in parallel if there are no data dependencies between
the iterations. Similarly, AutoPilot will overlap execution of data-
dependent blocks if they use the same access pattern and can thus
communicate through a FIFO interface. However, for the blocks
that have multiple accesses to an array, either due to algorithm (e.g.,
stencil codes read a pattern of neighboring data) or parallelization
(e.g., multiple iterations execute and access data in parallel), mem-
ory bandwidth bottleneck often prevents the design from reaching
the expected intra-block parallelism and inter-block pipelining. To
alleviate the memory bottleneck, we implement the memory parti-
tion technique [16] that partitions the arrays into several banks and
enables more array accesses per clock cycle.
3AutoESL was acquired by Xilinx; AutoPilot is now part of Vivado
HLS.
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It is important to emphasize again that although AutoPilot pro-
vides these directives for intra- and inter-block optimizations, these
optimizations can not always be applied with the default data ac-
cess patterns and AutoPilot is unable to identify the optimization
opportunities to enable them through transformations. Thus, the
importance of this work is not just that we generate the AutoPilot
directives that are already available, but that we automatically im-
prove the number of situations in which the directives can be used.

In the first two steps, we can handle applications with simple
inter-block communication patterns that can be transformed to use
the FIFO interface automatically. However, some communication
patterns are more complex; a block may perform multiple data
reads per inner-loop iteration. In these situations, we need an opti-
mized communication block. Particularly, we automatically insert
a reuse buffer [15] that stores data that will be temporally reused.
The implementation of the reuse buffer can use multi-port BRAMs
or registers depending on resource and buffer sizes, as shown in
Figure 7.

Bank 0 
 

Bank 1 
 

decoder 

Block 1 
for () 
    for() 
        …… 
        write(stream, data);  

Block 2 
for () 
    for() 
        …… 
        read(stream, data);  

BRAMs Registers 

write read …… …… 

Communication Block 

Figure 7: Communication block.

4. EXPERIMENTAL EVALUATION
In this section, we present our experimental results using a set of

real-world applications that contain multiple data-dependent blocks
and communicate through complex data access patterns. We first
discuss the experiments setup and evaluated benchmarks. Then, we
show the performance improvement of our proposed framework.

4.1 Experiments Setup
For our experiments, we use a set of benchmarks from Poly-

Bench 3.0 [1] and some real-world applications from [11]. Table 2
describes the benchmark details.

Our framework is based on the polyhedral compiler infrastruc-
ture PoCC 1.1 [1]. PoCC is a source-to-source compiler that in-
cludes a set of tools for polyhedral compilation. It extracts the poly-
hedral intermediate representation at source code level. We modify
PoCC to define data access patterns, evaluate FPGA architecture-
specific performance, perform loop transformations and code gen-
eration. Finally, PoCC also provides libraries for program depen-
dencies checking.

The output of our modified PoCC is transformed C code with
AutoPilot pragmas to enable the HLS optimizations. Then, we
use the AutoPilot HLS tool version 2011.3 to synthesize the trans-
formed C code into Verilog RTL. As previously discussed, AutoPi-
lot supports intra- and inter-block optimizations. We automatically
insert directives into the configuration file to enable these opti-
mizations. The target FPGA platform is Xilinx-Virtex-6 LX75T.
We synthesize the RTL generated from AutoPilot using Xilinx ISE
13.1 and gather area and clock period data. To compute the op-
erating frequency, we round down the operating frequency deter-
mined by the synthesis report’s achievable clock period to an inte-

ger. The clock cycles are collected through simulation using Mod-
elsim 6.1. Finally, we compute latency using the operating fre-
quency and clock cycles and compute speedup using the latency
value.

Table 2: Benchmarks
Benchmark Description
Deconv Image Rician Deconvolution [11]
Denoise Image Rician Denoising [11]
Seg Image Segmentation [11]
Seidel Seidel stencil computation [1]
Jacobi Jacobi stencil computation [1]

4.2 Performance Improvement
We compare the performance of three different implementations.

The first implementation is the baseline — it is the original source
code without using intra-block parallelization or inter-block pipelin-
ing optimization. The second implementation is an improved ver-
sion — it applies the intra-block parallelization and inter-block
pipelining optimizations to the original source code when supported
without code transformation. The first and second implementations
do not require source code transformation. Although the second
implementation tries to use optimizations, they cannot be enabled
if the default data access pattern does not support it. The third im-
plementation is our proposed implementation — it transforms the
source code and then enables the intra- and inter-block optimiza-
tions. Note that by default, we apply intra-block pipelining within
each individual block for all the implementations and benchmarks.

Performance Comparison. Table 3 describes the clock cycles, re-
sources and achieved frequencies of the three implementations for
all the benchmarks. Table 4 presents the details of the chosen data
access patterns and enabled optimizations with and without trans-
formation for all the benchmarks.

Compared to the baseline design, the second and third imple-
mentations improve the latency in clock cycles at the expense of
more resource usage using the pipelining and parallelization op-
timizations. This demonstrates that with greater opportunity for
intra-block parallelization and inter-block pipelining, HLS tools
can effectively use additional FPGA resources. The latency speedup
is shown in Figure 8. The speedup is normalized to the baseline
implementation. Compared to the baseline, the second implemen-
tation (without transformation, with optimization) achieves an av-
erage of 4.89X speedup. Our proposed implementation (with trans-
formation, with optimization) achieves further speedup by enabling
more optimizations through polyhedral transformations. Our pro-
posed implementation achieves an average of 29.59X speedup over
the non-optimized source code and 6.04X speedup over code that
is optimized but not transformed to enable optimizations. The av-
erage speedup is computed using geometric mean.

The performance improvement is from three-fold: first, the intra-
block parallelization improves computation latency within blocks;
second, the inter-block pipelining improves computation latency
by overlapping the execution of blocks; and third, our memory and
communication block optimization improves the memory bandwidth.
We again use the example of the Denoise benchmark to demon-
strate these points; the second implementation employs inter-block
pipelining in conjunction with memory partition. These two op-
timizations improve clock cycles by overlapping the execution of
two blocks and allowing multiple memory accesses per clock cy-
cle. Without code transformation, the intra-block parallelization
is available for the first block but not the second block as shown
in Figure 1. We do not perform partial parallelization (e.g., par-
allelizing the first block only) together with inter-block pipelining
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Table 3: Performance and resource comparison of different implementations
Benchmark Implementation Cycles LUT FF DSP BRAM Frequency(MHz)

Deconv
w/o trans, w/o opt 5408 3234 948 24 48 151
w/o trans, w/ opt 1809 6433 2650 24 5 182
w/ trans, w/ opt 257 13819 13826 108 17 182

Denoise
w/o trans, w/o opt 5408 3266 948 24 5 160
w/o trans, w/ opt 1809 6503 2672 24 5 182
w/ trans, w/ opt 250 13817 13824 108 17 230

Seg
w/o trans, w/o opt 9864 3735 1202 30 24 117
w/o trans, w/ opt 9864 3735 1202 30 24 117
w/ trans, w/ opt 500 48796 9560 216 34 156

Seidel
w/o trans, w/o opt 64803 1400 891 2 2 103
w/o trans, w/ opt 1818 13375 6626 32 6 134
w/ trans, w/ opt 1130 47402 20040 96 14 134

Jacobi
w/o trans, w/o opt 5373 5563 1890 3 16 101
w/o trans, w/ opt 1439 39430 18832 64 10 134
w/ trans, w/ opt 482 38877 18664 64 10 133

Table 4: Details of optimizations and data access pattern
Benchmark Optimizations Selected Data Access Pattern

w/o trans w/ trans
Deconv inter-block pipeline inter-block pipeline & intra-block parallel diagonal (slope = 1)
Denoise inter-block pipeline inter-block pipeline & intra-block parallel diagonal (slope = 1)

Seg none inter-block pipeline & intra-block parallel diagonal (slope = 1)
Seidel inter-block pipeline inter-block pipeline & intra-block parallel diagonal (slope = 2)
Jacobi intra-block parallel inter-block pipeline & intra-block parallel row

because if the throughputs are not matched then it would require a
buffer size proportional to the total data size which is not feasible
in general. The third implementation transforms the code to a di-
agonal access pattern. Then, in addition to inter-block pipelining
and memory customization, it enables intra-block parallelization
for both blocks that allows multiple iterations to execute simultane-
ously. The third implementation maximizes resource use such that
each block is parallelized to the same degree and fits in the Virtex
6 LX75T, which has 46240 LUTs, 92480 FFs, 288 DSPs, and 312
18Kb BRAMs. For Denoise, the intra-block parallelization degree
is 9, given the resources on FPGA. As a result, our implementa-
tion achieves 31.09X and 9.14X speedup over the first and second
implementations, respectively.

In addition, our optimization produces a side-benefit of improved
operating frequency. As stated earlier, we assume that the clock
period is not affected by our transformations and make no specific
effort to improve clock period. However, because our technique
implements simplified memory and communication interfaces, we
also have the benefit of reducing the complexity of addressing and
communication structures. Therefore, we also improve the design’s
critical path and get a corresponding modest improvement in oper-
ating frequency as shown in Table 3.
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Figure 8: Latency speedup comparison.

Data Access Pattern and Optimization. For benchmarks Denoise,
Deconv and Seidel, without transformations inter-block pipeline
can be enabled as different blocks communicate in the same order;
but intra-block parallelization cannot be enabled with the default
data access order. Our implementation transforms them into diago-
nal access order with different slopes, which enables both intra- and
inter-block optimization. The slope of the data access order is cho-
sen based on the performance metric we developed in section 3.2.
In particular, we choose slope = 2 for Seidel as it allows simul-
taneous execution of the iterations on the same diagonal line and
retain inter-block pipelining. For benchmark Seg, without transfor-
mation neither intra-block parallelization nor inter-block pipelining
can be enabled. Thus, the first and second implementation are the
same as shown in Table 3. Our implementation transforms it into
diagonal access pattern (slope = 1), which enables both intra- and
inter-block optimization. For benchmarks Jacobi, without transfor-
mation intra-block parallelization is available as there are no de-
pendencies among iterations, but inter-block pipelining cannot be
enabled as two blocks produce and consume data in different or-
ders. Our implementation transforms it to enable both intra- and
inter-block optimization. For all the benchmarks, our implementa-
tion successfully enables both intra-block parallelization and inter-
block pipelining optimizations.

5. RELATED WORK
High level synthesis has seen significant advances in recent years,

improving the quality of input source languages. There are many
currently active HLS tools in both industry and academia, such
as [8, 25, 4, 7, 19, 14]. Leading HLS tools support various intra-
block and inter-block optimizations, including pipelining and par-
allelization. With such powerful optimizations, HLS offers increased
productivity with lower design effort; however, in practice these
transformations are difficult to apply — only certain data access
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patterns are supported, limiting the applicability of an important
HLS feature. Recent studies show that there is still a significant
performance gap between manual design and HLS-generated de-
signs [23, 17, 10], and the inability to apply these optimizations is
one of the causes of this gap.

Real-world applications contain multiple data-dependent blocks
that communicate through complex data access patterns, with source
code that was not originally intended for HLS. These applications
commonly have original data access patterns that do not support the
HLS optimizations; thus, it is critical to transform the source code
to enable these optimizations. Prior work in optimization opportu-
nities for data-dependent blocks individually worked on pipelining
and communication techniques [26, 22, 9]. Ziegler et al. devel-
oped coarse-grained pipelining for data-dependent loops that find
efficient communication schemes [26], but they assume that the
data access order is already identical between the communicating
loops. Cong et al. developed a resource constrained scheduling for-
mulation for the communication problem that can find the optimal
communication order [9], but the technique requires completely un-
rolled loops, and additional storage and computation overhead for
communication reordering. Similarly, Rodrigues et al. presented
a fine-grained synchronization technique with hardware inter-stage
buffers to manage the communication [22]. Prior works retain the
original execution order but apply techniques to reorder commu-
nication; however, these techniques may require large inter-stage
buffers in order to handle the reordering, which limits the feasible
problem sizes they can support. Furthermore, these works manu-
ally optimize communication interfaces, rather than automated op-
timization such as that performed for high level synthesis.

In our technique, we instead rely on loop transformations to
convert the execution order so that the communication order is
optimized, while simultaneously minimizing the need for inter-
stage buffers. The polyhedral model based loop transformations
are based on a mathematical model that can represent any com-
position of loop transformations using affine transformations [24,
20, 13]. In the past, polyhedral models have been used for max-
imizing parallelism while minimizing communcation for parallel
computing [18, 2]. Recently, polyhedral models have been used
in high level synthesis for FPGAs to optimize on-chip memory
bandwidth [12, 21], or to optimize the SDRAM bandwidth [3].
In contrast, our approach is to optimize multiple data-dependent
blocks simultaneously in order to match their data access patterns
and thus simultaneously optimize both intra-block parallelism and
inter-block pipelining.

6. CONCLUSION
High level synthesis is a critical technology to ease the adop-

tion of hardware accelerator resources. However, although current
high level synthesis offers a variety of powerful optimizations, the
implementation constraints limit the applicability and thus impact
of the optimizations. Input source codes commonly have complex
data access patterns that do not inherently support important high
level synthesis optimization techniques, but polyhedral models can
model the data access patterns and find loop transformations that
enable these important parallelization and pipelining optimizations.

We have presented an integrated technique using polyhedral mod-
els to model and enable both intra- and inter-block optimizations.
This integrated technique substantially improves the opportunity to
use HLS optimizations for parallelism, pipelining, and fine-grained
communication. Our framework automatically identifies data ac-
cess patterns and candidate loop transformations, evaluates the per-
formance benefit of each candidate to select the best option, per-
forms the code transformations, and inserts the HLS code directives

and communication structures to implement the optimized hard-
ware. Experimental evaluation demonstrates an average of 6.04X
speedup over high level synthesis without our transformations to
enable intra- and inter-block optimizations.
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