
Exploring Cache Bypassing and Partitioning for
Multi-Tasking on GPUs

Yun Liang
School of EECS, Peking University

ericlyun@pku.edu.cn

Xiuhong Li
School of EECS, Peking University

lixiuhong@pku.edu.cn

Xiaolong Xie
School of EECS, Peking University

xiexl pku@pku.edu.cn

Abstract—Graphics Processing Units (GPUs) computing has
become ubiquitous for embedded system, evidenced by its wide
adoption for various general purpose applications. As more
and more applications are accelerated by GPUs, multi-tasking
scenario starts to emerge. Multi-tasking allows multiple appli-
cations to simultaneously execute on the same GPU and share
the resource. This brings new challenges due to the contention
among the different applications for the shared resources such
as caches. However, the caches on GPUs are difficult to use. If
used inappropriately, it may hurt the performance instead of
improving it.

In this paper, we propose to use cache partitioning together
with cache bypassing as the shared cache management mecha-
nism for multi-tasking on GPUs. The combined approach aims
to reduce the interference among the tasks and preserve the
locality for each task. However, the interplay among the cache
partitioning and bypassing brings greater challenges. On one
hand, the partitioned cache space to each task affects its cache
bypassing decision. On the other hand, cache bypassing affects
the cache capacity required for each task. To address this, we
propose a two-step approach. First, we use cache partitioning
to assign dedicated cache space to each task to reduce the
interference among the tasks. During this process, we compare
cache partitioning with coarse-grained cache bypassing. Then,
we use fine-grained cache bypassing to selectively bypass certain
data requests and threads for each task. We explore different
cache partitioning and bypassing designs and demonstrate the
potential benefits of this approach. Experiments using a wide
range of applications demonstrate that our technique improves
the overall system throughput by 52% on average compared to
the default multi-tasking solution on GPUs.

Index Terms—GPU, Cache, Cache Partitioning, Cache Bypass-
ing, Performance

I. INTRODUCTION

GPUs are increasingly popular for embedded system com-

puting as they can deliver orders of magnitude higher perfor-

mance and energy efficiency than general purpose CPUs. For

example, the system-on-chip (SoC) used by NVIDIA Tegra,

Qualcomm Snapdragon, and Samsung Exynos series all inte-

grate GPUs with CPUs [14], [16]. The presence of GPUs in

SoC enables more and more general purpose and sophisticated

applications on embedded system devices such as mobiles

and tablets. As the number of applications ported onto GPUs

continue to grow, multi-tasking scenario starts to emerge.

For instance, a user of a tablet may execute face detection

and object recognition simultaneously and both applications

request for GPU acceleration. In reality, not all the GPU

applications require full use of GPU resources [3]. Depending

on the application’s available parallelism and architecture’s

achievable memory bandwidth, GPU applications may saturate

their performance with only a fraction of cores [3], [11]. Thus,

multi-tasking that executes multiple applications on a single

GPU has the potential to improve the resource utilization and

overall performance.

However, multi-tasking on GPUs brings new challenges

in the form of resource contention especially for caches.

GPUs are inherently designed with small caches as most of

the hardware area is devoted to computing resources. For

example, on the latest NVIDIA TitanX GPU, the total L1

cache size across all the cores is only 1,152KB. Titan X can

accommodate 49,152 concurrent threads in total, leading to 24

bytes cache capacity per thread. Therefore, the limited cache

capacity of GPUs can be easily overwhelmed by the large

number of threads, making GPU caches a system bottleneck

and causing performance unpredictability [20]. Multi-tasking

will aggravate this contention as the data locality of one ap-

plication might be hampered by another through data eviction.

Cache bypassing techniques have been proposed for GPUs

to alleviate the cache contention by allowing certain data

requests to bypass the L1 cache [4], [5], [9], [20], [21].

Both instruction and thread level cache bypassing techniques

have been proposed for a single application on GPUs [21].

On the other hand, cache partitioning techniques have been

mainly used for managing the last level cache (LLC) of

multicore architecture to reduce the cache interference by

strictly partitioning the cache among different applications and

assigning each application to its dedicated cache space [17].

To address the challenges and opportunities of cache for

multi-tasking on GPUs, we propose to synergistically combine

cache partitioning and bypassing. The synergistic interaction

between cache bypassing and partitioning introduces new

challenges. On one hand, cache partitioning assigns a portion

of cache for each task and the allocated cache capacity affects

the cache bypassing decision of each task. On the other hand,

cache bypassing determines the data requests and threads that

access or bypass the cache, which affects the required cache

capacity of each task.

Our goal is to maximize the overall system throughput of

multi-tasking by reducing the cache contention among the co-

running tasks and preserving the data locality of each task.

We design a two-step approach to achieve this goal. We

first use cache partitioning to partition the cache space to

co-running tasks. Our algorithm compares different partition

978-1-5386-3093-8/17/$31.00 ©2017 IEEE 9

choices with coarse-grained cache bypassing (bypass-all). This

is essential for GPU as the caches in GPU architecture may

hurt the performance due to excessive cache contentions. For

the determined cache partition of each task, we use fine-

grained cache bypassing to selectively bypass certain data

requests and threads.

We propose both static and dynamic cache partitioning

approaches for multi-tasking on GPUs. For static approach,

we first characterize each task on how the performance varies

with different cache size in single-program execution mode

and derive the overall system throughput in multi-program

execution mode. For dynamic approach, we propose to dynam-

ically adjust the cache partition by accommodating the task

phase changing behavior and sensitivity to different inputs.

For cache bypassing, we use instruction and thread level

bypassing. Finally, we devise different designs by combining

cache partitioning and bypassing.

To the best of our knowledge, this is the first work that syn-
ergistically uses cache bypassing and partitioning for multi-
tasking on GPUs for performance optimization. This paper

makes the following contributions.

• We propose a synergistic cache bypassing and partition-

ing approach for multi-tasking on GPUs to maximize the

overall system throughput.

• We propose static and dynamic cache partitioning designs

for multi-tasking on GPUs. We explore different design

choices by combining cache partitioning and bypassing

schemes.

• We perform rigorous experiment validation using multi-

ple applications with different characteristics on different

GPU architectures.

Experiments using a wide range of multi-tasking workloads

demonstrate that by exploring different cache bypassing and

partitioning designs, our approach can improve the overall

system throughput by 52% on average compared to the default

multi-tasking solution.

II. GPU ARCHITECTURE BACKGROUND

Figure 1 presents a GPU architecture in general. GPUs are

single instruction multiple data (SIMD) architectures. When

a GPU task (kernel) is launched, GPU spawns hundreds or

thousands of threads using the same set of instructions. The

threads are further divided into cooperative groups, named

thread blocks. Threads within the same thread block can

synchronize and exchange data during execution. One GPU

is composed of multiple Stream Multiprocessors (SMs) and

SMs are connected with shared off-chip L2 cache and device

memory via interconnection network. Each SM, which is

composed of multiple executing units, register file, L1 data

cache, shared memory, and others resources, is able to execute

multiple thread blocks either from the same or different

applications concurrently.

GPU vendors have enabled multi-tasking (concurrent kernel

execution) to improve the resource utilization since the Fermi

architecture. Fermi architecture supports concurrent kernel ex-

ecution from the same application, and the latest architectures

Interconnection Network

Unified L2 cache

Device Memory

… …

Thread Blocks

SM

Register file

SM SM

Shared
Memory

Kernel K1 Kernel K2

(Kernel K1) (Kernel K2)

Execution Units

L1 Data
Cache

Fig. 1: GPU architecture.

(Kepler, Maxwell, and Pascal) improve Fermi by introducing

the Hyper-Q feature, which maintains multiple independent

kernel queues to concurrently execute independent kernels.

Recently, NVIDIA propose multi-process service (MPS) to

utilize the Hyper-Q feature in the software layer, which allows

kernels from different applications to execute concurrently on

the same GPU. However, the default multi-tasking solution on

all the GPU architectures allow multiple applications to share

the cache, which is highly susceptible to cache thrashing. In

this work, we resort to cache partitioning and bypassing to

solve the problem. Similar to the default multi-tasking and

prior work [10], we allow multiple tasks to co-execute on the

same SM for resource utilization efficiency.

Each SM on GPU is associated with its private L1 cache and

all the thread blocks that are scheduled on the same SM share

the L1 cache. A cache memory in general is defined in terms

of three major parameters: block or line size L, number of
sets S, and associativity W . The block or line size determines

the unit of transfer between the main memory and the cache.

A cache is divided into S sets. Each cache set, in turn, is

divided into W cache blocks, where W is the associativity of

the cache. Now the cache size is defined as (L× S ×W). In

this work, we use the widely adopted way partitioning [17]

for GPU cache. In way partitioning, particular ways of a set

associative cache are selected and these ways are assigned to

a task for all the cache sets as shown in Figure 2.

In this work, we configure the L1 cache bypassing in either

coarse-grained or fine-grained manner. Since Fermi architec-

tures, NVIDIA GPUs provide interfaces to explicitly control

the L1 cache access or bypass for global load instructions.

In a coarse-grained manner, all the global load instructions

and threads are bypassed. In a fine-grained manner, we

configure cache access or bypass at instruction and thread

block level [21]. Finally, currently, on all the NVIDIA GPUs

including Fermi, Kepler, Maxwell, etc, L1 caches in different

SMs are not coherent with each other. The L2 cache is shared

by and coherent across all the SMs on the chip.

III. CACHE MANAGEMENT

A. Overview

GPU applications tend to launch a large number of threads

and these threads often issue large amounts of memory

requests within a short period, leading to high L1 cache

contention. Despite that GPUs employ fast context switch to

10

K1 block K2 block K1 block K2 block K1 block K2 block

Fig. 2: Different design choices.

Kernel Ki … Kernel Kj

Cache
Partitioning

Cache
Bypassing

Instruction-level
Bypassing

Thread Block-
level Bypassing

Static
Partitioning

Dynamic
Partitioning

bypassing

…
partition choices

Fig. 3: Overview of the two-step approach.

hide the long memory latency, the cache contention remains

a performance bottleneck [5]. The problem gets even worse

in the multi-tasking scenario on GPUs as multiple tasks or

kernels will compete for the cache resource. Prior work has

shown that the parallelism (e.g. number of concurrent thread

blocks of each task on an SM) composition of multiple tasks

will also impact the performance [10]. In this work, we

concentrate on the cache management technique for multi-

tasking and will compare with [10] in the experiment.

The interplay between cache bypassing and partitioning

in multi-tasking setting provides unique design choices and

opportunities for us to solve the cache contention problem.

We devise a two-step approach as shown in Figure 3. We first

use cache partitioning to resolve the cache interference among

different tasks. When we explore different partitioning choices

in the design space, we compare with coarse-grained bypassing

(bypass-all for all instructions and threads). This is crucial

because for certain tasks cache may hurt the performance

due to memory congestion and pipeline stall [21]. Cache

partitioning assigns dedicated cache space to each individual

co-running task. Then, for each task, we use fine-grained

bypassing to select the instructions and thread blocks to bypass

the cache for further performance improvement.

Finally, we devise different design choices by combining

cache partitioning and bypassing schemes. We propose both

static and dynamic cache partitioning approaches in tandem

with cache bypassing. For static approach, as shown in Fig-

ure 2 (a), the cache partition is determined initially before

the kernels start and remains unchanged throughout the kernel

execution. Figure 2 (b) shows the dynamic cache bypassing,

where the cache partition might change dynamically at run-

time. Static approach makes decision statically based on the

kernel characterization. In contrast, dynamic approach can

adjust the partition to different task phase and input behavior

but will incur learning overhead at run-time.

Figure 2 presents different design choices of this combined

approach for a two-kernel case, where kernels K1 and K2 are

executed on the same SM and share the L1 data cache. For

static and dynamic cache partitioning design, cache bypassing

is employed for each kernel to bypass the L1 cache and access

the L2 cache directly for certain data requests and threads.

B. Cache Partitioning

1) Kernel Characterization: We first classify the GPU

kernels into three types based on how the performance varies

as the cache size (cache ways) increases in single-program

execution mode. We use IPC (instruction per clock) to measure

the performance. Note that we use cache way partition, where

the cache set and block size remain unchanged.

• Compute Intensive: (abbr. C) The performance nearly

stays unchanged as the number of cache way increases.

Figure 4a uses the kernel SAD in Table I for illustration.

Since there exists no data locality, neither bypassing nor

accessing cache is useful for the kernels in this type.

• Memory Intensive-Saturate: (abbr. S) The performance

first increases and then saturates as the number of cache

way increases. Figure 4b uses the kernel BP in Table I for

illustration. For the kernels in this type, memory pressure

is alleviated as the number of cache way increases.

• Memory Intensive-Increase: (abbr. I) The performance

continues to increase as the number of cache way in-

creases. Figure 4c uses the kernel SC in Table I for

illustration. For the kernels in this type, they have good

locality and prefer large caches.

Next, we will present the details of our static and dynamic

cache partitioning designs.
2) Static Cache Partitioning: Given a set of kernels that si-

multaneously execute on the GPU, K = {k1, k2, . . . , kN}, we

use the overall system throughput (STPK) as the optimization

objective,

STPK =

N∑

i=1

IPCmp
ki,ci

IPCsp
ki

(1)

11

 0

 0.4

 0.8

 1.2

 1.6

 2

 1 2 3 4 5 6 7 8 9 10 11 12

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

N
o
r
m

a
li

z
e
d

 I
P

C

L
1
 M

is
s

R
a
te

Way Number

Normalized IPC

L1 Miss Rate

(a) Compute Intensive (Type: C).

 0

 0.4

 0.8

 1.2

 1.6

 2

 1 2 3 4 5 6 7 8 9 10 11 12

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

IP
C

L
1
 M

is
s

R
a
te

Way Number

Normalized IPC

L1 Miss Rate

(b) Memory Intensive-Saturating (Type: S).

 0

 0.4

 0.8

 1.2

 1.6

 2

 1 2 3 4 5 6 7 8 9 10 11 12

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

IP
C

L
1
 M

is
s

R
a
te

Way Number

Normalized IPC

L1 Miss Rate

(c) Memory Intensive-Increasing (Type: I).

Fig. 4: Kernel Characterization. (a), (b) and (c) uses kernels SAD, BP, and SC, respectively

where IPCsp
ki

denotes the performance (IPC) of the kernel

ki in single-program execution mode, IPCmp
ki,ci

denotes the

performance of the kernel ki with ci allocated cache ways in

multi-program execution mode. In single-program execution

mode, each kernel will exclusively use the entire cache. Note

that our technique in the following is not limited to the system

throughput optimization, it can also be used for other multi-

tasking evaluation criteria such as fairness [22].

Then, we formulate the optimization problem of static cache

partitioning as follows,

Problem 1: Given a set of kernels K = {k1, k2, . . . , kN}
, the static cache partitioning problem aims to parti-

tion the L1 cache on each SM into N disjoint subsets

({C[1], C[2], ..., C[N]}) of cache ways so as to maximize the

system throughput with subject to∑N
i=1 C[i] ≤ W , where W is the number of L1 cache ways.

For the kernels that belong to Compute Intensive type, we

will let them completely bypass the cache since they will not

benefit from the cache. For the kernels of the other two types,

intuitively using more cache ways will be no worse than using

less cache ways. However, it gets complicated when cache

bypassing is considered as shown in Figure 5. In Figure 5,

zero cache ways is equivalent to coarse-grained bypassing,

which bypass all the data requests to L2 cache. For example,

for kernel stream cluster, cache bypassing achieves better

performance than accessing the cache. This is because the

massive thread parallelism causes serious memory congestion

and pipeline stall overhead for it when L1 cache is used [21].

If the performance gain from exploiting the data locality by

using cache can not offset the pipeline stall overhead, cache

bypassing will be a better choice.

For each kernel ki, we use IPCsp
ki,bypass

and IPCsp
ki,ci

to

denote its IPC when cache is bypassed and allocated ci cache

ways in single-program execution mode, respectively. Then,

we define bypass(ki) as follows,

bypass(ki) =

{
true IPCsp

ki,bypass
≥ IPCsp

ki,1

false otherwise

For kernel ki, if bypass(ki) is true, we will evaluate both

cache bypassing and cache accessing for kernel ki; otherwise,

we will only consider cache accessing for kernel ki.
Algorithm 1 presents our detailed algorithm to Problem 1.

We define Scandidate
bypass as the set of kernels that are candidates

for cache bypassing. Scandidate
bypass contains all the kernels of

which bypass(ki) is true (line 3-6). For each kernel in the

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 1 2 3 4 5 6 7 8 9 10 11 12

N
o

r
m

a
li

z
e
d

 I
P

C

Way Number

Stream Cluster

Back Propagation

Fig. 5: Cache bypassing vs accessing.

Scandidate
bypass , we consider cache bypassing and accessing. Then,

we enumerate all the possible cases for them (line 9-26). Each

case is represented using a M-bit vector (line 12).

In Algorithm 1, we use set Saccess to represent the kernels

which will access the cache, and set Sbypass to represent

the kernels which will bypass the cache. If we let a cache

bypassing candidate to access the cache, then it is assigned

with 1 cache way initially (line 18). Then, for each kernel in

set Saccess, its performance exhibits a non-decreasing trend as

the cache ways increases as shown by Figure 4b and Figure 4c.

Then, we rely on the separable convex resource allocation

problem [18] to derive the optimal solution.

Function Partition (line 27-32) gives the implementation

details. We use STP [i][x] to represent the additional weighted

system throughput for kernel ki when the assigned cache

ways increases from x to x + 1. STP [i][x] is obtained

as a by-product during the kernel characterization step in

Section III-B1. Then, each time we increase c[j] by one,

where j is the index for which STP [j][c[j]] is the largest,

and then repeat the above operation, until all the cache ways

have been used. At last, function Partition can yield a cache

partition, then we compare the overall system throughput of

this cache partition with that of the current best cache partition

and update if necessary. For simplicity, we use IPCsp
ki,ci

in

single-program mode to approximate the IPCmp
ki,ci

. In other

words, we mainly focus on the contention from L1 cache, but

ignore the contention from L2 cache and interconnect, etc. The

time complexity of Algorithm 1 is W ∗ 2M .

3) Dynamic Cache Partitioning: For static cache partition-

ing scheme, the cache partition for each task is decided at

the beginning and keeps unchanged throughout the execution.

More importantly, the static scheme uses the average statistics

(e.g, IPC, type) as guided metrics which are obtained by

profiling the representative inputs. However, in reality, the ap-

plication’s behavior might change during runtime for the same

input and across different inputs, making static solution not

12

Algorithm 1: Static cache partitioning algorithm

Input : K, STP [1..N][1..N]
Output: Copt[1..N]

1 Copt[] = 0 ;

2 Scandidate
bypass = ∅ ;

3 foreach kernel ki ∈ K do
4 if bypass(ki) is true then
5 Scandidate

bypass = Scandidate
bypass

⋃{ki} ;

6 end
7 end
8 M = Scandidate

bypass .size();

9 for (i = 0; i < 2M ; i + +) do
10 C[] = 0 ;

11 Sbypass = Scandidate
bypass ;

12 let B be the M-bit bitset of i;
13 for (j = 0; j < M ; j + +) do
14 if B[j] = 1 then
15 C[j] = 0;
16 else
17 Sbypass = Sbypass \ {kj} ;
18 C[j] = 1;
19 end
20 end
21 Saccess = K\ Sbypass ;
22 Partition(Saccess, C[]);
23 if STPK(C[]) > STPK(Copt[]) then
24 Copt[] = C[] ;
25 end
26 end
27 function Partition(S, C[])
28 repeat
29 Increase C[kj] by one, where kernel kj has the largest

STP [kj][C[kj]] in Set S;
30 until sum(C[1..N]) ≥ W ;
31 return C[];
32 end

optimal. Here, we devise a hardware-based dynamic scheme

that can adjust the cache partitioning according to program

behavior at run-time.

For the kernel set K = {k1, k2, . . . , kN}, we select N SMs

to perform hardware-based profiling. We call the N SMs as

Profiling SMs and the remaining SMs as Followed SMs. We

divide the task execution into multiple sampling period. In

general, in the current sampling period, the Profiling SMs are

mainly used to predict the best cache partition in the next

sampling period and the Followed SMs will use the predicted

best cache partition in the next sampling period. The detailed

workflow of our dynamic scheme is as follows,

1) Initially, we use Even cache partition on all SMs includ-

ing Profiling SMs and Followed SMs. For each SM, we

evenly partition the cache ways among all the kernels.

2) At the beginning of each sampling period, we use each

Profiling SM to represent a different cache partition ad-

justing trend. More clearly, based on the cache partition

of the Followed SMs in the previous sampling period, we

increment the number of cache ways of the ith kernel

by one for the Profiling SMi, and randomly reduce one

cache way from the other kernels on SMi .

3) At the end of each sampling period, we collect the

IPC of all the SMs. Then, the comparator will compare

the system throughput among the Profiling SMs and

Followed SMs, and pick the SM with the maximum

system throughput as the winner.

4) Update the cache partition of the Followed SMs using

K1 block K2 block

Fig. 6: Dynamic cache partitioning scheme.

the winner’s configuration.

5) Repeat Step 2-5 until the end of the execution.

Let us assume that Tbi thread blocks of kernel ki are

accommodated within an SM. Then, we define the length of

the sampling period as the time which all the SMs have at least

finished Tbi thread blocks for each kernel ki. This ensures

that each task makes sufficient progress within one sampling

period. Figure 6 shows an illustration of the dynamic cache

partition scheme for a two-kernel case. The L1 cache consists

of four ways. Figure 6 shows the second sampling period,

where the Followed SMs use even cache partition and Profiling
SMs SM0 and SM1 give one more cache way to kernels k1
and k2, respectively.

Hardware Implementation Overhead. Our framework re-

quires very small area for hardware implementation. For each

SM, we only need 2 32-bit registers, one for storing the current

cache partition scheme and the other one for storing the IPC
at the end of each sampling period. Furthermore, we need a

comparator to compare the system throughput.

C. Cache Bypassing

The main purpose of cache partitioning is to solve the

cache contention among multiple GPU kernels, however, the

cache contention problem of each single kernel remains un-

solved. More importantly, after cache partitioning, the cache

contention problem may be aggravated as the cache size of

each kernel shrinks. Cache bypassing on GPUs allows cores

to bypass L1 cache and access lower-level cache directly, has

been demonstrated to be effective to mitigate cache contention

on GPUs [4], [21]. In this section, we explore fine-grained

cache bypassing for better performance.

Various cache bypassing techniques for GPUs have been

discussed. For example, instruction level cache bypassing

classifies memory access instructions at compile-time and

bypass the L1 cache for memory instructions that do not

benefit from cache [9], [20]. Other bypassing techniques make

the bypassing decision at run-time according to the monitored

cache performance [4], [5], [20]. We adopt the technique

proposed by Xie et al. [21] that combines instruction and

thread block level cache bypassing. The instruction level

cache bypassing identifies those memory instructions that have

strong cache preference, either prefer using cache or bypassing

13

cache. For the rest memory instructions, their cache preference

may vary according to the run-time information. A thread

block level cache bypassing is carried out to tune the number

of thread blocks that use or bypass cache adaptively.

More clearly, the instruction level cache bypassing uses

profiling to categorize the instructions. It classifies memory

instructions that have low hit rate as no locality instructions

and do not allow them to use cache. Instructions that have

high hit rate are allowed to always use cache. The cache

behavior of the rest memory instructions are adjusted by thread

block level cache bypassing at run-time. The basic idea is,

at run-time, when cache contention is observed, it increases

the number of thread blocks that bypass the L1 cache to

mitigate the contention. Otherwise, it decreases the number

of threads blocks that bypass the L1 cache, i.e., allows more

thread blocks to use the cache, to exploit the data localities.

To this, we use the CHSS metric designed by Xie et al. [21]

as the cache performance indicator. CHSS is defined as

CHSS =
Hits · L2 Latency

Stall · WarpCount
(2)

where Hits is the number of cache hits during the sampling

period, L2 Latency is the L2 cache access latency, Stall is

the number of pipeline stalls caused by accessing the cache,

and WarpCount is the number of active warp.

Thread block level cache bypassing works as follows. At

run-time, it monitors the CHSS during a fixed time interval.

When a thread block retires and a new thread block is issued

to the GPU, it checks CHSS to determine the cache or bypass

behavior of the new thread block. The length of the time

interval is set as the time span of a thread block. By doing

that, the thread block level cache bypassing can adjust the

cache or bypass behavior of GPU tasks adaptively. Similar to

prior work [21], our cache bypassing will not affect the data

consistency and cache coherence. This is because it works at

thread block granularity. Given a thread block, all the threads

in it have the same memory behavior (cache or bypass).

IV. EXPERIMENT EVALUATION

We implement our techniques based on GPGPU-Sim 3.3.2.

Both Fermi and Kepler-like architectures are evaluated. The

detailed configurations are shown in Table II. We evaluate

our techniques using 10 representative benchmarks shown

in Table I, among which there are 6 memory intensive

benchmarks and 4 compute intensive benchmarks. With the

10 benchmarks, we create 39 two-kernel workloads, among

of which 15 workloads consist of two memory intensive

benchmarks and 24 workloads consist of a compute intensive

and a memory intensive benchmarks. In our evaluation, we

do not consider the combination of two compute intensive

workloads as neither of them prefers to use cache. The static

cache partitioning requires profiling inputs to characterize the

kernels. We use different inputs for profiling and evaluation

purpose. The inputs used in the experiments are described in

Table II.

We perform evaluation from the following four aspects.

First, we present the results of static and dynamic cache parti-

TABLE I: Kernel description.

Application Name
Profiling

Input (#Inst)
Evaluation

Input (#Inst)
Type

Back Propagation(BP) [2] 36M 72M S
Heart Wall(HW) [2] 52M 52M S
Breadth First Search(BFS) [2] 0.9M 41M S
Lattice-Boltzman Method [1] (LBM) 0.56B 0.56B S
K-means (KM) [2] 0.15B 0.15B I
Stream Cluster (SC) [2] 77M 0.15B I
HotSpot (HS) [2] 0.44B 0.11B C
Sum of Absolute Differences (SAD) [1] 5.6M 0.45B C
3-D Stencil Operation (STENCIL) [1] 27M 91M C
Cutoff Coulombic Potential (CUTCP) [1] 0.15B 0.15B C

TABLE II: GPGPU-Sim configuration.
Fermi Kepler

Compute Units (SM) 15 15

SM configuration 32 cores, 700MHz

Threads per SM 1536 2048

Warps Per SM 48 64

Warp Scheduler 2 warp schedulers per SM, GTO policy

32-bit Registers/SM 32768 65536

L1 Data Cache 16KB, 32-set, 4-way, cache line (128B)

L2 Unified Cache 768 KB, 700 MHz, 64-set, 8-way

tioning alone. Second, we explore cache partitioning together

with cache bypassing . Third, we show the scalability results

as the cache size and the number of kernels increases. Finally,

we compare with the state-of-the-art techniques.

A. Performance Results

Figure 7 presents the performance results of cache parti-

tioning alone on Fermi architecture. The system throughput is

normalized to the default multi-tasking solution without cache

management techniques. On average, static cache partition-

ing and dynamic cache partitioning can improve the system

throughput by 42% and 33%, respectively. For most of the

workloads, static cache partitioning shows obvious advantage

over dynamic cache partitioning, especially for the S S and

S I workloads. It is because static scheme uses accurate

profiling information while the dynamic scheme often takes

several sampling periods to converge to a stable solution.

For S C and I C workloads, we find that the gap between

static and dynamic partitioning is relatively smaller than other

workloads. For these workloads, the static partitioning will

directly bypass the Compute Intensive kernels. It is easy for

dynamic partitioning to converge to a stable partition (i.e.

bypassing the Compute Intensive kernels) on these workloads

as cache size has negligible effect for Compute Intensive
kernels. The dynamic cache partitioning can also outperform

the static cache partitioning for certain workloads, such as

SC HS and HW SC. For these cases, kernels SC and HW
exhibit very obvious phase changing behavior and are sensitive

to different inputs. Therefore, dynamic partition scheme turns

out to be a better choice.

Figure 8 shows the results of combined cache partitioning

and bypassing on Fermi architecture. On average, after in-

corporating with cache bypassing, the performance speedup

of static partitioning is increased from 42% to 52%, and

the performance speedup of dynamic partitioning is improved

from 33% to 45%. In multi-tasking scenario, after cache par-

titioning, the cache capacity assigned to each kernel becomes

14

 0.8

 1.2

 1.6

 2

B
P
_
H

W

B
P
_
B
F
S

B
P
_
L
B
M

H
W

_
B
F
S

H
W

_
L
B
M

B
F
S
_
L
B
M

K
M

_
S
C

B
P
_
K

M

B
P
_
S
C

H
W

_
K

M

H
W

_
S
C

B
F
S
_
K

M

B
F
S
_
S
C

L
B
M

_
K

M

L
B
M

_
S
C

B
P
_
H

S

B
P
_
S
A

D

B
P
_
S
T
E
N

C
IL

B
P
_
C
U

T
C
P

H
W

_
H

S

H
W

_
S
A

D

H
W

_
S
T
E
N

C
IL

H
W

_
C
U

T
C
P

B
F
S
_
H

S

B
F
S
_
S
A

D

B
F
S
_
S
T
E
N

C
IL

B
F
S
_
C
U

T
C
P

L
B
M

_
H

S

L
B
M

_
S
A

D

L
B
M

_
S
T
E
N

C
IL

L
B
M

_
C
U

T
C
P

K
M

_
H

S

K
M

_
S
A

D

K
M

_
S
T
E
N

C
IL

K
M

_
C
U

T
C
P

S
C
_
H

S

S
C
_
S
A

D

S
C
_
S
T
E
N

C
IL

S
C
_
C
U

T
C
P

G
E
O

-M

S-S I-I S-I S-C I-C
N

o
r
m

a
li

z
e
d

 S
T

P
Static Partitioning

Dynamic Partitioning

Fig. 7: Comparison of static and dynamic cache partitioning on Fermi-architecture

 0.8

 1.2

 1.6

 2

B
P
_
H

W

B
P
_
B
F
S

B
P
_
L
B
M

H
W

_
B
F
S

H
W

_
L
B
M

B
F
S
_
L
B
M

K
M

_
S
C

B
P
_
K

M

B
P
_
S
C

H
W

_
K

M

H
W

_
S
C

B
F
S
_
K

M

B
F
S
_
S
C

L
B
M

_
K

M

L
B
M

_
S
C

B
P
_
H

S

B
P
_
S
A

D

B
P
_
S
T
E
N

C
IL

B
P
_
C
U

T
C
P

H
W

_
H

S

H
W

_
S
A

D

H
W

_
S
T
E
N

C
IL

H
W

_
C
U

T
C
P

B
F
S
_
H

S

B
F
S
_
S
A

D

B
F
S
_
S
T
E
N

C
IL

B
F
S
_
C
U

T
C
P

L
B
M

_
H

S

L
B
M

_
S
A

D

L
B
M

_
S
T
E
N

C
IL

L
B
M

_
C
U

T
C
P

K
M

_
H

S

K
M

_
S
A

D

K
M

_
S
T
E
N

C
IL

K
M

_
C
U

T
C
P

S
C
_
H

S

S
C
_
S
A

D

S
C
_
S
T
E
N

C
IL

S
C
_
C
U

T
C
P

G
E
O

-M

S-S I-I S-I S-C I-C

N
o

r
m

a
li

z
e
d

 S
T

P

SP+Bypassing

DP+Bypassing

Fig. 8: Cache partitioning together with cache bypassing on Fermi-architecture.

smaller, leading to more serious cache contention problem.

Thus, cache bypassing helps to further improve the perfor-

mance. The system throughput is improved as a mixed effect of

cache miss rate reduction and memory pipeline stall reduction.

On average, our combined approach reduces L1 cache miss

rate and pipeline stall by 16.6% and 21.3%, respectively.

Kepler Architecture. On Kepler architecture, our static and

dynamic partitioning improve the system throughput by 47%

and 36%, respectively. The combined approach further im-

proves the performance to 55% and 46%. Therefore, our

techniques are applicable to different GPU architectures.

 0

 0.4

 0.8

 1.2

 1.6

 2

4 8 16

N
o

r
m

a
li

z
e
d

 S
T

P

Way Number

SP+Bypassing

DP+Bypassing

Fig. 9: Results of different cache configurations.

B. Scalability

Figure 9 presents the results as the number of cache ways

increases. We keep the number of cache set and block size

constant and thus the cache size will increase with the number

of cache ways. The results demonstrate that considerable

 0

 0.4

 0.8

 1.2

 1.6

 2

BP_KM_HS

LBM_SC_SAD

BP_HW_BFS

HW_KM_SC

SC_HS_CUTCP

BFS_LBM_KM

GEO-M

N
o

r
m

a
li

z
e
d

 S
T

P

SP+Bypassing

DP+Bypassing

Fig. 10: Results of three kernel cases.

performance improvement is achieved for different cache

settings. As we expect, the performance improvement will

become smaller when the number of cache way or cache size

increases. This is because the cache contention is reduced as

the cache size increases. However, GPU architectures consis-

tently use small caches under its massive parallelism design

principle. Therefore, we need sophisticated cache optimization

techniques to reduce the cache contention.

Figure 10 presents the results for three-kernel case. Due to

the space limitation, we only show the results of six three-

kernel workloads. Our combined approach improves the sys-

tem throughput by 47% on average for three-kernel workloads.

C. Comparison

Li and Liang present an efficient multi-tasking framework

on GPUs [10]. Their techniques employ a thread block modu-

lation technique to alleviate the cache contention. They mainly

15

 0.8

 1.2

 1.6

 2

S-S I-I S-I S-C I-C GEO-M

N
o

r
m

a
li

z
e
d

 S
T

P

Li’s approach

Our

Fig. 11: Comparison with the state-of-the-art.

focus on the thread parallelism optimization, but ignore the

cache optimizations. Figure 11 compares our solution with

them for different types of workloads. Our approach improves

the system throughput by 52% on average, while Li’s approach

improves by 41% on Fermi architecture.

V. RELATED WORK

Cache Partitioning. Cache Partitioning has been demon-

strated to be effective in mitigating the cache interference

between parallel applications on CMPs [6], [17], [18]. It

divides the cache into multiple partitions and during the

execution, applications are not allowed to access the same

partition simultaneously. By doing this, the cache interference

between concurrent applications is avoided. Recently, cache

partitioning is employed on GPUs to help to minimize the

progress disparity of threads for single task case [8]. However,

how to solve the cache contention in multi-tasking has not

been explored on GPUs.

Cache Bypassing. Given the limited cache size and large

amount of running threads, GPUs are facing serious cache

contention problem [5]. Cache bypassing, that allows the GPU

to bypass L1 cache for some of the memory accesses, has

been widely discussed for the single task case. Both compile-

time [5], [20] and run-time [5], [21] solutions are proposed.

It has also been combined with other techniques, e.g. thread

throttling, for better performance [4]. However, none of the

existing works discusses cache bypassing in the case of multi-

tasking. In this paper, we combine cache bypassing with cache

partition and demonstrate that it is an effective technique in

multi-tasking scenario.

GPU Multitasking. With more applications are now accel-

erated on GPUs, the need for efficient multi-tasking manage-

ment on GPUs is necessary. Different multi-tasking solutions

including preemptive multi-tasking [12], [15], [19], spatial

multi-tasking [3], [7], [10], and temporal multi-tasking [11],

[13] are proposed. In this paper, we focus on the spatial multi-

tasking, where multiple GPU kernels are allowed to share

one GPU simultaneously. When multiple kernels share the

resources within one SM, they will compete for resources such

as caches. However, none of the prior works has addressed this

problem. In this paper, we solve this problem using a combined

cache partition and cache bypassing design.

VI. CONCLUSION

Thanks to the tremendous computational power of GPUs,

a wide range of applications have been ported to GPUs for

performance acceleration. This leads to multi-tasking demands

on GPUs. In this paper, we explore cache partitioning and

bypassing together as cache optimization techniques for multi-

tasking on GPUs to alleviate the cache contention and improve

the overall system throughput. We first develop static and dy-

namic cache partitioning techniques. Then, we use instruction

and thread block level cache bypassing to further improve the

performance. By cooperating with the cache bypassing and

cache partitioning, we can improve the system throughput by

52% on average.

ACKNOWLEDGMENT

This work is partially supported by the National Science

Foundation China (No. 61672048). The corresponding author

of this paper is Yun Liang (Email: ericlyun@pku.edu.cn).

REFERENCES

[1] Parboil Benchmark Suite.
http://impact.crhc.illinois.edu/Parboil/parboil.aspx.

[2] Rodinia Benchmark Suite.
http://www.cs.virginia.edu/∼skadron/wiki/rodinia/index.php/.

[3] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte. The case
for gpgpu spatial multitasking. In HPCA, 2012.

[4] X. Chen, L.-W. Chang, C. I. Rodrigues, J. Lv, Z. Wang, and W.-M.
Hwu. Adaptive cache management for energy-efficient GPU computing.
In MICRO, 2014.

[5] W. Jia, K. A. Shaw, and M. Martonosi. MRPB: Memory request
prioritization for massively parallel processors. In HPCA, 2014.

[6] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partitioning
in a chip multiprocessor architecture. In PACT, 2004.

[7] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu.
Improving GPGPU resource utilization through alternative thread block
scheduling. In HPCA, 2014.

[8] S.-Y. Lee, A. Arunkumar, and C.-J. Wu. CAWA: coordinated warp
scheduling and cache prioritization for critical warp acceleration of
GPGPU workloads. In ISCA, 2015.

[9] A. Li, G.-J. van den Braak, A. Kumar, and H. Corporaal. Adaptive and
transparent cache bypassing for GPUs. In SC, 2015.

[10] X. Li and Y. Liang. Efficient kernel management on GPUs. In DATE,
2016.

[11] Y. Liang, H. P. Huynh, K. Rupnow, R. S. M. Goh, and D. Chen. Efficient
GPU spatial-temporal multitasking. IEEE Transactions on Parallel and
Distributed Systems, 26(3):748–760, March 2015.

[12] Z. Lin, L. Nyland, and H. Zhou. Enabling efficient preemption for SIMT
architectures with lightweight context switching. In SC, 2016.

[13] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan. Improving GPGPU
concurrency with elastic kernels. In ASPLOS, 2013.

[14] J.-G. Park, N. Dutt, H. Kim, and S.-S. Lim. HiCAP: Hierarchical FSM-
based dynamic integrated CPU-GPU frequency capping governor for
energy-efficient mobile gaming. In ISLPED, 2016.

[15] J. J. K. Park, Y. Park, and S. Mahlke. Chimera: Collaborative preemption
for multitasking on a shared GPU. In ASPLOS, 2015.

[16] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra. Integrated CPU-GPU
power management for 3D mobile games. In DAC, 2014.

[17] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches. In MICRO, 2006.

[18] H. S. Stone, J. Turek, and J. L. Wolf. Optimal partitioning of cache
memory. IEEE Transactions on Computers, 41(9):1054–1068, Sep 1992.

[19] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero.
Enabling preemptive multiprogramming on GPUs. In ISCA, 2014.

[20] X. Xie, Y. Liang, G. Sun, and D. Chen. An efficient compiler framework
for cache bypassing on GPUs. In ICCAD, 2013.

[21] X. Xie, Y. Liang, Y. Wang, G. Sun, and T. Wang. Coordinated static
and dynamic cache bypassing for GPUs. In HPCA, 2015.

[22] S. M. Zahedi and B. C. Lee. Ref: Resource elasticity fairness with
sharing incentives for multiprocessors. In ASPLOS, 2014.

16

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

