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ABSTRACT
Oblivious RAM (ORAM) is a cryptographic primitive
that can prevent information leakage in the access trace
to untrusted external memory. It has become an im-
portant component in modern secure processors. How-
ever, the major obstacle of adopting an ORAM de-
sign is the significantly induced overhead in memory
accesses. Recently, Path ORAM has attracted atten-
tions from researchers because of its simplicity in algo-
rithms and efficiency in reducing memory access over-
head. However, we observe that there exist a lot of re-
dundant memory accesses during the process of ORAM
requests. Moreover, we further argue that these redun-
dant memory accesses can be removed without harming
security of ORAM. Based on this observation, we pro-
pose a novel Fork Path ORAM scheme. By leveraging
three optimization techniques, namely, path merging,
ORAM request scheduling, and merging-aware caching,
Fork Path ORAM can efficiently remove these redun-
dant memory accesses. Based on this scheme, a de-
tailed ORAM controller architecture is proposed and
comprehensive experiments are performed. Compared
to traditional Path ORAM approaches, our Fork Path
ORAM can reduce overall performance overhead and
power consumption of memory system by 58% and 38%,
respectively, with negligible design overhead.
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1. INTRODUCTION
Following the fast growth of consumer electronics

and cloud computing industry, the demand for data
security and privacy protection keeps increasing. Re-
cently, secure processors, which can co-operate with
software countermeasures to offer holistic protection [1,
2], have been widely proposed to enhance hardware se-
curity. Since traditional secure processor designs focus
on the security of data content, there has been many re-
search works on data encryption to protect data stored
in external memory [3, 4, 5]. However, recent research
has pointed out that even with data encryption, the
data access pattern can still leak considerable sensitive
information [6, 7, 8]. To overcome this problem, oblivi-
ous RAM (ORAM) is extensively investigated lately.
ORAM is a cryptographic primitive that can con-

ceal access patterns to memory so that the informa-
tion leakage in a program’s memory access trace can be
eliminated [9, 10, 11]. The basic idea is that ORAM
maintains an encrypted and shuffled form for all data
stored in memory. For each memory access, data are re-
encrypted and reshuffled. In ORAM, a memory access
pattern is computationally indistinguishable from the
others with the same length [12, 13]. Ever since ORAM
was first proposed in 1987 [14, 15], it has attracted more
and more attentions in the security community, includ-
ing some very recent practices [9, 16, 17, 10, 11]
As mentioned in many previous works, the main limi-
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tation of ORAM technique is its large access overhead in
memory accesses. Compared to the unprotected base-
line, ORAM induces 10 × −100× more memory ac-
cesses [12, 18, 19] leading to significant virtual increase
in memory access latency. It could result in up to
10× system-level performance degradation, especially
for those memory intensive applications [13, 18, 12].
Since many secure processors have adopted chip-multi-
processor (CMP) and out-of-order pipelining architec-
tures to improve performance and compatibility with
commercial insecure processor [20, 21, 22, 23], the lim-
ited external memory bandwidth has already become
a bottleneck. ORAM, thus, drastically aggravates this
already-severe issue.
Recently, an ORAM scheme called Path ORAM is

proposed [10] with high algorithm efficiency and sim-
plicity. In Path ORAM, the external memory is logi-
cally structured as a binary tree. The processor accesses
the memory with a random path descending from one
leaf to the root of the binary tree. Several follow-up
work and techniques have been proposed to further re-
duce the access overhead of Path ORAM [13, 18, 12].
Thus, current variances of Path ORAM are considered
as the state-of-art and most efficient approaches. How-
ever, for many memory-intensive applications, the over-
head of Path ORAM is still too high for practical usage.
We find that it is still possible to continue improv-

ing memory access efficiency of Path ORAM by observ-
ing the substantial redundant memory accesses during
data process. Simply speaking, each ORAM request is
processed separately by traversing a complete ORAM
path in the binary tree mentioned above. In fact, from
the perspective of a sequence of consecutive ORAM re-
quests, a lot of memory requests are redundant and can
be removed without harming security of ORAM design.
Based on this observation, we propose a Fork Path

ORAM scheme in this work to remove those redundant
memory accesses efficiently and safely. The major con-
tributions of this work can be summarized as:
1. Instead of operating each ORAM request indepen-

dently, we process ORAM requests by considering
their previous request and following request. Then,
we argue that some memory accesses can be re-
moved without leaking information;

2. We propose a path merging technique to remove
those redundant memory accesses;

3. We introduce a request scheduling technique to im-
prove the efficiency of path merging;

4. After applying path merging, we present a new
merging-aware caching scheme to further decrease
the number of memory accesses per ORAM access;

5. A detailed architecture of ORAM controller is pro-
posed and comprehensive evaluation and compari-
son are presented.

The rest of this paper is organized as follows: Sec-
tion 2 introduces the threat model and basic knowl-
edge of ORAM. In addition, a state-of-art Path ORAM
scheme is described as the baseline of this work; Sec-
tion 3 introduces Fork Path ORAM, which is composed
of three components, i.e., path merging, request schedul-

ing and merging aware caching; Section 4 presents the
detailed architecture of Fork Path ORAM controller;
Section 5 gives a comprehensive evaluation of our de-
sign and compares it with the baseline Path ORAM
in terms of performance, energy, and design overhead;
Section 6 summarizes the related works, followed by a
conclusion section.

2. BACKGROUND
In order to understand the design target of ORAM,

in this section, the threat model needs to be presented
first. Then, the basic idea of ORAM is introduced to
explain how the memory is protected from the threats.
Lastly, a state-of-art design, Path ORAM, is elaborated
to illustrate the memory access flow under the current
ORAM protection. Observations are concluded to moti-
vate the optimization techniques proposed in this work.

2.1 Threat Model
The threat model used here is similar to those pro-

posed in previous works [12, 18]. User’s private pro-
grams are running on a processor interacting with an
external memory. As assumed in previous work [12, 18,
13], the processor is trusted. It means that all data
inside this secure processor are invisible to the outer
adversary. However, the external memory is exposed to
the adversary. In other words, the external memory is
untrusted; the adversary is capable of capturing all the
information in the memory, including data, addresses
on the bus and their corresponding timing information.
Existing secure processors have provided encryption

to protect data contents [4, 1, 2, 24, 5]. However, based
on the access patterns on memory bus, the adversary
can still learn sensitive information of the programs,
such as the encryption type or even secret keys [6, 7, 8].
To overcome this problem, Oblivious RAM (ORAM) is
proposed to prevent the memory access pattern from
being detected.

2.2 ORAM Basics
ORAM is a cryptographic primitive that can com-

pletely hide the memory access patterns by transform-
ing the memory request sequence into a random request
sequence(i.e. ORAM requests). As proved in previous
work, an ORAM design that satisfies the following rule
is considered to be secure [13, 10, 11]:
For any two data request sequences −→a and −→a ′, which

are composed of (address, operation, writedata) tuples
that are compatible to a standard RAM interface, their
resulting sequences ORAM(−→a ) and ORAM(−→a ′) are
computationally indistinguishable if these two resulting
sequences have the same length.
The −→a represents the sequence of memory load/store

requests from the program. Since on-chip caches (which
is trusted) are normally employed in a secure processor,
ORAM(−→a ) normally refers to those memory requests
caused by misses of last level cache (LLC). As men-
tioned in previous works, the length of ORAM(−→a ) can
indicate the number of cache hits [12, 13]. Thus, infor-
mation leaks logarithmically with the increasing length
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of ORAM(−→a ). However, a nonstop stream of the ac-
cesses to the external memory can be used to prevent
this leakage. In other words, requests will be issued at
a data-independent time no matter whether there are
LLC misses or not[13, 25].
Note that the core purpose of ORAM is to protect

privacy of memory access patterns (i.e., the address se-
quence and its timing channel [13, 25]). ORAM can also
cooperate with other countermeasures against other at-
tacks such as active attacks[5, 26, 24], EM-attacks[27],
convert channel attacks[28], and cache side channel at-
tacks[29], etc. For example, the integrity checking (e.g.,
Merkel Tree) can be combined with ORAM to counter-
act active attacks[18, 12]. These work are considered as
orthogonal to ORAM designs and out of the scope of
this paper.

2.3 Path ORAM
We use a state-of-art ORAM design, namely, Path

ORAM as an example to illustrate the memory ac-
cess flow after an LLC miss in ORAM. Path ORAM is
an efficient and algorithmically simple Oblivious RAM,
which has been proposed to be a component in a se-
cure processor[18, 12, 13, 30]. Recent prototypes have
proved that Path ORAM is one of the most promis-
ing and efficient ORAM implementations [12, 13]. An
overview of Path ORAM architecture can be found in
Figure 1. It includes two components: (1) a trusted
on-chip ORAM controller (upper half) and (2) an un-
trusted external memory (lower half).

Read Phase Idle Write Phase Idle Read Phase Idle Write Phase Idle

0 1 2 3 4 5 6 7
ORAM tree: external memory(untrusted) 

Level L

Level 1

Level 2

Level 0

Address Logic

Position Map Stash

Return block to LLCRequest from LLC for addr

Leaf label l

DRAM addr 
along path l

2

3

ORAM Controller(trusted)
Encryption/Decryption Circuits

(data, label, addr) 

5

4

Z=4 blocks

1

(c)

(a)

(b)

t1t0 t2 t4t3

Current ORAM request

t5

Next ORAM request

Figure 1: An illustration of Path ORAM archi-
tecture[12] that consists of (a) an ORAM tree
and (b) an ORAM controller (L = 3 and Z = 4);
(c) the timing diagram of memory bus.

The external memory is logically organized as a bi-
nary tree, which is called ORAM tree [12, 13]. As
shown in Figure 1(a), the binary tree has L + 1 levels,

ranging from level 0 (root) to level L (leaf). Each node
of the tree contains one bucket, which holds a fixed num-
ber (denoted as Z) of slots to store memory blocks. In
each bucket, the number of data blocks, which store valid
data of the program, varies between 0 ∼ Z. The rest of
a bucket is filled with dummy blocks. Both data blocks
and dummy blocks are encrypted with probabilistic en-
cryption (e.g., counter-mode [4, 18]). It means that any
two blocks are indistinguishable even their plain data
are the same, regardless of being dummy or real blocks.
Each leaf node of the ORAM tree is assigned a unique
label in order. And path-l is defined as the path de-
scending from the leaf with label l to the root. For
example, in Figure 1(a), path-1 is highlighted in grey.
The ORAM controller consists of a stash, a posi-

tion map, and some control logics as shown in Fig-
ure1(b). The stash is an on-chip memory component,
which can temporarily hold a small number (e.g. 200
data blocks [12, 18]) of data blocks. The position map is
a lookup table recording the run-time mapping relation-
ship between data blocks and leaf labels. During pro-
gram execution, each data block is randomly mapped
to a leaf label at runtime. Path ORAM design holds the
following invariant[10, 18]:a data block mapped to leaf
label l must be either in the stash or path l. Data blocks
are stored together with their leaf labels and program
addresses (a.k.a. query address from CPU), no matter
in the external memory or in the stash.
For every memory request denoted as (addr, op, data),

it is transformed into an ORAM request in following
steps [13], which are also illustrated in Figure 1:

• Step 1 Stash is searched for a data block with addr.
If the data block is in the stash, it is returned to LLC
immediately.

• Step 2 If a stash miss happens, the leaf label (l) of the
data block being searched is identified from the posi-
tion map by indexing with addr. Then, the data block
is re-mapped to a new leaf label l′ and the position
map is updated.

• Step 3 All blocks along path-l are loaded from ex-
ternal memory and stored into stash after decryption.
Among these blocks, only those actually required by
the processor are forwarded to LLC.

• Step 4 Since the data block has been re-mapped to
a new label l′ in Step 2, its label is updated to l′ in
stash. Thus, only the block in stash is valid. The data
block in memory becomes out-of-date.

• Step 5 Path l needs to be re-filled (overwritten) with
new blocks. The basic rule is to re-fill the path with
data blocks in stash as many as possible [13, 10]. Note
that data blocks written back to memory are evicted
from stash to keep the invariant. If there still exist free
slots in the path, dummy blocks are inserted.

To summarize, the Path ORAM maps the original
memory access sequence into a random “leaf label se-
quence”. The security of Path ORAM relies on the fact
that every label in the sequence is random and inde-
pendent to the previous labels [10]. Thus, no address
information leaks if the label sequence is obtained. The
ORAM’s timing channel can also be protected when
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each ORAM request is launched at a data-independent
time. An example is shown in Figure 1(c). It is easy to
find that there is a fixed interval (idle phase) between
every adjacent read and write phases. Thus, even when
there are no data requests from LLC misses, dummy
ORAM requests should be still launched [25, 13].
It is worth mentioning that Path ORAM can en-

counter a deadlock when all the buckets along the re-
filled path are full, which contributes to stash overflow.
To mitigate the possibility of stash overflow, proper
configurations of DRAM utilization, stash size C and
bucket size Z should be set [18]. For example, when
the utilization of a 8GB DRAM is 50% while C ≥ 200
and Z ≥ 4, the possibility is negligible[10, 13, 12].

Due to the limited on-chip storage, if the block size
of the memory is relatively small (e.g. 64B or 128B),
it is difficult to maintain the entire position map in-
side a secure processor. For example, for a 4GB data
working set and 64B memory block size, the number of
data blocks is N = 64M and the size of position map
is 192MB. To solve this problem, hierarchical path
ORAM is proposed[10, 18, 12]. The basic idea is to
store the position map in external memory and also
protect it with ORAM. Similar to the protection of the
data, the memory storage for the position map is also
organized as a new ORAM tree. A new position map
is then generated for this new ORAM tree. In order to
differentiate it from the original data ORAM, this new
ORAM for position map is called ORAM1, as shown in
Figure 2.
With this hierarchical architecture, a data request

from LLC is completed with accesses to two ORAMs.
First, ORAM1 is accessed to retrieve the label of data
block from the position map protected. Then, the data
ORAM is accessed with this label to retrieve data blocks.
The access flow of this hierarchical ORAM is illustrated
in Figure 2. For the above example, 7.5MB memory is
required to store position map of ORAM1. If this is still
too large to be stored on-chip, extra levels can be added
to this ORAM hierarchy recursively until the position
map of the last level ORAM can be stored in the secure
processor, which is also illustrated in Figure 2.
To improve the efficiency of using hierarchical Path

ORAM, an unified program address space is allocated
for all ORAM trees in the hierarchy, as shown in Fig-
ure 2(b) [12]. This implementation can avoid a consid-
erable amount of overhead in timing channel protection
to hide the position map hit/miss. Thus, from the view
outside the processor, ORAM requests of accessing dif-
ferent levels of the ORAM hierarchy are indistinguish-
able. In other words, the hierarchical ORAM behaves
the same as the basic Path ORAM. In addition, there
is only one stash for the unified ORAM tree. The only
difference is that one program address request may be
transformed into multiple program address requests.
In the rest of this paper, the unified hierarchical Path

ORAM is used as our baseline for discussions and de-
noted as Path ORAM for simplicity.

3. FORK PATH ORAM SCHEME

Data ORAM 

ORAM1
(Block N—Block N+r1-1) 

(b) 

Unified program address 

ORAM2

ORAM1 Data ORAM ORAM2

On-chip PosMap 

Access 
Path l2

Get l1

ORAM Controller 
LLC request 

of addr

Stash1Stash2 Data Stash 
Access 
Path l1

Get ldata
Access 

Path ldata

 Get Data of 
addr request 

(Block 0—Block N-1) 

(Block N+r1—Block N+r1+r2-1)  

(a) 

Figure 2: (a)An illustration of hierarchical Path
ORAM architecture(two-level) and memory ac-
cess flow (b) Hierarchical Path ORAM in a uni-
fied program address space

In this section, we will use a simple example to
illustrate the redundancy in the memory accesses in
traditional Path ORAM. We then propose path merg-
ing to remove such redundancy, followed by ORAM re-
quest scheduling and merging-aware caching techniques
to further enhance the efficiency of path merging .

3.1 Motivation

0 1 2 3 4 5 6 7 

(a) A 

E 

B 

C 

D F 
0 1 2 3 4 5 6 7 

(b) A’ 

E 

B’ 

C’ 

D’ F 

0 1 2 3 4 5 6 7 

(c) A’ 

E 

B’ 

C’ 

D’ F 
0 1 2 3 4 5 6 7 

(d) A’’ 

E’ 

B’’ 

C’ 

D’ F’ 

Figure 3: Read/write phases for two adjacent
requests accessing path-1 and path-3:(a) Read
phase of path-1,(b) Write phase of path-1, (c)
Read phase of path-3, (d) Write phase of path-3

As shown in Figure 3, each block in the ORAM tree
represents a data bucket and the letter in a bucket rep-
resents data stored in it. In this example, two ORAM
paths with leaf label 1 and label 3 are accessed consecu-
tively. Based on the flow introduced in the last section,
the access sequence to memory used in the traditional
Path ORAM design is depicted in Figure 3(a)∼(d): At
first, all data in buckets along path-1 (A, B, C, D) are
decrypted and loaded into the stash. Then, path-1 is
filled with write-back data (A′, B′, C ′, D′). Similarly,
for the access to path-3, old data along the path (A′,
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B′, E, F ) are loaded into the stash followed by the
write-back process with new data (A′′, B′′, E′, F ′).

Considering the overlapped part of path-1 and path-
3, it is easy to find that data A′ and B′ are written to
the external memory and then loaded back into secure
processor intactly. Thus, an important observation can
be summarized as follows.
Observation: Memory operations of writing and

reading data in the overlapped region of two consec-
utive ORAM requests are considered to be redundant.
This is public information that visible to anyone includ-
ing the adversary.
Hence, if these redundant accesses can be removed,

the memory access efficiency of Path ORAM will be
improved without leaking any information to the adver-
sary. This fact motivates the path merging technique
introduced in the next subsection.

3.2 Path Merging

(b) 

0 1 2 3 4 5 6 7 

(a) A 

C 

B 

D 

Loaded 

0 1 2 3 4 5 6 7 

A 

C’ 

B’ 

D’ 

Evicted 

Previous path Current path Next path Current path 

Figure 4: Illustration of path merging: (a) Read
phase of current path (b) Write phase of current
path

Based on the fact aforementioned in Section 3.1, we
proposed path merging technique. The basic idea of
path merging is to “merge” two adjacent ORAM re-
quests and avoid redundant accesses to their overlapped
path. Using the example in Figure 4, the basic ORAM
request process flow can be modified as follows:

• Step 0 For the first ORAM request after initializa-
tion of the entire system, all blocks along the path are
loaded from external memory and stored into stash af-
ter decryption. Among these blocks, only those are
actually requested by processor are forwarded to LLC;

• Step 1-2 are kept unchanged as in Section 2.3;
• Step 3 Only those buckets along a certain part of
the path, i.e. NOT overlapped with the path of the
previous ORAM request, are loaded from the external
memory and stored into the stash after decryption.
Among these blocks, only those are actually requested
by the processor are forwarded to the LLC. For exam-
ple, in Figure 4(a), only C and D are loaded from the
external memory;

• Step 4 is kept unchanged as in Section 2.3;
• Step 5 When current path l needs to be refilled, if

there exists a pending (next) ORAM request, only
those buckets along the part NOT overlapped with the
path of the next ORAM request are refilled. As shown
in Figure 4 (b), since the next ORAM request will ac-

cess path-7, only B′, C ′, and D′ are refilled.
• Step 6 When the current path l needs to be refilled, if
there is no pending (next) ORAM request, a dummy
ORAM request will be inserted. Then, blocks are re-
filled as in Step 5.

As a summary, by modifying read and write (refill)
steps, path merging avoid redundant accesses to the
overlapped part of two consecutive ORAM requests. As
depicted in Figure 4, after adopting path merging, these
blocks are accessed in the shape of a fork path. Since
redundant dummy requests may be inserted before the
refill process, extra requests may be induced w.r.t. tra-
ditional Path ORAM design. In order to mitigate this
problem, a dummy request replacing technique is intro-
duced in the next subsection.

3.3 Dummy Label Replacing
After path merging is used, the process of an ORAM

request will rely on the previous and the subsequent
ORAM requests. Thus, a dummy ORAM request is in-
serted when there are no pending requests to be merged.
In other words, if the memory request intensity from
LLC is low, more dummy requests may be induced com-
pared to the traditional Path ORAM design. This sit-
uation becomes common in the case where the secure
processor is in-order and single-core, especially when
hierarchical Path ORAM is employed. Thus, the bene-
fits of using path merging may be offset by these extra
dummy ORAM requests. While this problem can be
mitigated by simply extending the idle interval between
read and write phases, the latency of ORAM requests
will be prolonged. In this work, we propose a dummy
request replacing technique to solve this issue.
In fact, after a dummy ORAM request is inserted for

path merging, there is still a chance that it can be re-
placed by the later incoming real data request without
being noticed from outside the secure processor. Ratio-
nale relies on the fact that a refill (write) process starts
from the leaf and descends toward the root in a path.
The dummy request is not revealed until the refill pro-
cess of the current ORAM request is completed. Thus,
if the dummy request is replaced before this point, it is
invisible to the adversary outside the secure processor.
An example depicted in Figure 5 explains how a dummy
ORAM request can be replaced.
As shown in the figure, there are three ORAM re-

quests corresponding to three ORAM paths: (1) path-
0, the current ORAM path being processed, (2) path-7,
the dummy path inserted for merging, and (3) path-3,
the data path that arrives after insertion of the dummy
path. As shown in the figure, the current being pro-
cessed is in its refill step. Those gray blocks on the path
represent the buckets that have been updated, and the
rest blank blocks are those to be updated. Whether the
dummy ORAM request can be replaced by the later real
data ORAM request depends on the completion status
of refill process when the real data ORAM request ar-
rives, including three different cases as below:
As shown in Figure 5(a), the current ORAM path and

the dummy ORAM path cross at the bucket-A.
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Dummy pathCurrent path Real path
To write in lcurrentWritten in lcurrent Next real path Next dummy path 
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Dummy pathCurrent path Real path
0 1 2 3 4 5 6 7

(d)

AWritten

Dummy pathCurrent path Real path

0 1 2 3 4 5 6 7

(a)

AWritten

Dummy pathCurrent path
Current Path

Reading

Figure 5: Illustration of dummy request replac-
ing: (a) initial state, (b) case-1, (c) case-2, (d)
case-3

• Case-1 If the data ORAM request arrives after the
refill process has completed (i.e., buckets above bucket-
A have been updated), the dummy request cannot be
replaced.

• Case-2 When the data ORAM request arrives, the
current refill process is not yet finished. However, the
bucket on the crossing point of the current ORAM
path and the data ORAM path has been updated al-
ready. The dummy request cannot be replaced.

• Case-3 For the rest cases, the dummy ORAM request
can be replaced by the data ORAM request.

The proposed dummy label replacing technique can
efficiently reduce the number of extra dummy requests,
as illustrated in Figure 1(c). We use t2 to denote the
time when the cross point of the current path and the
dummy path is written. If the next real request appears
during t1 − t2, dummy label replacing can replace the
dummy request inserted at t1 instead of waiting for the
completion of the dummy request. Consequently, if the
next request appears during t0 − t2, there will be no
extra dummy requests, similar to the original ORAM.
It is easy to observe that the efficiency of both path

merging and dummy label replacing rely on the overlap
degree of two consecutive ORAM requests. In the next
subsection, an ORAM request scheduling technique is
proposed to enhance the overlap degree at runtime.

3.4 ORAM Request Scheduling
The basic path merging method only focuses on the

two consecutive ORAM requests. In fact, when the
memory access intensity is high, there may exist multi-
ple pending ORAM requests. This is quite common in
secure processors with multi-core and/or using out-of-
order pipelines. Therefore, it is possible to reschedule
the processing order of these requests to improve the
efficiency of path merging.
The modified ORAM process flow can be described

as follows: Whenever there is a memory request from
LLC, the request is transformed to ORAM requests as

(b) 

0 1 2 3 4 5 6 7 

(a) A 

C 

B 

D 

l1=1(current) 

ORAM request queue 
(original) 

l3=0 

l2=4 

…

E

F 

GH
head 

(c) 

ORAM request queue 
(scheduled) 

l2=4 

l3=0 

…
head

Figure 6: Illustration of ORAM request schedul-
ing: (a) ORAM tree (b) requests before schedul-
ing (c) requests after scheduling

soon as possible and inserted into a queue that record-
ing path labels of these ORAM requests, as shown in
Figure 6. Note that for the PosMap miss in hierarchical
Path ORAM, there will still be an ORAM request to be
inserted into the queue. When the current ORAM path
is being loaded, among all pending ORAM requests in
the queue, the request that has the highest overlap de-
gree is selected and scheduled as the next ORAM re-
quest for path merging.
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Figure 7: (a) Scheduling among a variable num-
ber of pending requests will leak information (b)
Dummy labels should be inserted if the queue is
not full with data ORAM request.

Figure 6 depicts an example of the detailed ORAM
request scheduling flow. The current ORAM request
being processed is path-1 and the pending requests will
access path-4 and path-0. In this case, ORAM request
visiting path-0 should be scheduled before the one vis-
iting path-4. It is because path-0 has more overlapped
part with path-1, which is being processed, as also il-
lustrated in Figure 6. Note that rescheduling memory
requests may cause data hazards and fairness issues,
which have been addressed in some previous works [13,
10]. These problems are also addressed and solved in
the Fork Path ORAM architecture, which is introduced
in Section 4.
On average, the more ORAM requests pending in the

queue, the higher efficiency path merging with schedul-
ing can achieve. However, using an adaptive scheduling
depending on the number of the pending data ORAM
requests in the queue may raise some security concerns.
As shown in Figure 7(a), if every time we take all pend-

107



ing ORAM requests into account to perform scheduling,
the degree of path overlapping will reflect the inten-
sity of LLC requests. To prevent this leakage, every
time we just ensure the queue is full with ORAM re-
quests. If there are no enough data ORAM requests,
dummy requests are inserted. Note that, when we per-
form scheduling among the requests in the queue, the
real request has a higher priority to be launched than
that of the dummy request if their overlap degrees with
the current path are the same.

Algorithm 1: Label insertion.

while time ++ do
if current is finish then

current = pending;
pending = queue top ;
pop queue top;

else

end
if there is a new request then

if dist(current, incoming) <
dist(current, pending) and pending is not
merged then

swap the pending and incoming
requests;

else

end
replace the first dummy request with
incoming request;
sort the queue by the overlap degree;

else

end
if the queue is not full and have no dummy
request then

Insert a dummy request to end of the queue;
else

end
end

Dummy label replacing can still function during the
insertion to the label queue. For a dummy request in
the queue but not revealed to the outside, it can be ar-
bitrarily replaced by a real request newly arrived, which
is described in Algorithm 1. It is worth mentioning that
after replacing, the remaining dummy request still has
a chance to be the next launched request if it has the
highest overlap degree with the current path.

3.5 Merging-aware Caching
As pointed out by previous studies [13], on-chip data

caching can also help reducing the overhead of ORAM.
An on-chip memory in ORAM controller is dedicated
to cache frequently accessed data blocks. It has demon-
strated that treetop caching is an extremely efficient
policy. It means that, statistically, data blocks at lower
levels (i.e., closer to the root) of the ORAM tree are
more frequently accessed than that at the higher lev-
els of the tree. This is true in traditional Path ORAM

scheme because each path is traversed completely. Thus,
for a fixed size on-chip memory, it is normally filled with
data closer to the root, as illustrated in Figure 8(a).
However, after applying path merging and ORAM

request scheduling, the simple treetop caching becomes
less efficient. In fact, treetop caching may not be effec-
tive when the size of the on-chip memory is not large
enough. The reason is easy to understand: After ap-
plying path merging, every two consecutive paths are
merged into a fork style. Only data blocks on the tines
of the fork (paths) will be accessed and those data blocks
on the handle of the fork (paths) have already been
cached in the stash. Statistically, if the average over-
lapped path length is assumed as lenoverlap, it is almost
useless to cache data in the levels lower than lenoverlap

with the simple treetop caching policy.
Hence, in order to recover the efficiency of on-chip

caching, the blocks in the first lenoverlap levels will by-
pass the cache. Only the data blocks located in the
higher level than lenoverlap are cached. To differentiate
from traditional treetop caching policy, this scheme is
called merging-aware caching policy, which is depicted
in Figure 8(b). LRU replacement policy is adopted
in our merging-aware caching scheme and its indexing
is changed as follows: Blocks in the level-m1 (m1 =
lenoverlap + 1) to level-m2 are cached where m2 is de-
termined by the cache size. Each level r(m1 ≤ r ≤ m2)
are allocated with 2r−m1+1 blocks in the cache.

Level
L

m2

m1

0

Figure 8: (a) Treetop caching v.s (b) Merging
Aware Caching

Here we use a normal cache to implement the address
cache. For those levels allocated with blocks more than
the number of cache ways, multiple sets will be used to
hold those blocks. Every evicted block in these levels
from the stash will be inserted to the correspondent set,
which is only determined by the logical address of the
block(more details will be presented in Section4). A
LRU replacement policy is used in our address cache.
Note that, since the write phase or the read phase of a
Path ORAM starts from the leaf and moves toward the
root, a father node are always newer than its son nodes.
For a block at addr, we use level − x to denote its

level and it is the y-th block at that level from the left.
Obviously x and y are determined only by addr. If x is
not within the range of [m1,m2], it is not in the cache.
Otherwise, the set number can be calculated as follows:

Set number =
(2x−m1 − 2) ∗ Z
cache ways

+
(y%2x−m1+1) ∗ Z

cache ways
(1)
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The first item represents the number of sets allocated
for the buckets at level-m1 to level-y. The second item
represents the number of sets allocated for the buckets
at the same level left to addr. Z is the bucket size.

3.6 Security Proof
The security of Path ORAM relies on the indepen-

dence and randomness of the label sequence, which can
hide the original memory access pattern [10]. In path
merging, our new modification is only based on the la-
bel sequence itself, which is sooner or later revealed to
the public and leaks no information about the access
pattern. In other words, our modification is completely
based on the public information. Hence, the ORAM
with path merging has the same security strength with
the original ORAM.
In addition, path merging will not increase the proba-

bility of stash overflow. In the original design, the over-
lapped part of the old path are first written to the main
memory and then loaded up with the non-overlapped
part of the new path. When path merging is applied,
the overlapped part of the old path will not be written
back and then only the non-overlapped part of the new
path will be accessed. Obviously, the block numbers
of the stash in these two situations are completely the
same. Therefore, our merging scheme does not change
the possibility of stash overflow.
Similarly, we can prove the security of label schedul-

ing since the scheduling is also based on the label se-
quence. Also, label scheduling will not change the prob-
ability of stash overflow. We can consider label schedul-
ing as the reordering of address requests from LLC.
Since the possibility of stash overflow is only related to
the level of the ORAM tree and size of the stash [13], for
the permutation of address requests, the possibility of
stash overflow keeps the same regardless of stash hit or
miss. In addition, we remark that as long as we keep the
scheduling queue full, the dummy label replacing will
leak no information about the LLC intensity. At last,
since the security of treetop caching is proved in [13]
and the mechanism of our caching scheme is quite sim-
ilar, the security of our caching scheme can be proved
in the same way.

4. FORK PATH ORAM ARCHITECTURE
In order to support Fork Path ORAM, the tradi-

tional ORAM controller [18, 12] needs to be modified,
as shown in Figure 9. Besides those existing expo-
nents (i.e., a stash and a position map), two request
queues and a set-associative cache are added. The basic
functions of these components are explained as below:
The first queue is called “address queue” and used

to buffer incoming real memory requests from LLC. It
stores the program address (PA) of each memory re-
quest. An extra bit (R) is added to identify whether
the data in the entry is ready. The requests in address
queue are sent to position map in order and their corre-
sponding ORAM path labels are output to the second
queue, which is called“label queue”. As aforementioned,
these labels represent the pending ORAM requests to be
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Figure 9: Architecture of the ORAM controller.

processed by path merging. Obviously, ORAM request
scheduling is also performed in this label queue.
Since request scheduling may change the processing

order of ORAM requests in the label queue, data haz-
ard problems must be avoided. In fact, this problem
should be solved in the address queue to avoid infor-
mation leakage. There are four possible scenarios that
need to be protected by applying proper constraints to
the address queue:

• Read-before-Read. If two requests read the same
address in memory, no specific action is needed.

• Read-before-Write. If a read request is followed
by a write request to the same address in memory,
the write request cannot be sent to the position map
(pending in the address queue) until the read request
is completed (data ready).

• Write-before-Read. If a write request is followed by
a read request to the same address in memory, the read
request is returned directly with data forwarding.

• Write-before-Write. If a write request is followed by
another write request to the same address in memory,
the first write request is canceled.

By applying these constraints, all requests output
from address queue can be scheduled without causing
data hazards. After these requests are transferred into
ORAM requests, they are inserted into the label queue
to achieve the scheduling. Note that each entry of the
queue has a counter (Cnt) to remember the“age”of each
request. When the counter value of a label (dummy
or real) reaches a threshold, this request needs to be
prompted to the head of the queue to avoid starvation.
The merging-aware cache only holds the decrypted

data that will be written back to memory (e.g. data
evicted from stash). Note that data in the cache can
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also be prompted back to stash if they are hit by ORAM
requests in the label queue. Merging-aware cache is
organized as a traditional set-associative cache. Each
cache line uses logical address (LA) as its tag, and data
segment includes the decrypted data block, program ad-
dress (PA), and label value (Label).
It is worth mentioning that components in the ORAM

controller can function in parallel with the DRAM ac-
cesses. Due to the long access latency per ORAM re-
quest, most of the latencies induced by the controller
are overlapped. In addition, some requests may com-
plete before accessing DRAM because of the ORAM
controller’s caching effect.

5. EVALUATION
In this section, we first present experimental setup.

The efficiency of Fork Path ORAM is then evaluated at
a representative system configuration. Finally, sensitiv-
ity analysis of different configurations is provided.

5.1 Experimental Setup
Performance evaluation is conducted with a full sys-

tem simulator gem5 [31] integrated with DRAMSim2.
The detailed configuration of processor, ORAM con-
troller, and main memory are summarized in Table 1.
Energy consumptions of ORAM control logic and cache
are generated from logic synthesis tool of Synopsys [32]
and CACTI [33], respectively.

Table 1: Processor Configuration.
Core, on-chip cache

Core type out-of-order Alpha
Core number 4, 8-way issue
Core frequency 2GHz

L1 I/D cache 32KB/32KB, 2-way, LRU
L1 read/write 1/1-cycle

L2 cache 1MB shared, 8-way, LRU
L2 read/write 10/10-cycle

ORAM controller

Controller clock frequency 2.0GHz
Data block size 64B
Data ORAM capacity 4GB (L = 24)
Block slots per bucket(Z) 4

Memory controller and DRAM

Memory type DDR3-1600
Memory channels 2
Peak bandwidth 12.8GB/s

DRAMSim2 [34] is used to model the detailed mem-
ory accesses of the ORAM tree. We derive the default
latency and energy parameters of DDR3 from DRAM-
Sim2. Similar to prior works [12, 18], two memory chan-
nels are adopted in the design. In order to maintain a
low probability of stash overflow, a 50% memory utiliza-
tion is presumed [18]. It means that a 8GB memory is
needed to store 4GB data. In addition, to maximize the
utilization of DRAM bandwidth, a sub-tree layout [18]
is adopted.
Multi-programmed and multi-threaded workloads are

selected from SPEC 2006 [35] and PARSEC [36] bench-
mark suites to ensure a comprehensive evaluation, re-

spectively. For multi-programmed workloads, we care-
fully mix the benchmarks to represent various cases: We
first partition all SPEC benchmarks into two groups:
high ORAM overhead group (HG) and low ORAM over-
head group (LG). Benchmarks in Mix1 and Mix2 are
randomly selected from the LG, while benchmarks in
Mix3 and Mix4 are from the HG. Benchmarks in Mix5
(Mix6) and Mix8 (Mix7) are randomly selected from
LG (HG) to simulate the situation of duplicated pro-
grams. Benchmarks in Mix9 and Mix10 are randomly
selected from both groups. We list the details of the
multi-programs in Table 2.

Table 2: Mixed benchmarks from SPEC 2006

Mix1 453.povray, 458.sjeng, 459.GemsFDTD, 464.h264ref
Mix2 401.bzip2, 465.tonto, 471.omnetpp, 473.astar
Mix3 403.gcc, 410.bwaves, 429.mcf, 435.gromacs
Mix4 462.libquantum, 470.lbm, 481.wrf, 444.namd
Mix5 453.povray,453.povray, 458.sjeng, 458.sjeng
Mix6 444.namd, 444.namd, 435.gromacs, 435.gromacs
Mix7 410.bwaves, 410.bwaves, 410.bwaves, 410.bwaves
Mix8 464.h264ref, 464.h264ref, 464.h264ref, 464.h264ref
Mix9 454.calculix, 464.h264ref, 429.mcf, 458.sjeng
Mix10 401.bzip2, 453.povray, 462.libquantum, 462.libquantum

5.2 Evaluation with a Fixed Configuration
In this subsection, the efficiency of Fork ORAM Path

is evaluated and compared to traditional ORAM design.
To simplify discussion, we focus on the four-core config-
uration in Section 5.1 using multi-programmed work-
loads. Experiment results of other configurations will
be presented in next subsection. We first evaluate ef-
fects of merging+scheduling and merging-aware caching
with ORAM performance. A full system evaluation is
then performed to retrieve the results of execution time
and energy consumption.

5.2.1 ORAM Performance Evaluation
In Figure 10, the average length of ORAM tree path

after applying path merging and request scheduling (la-
belled as ‘merging’) is compared to the baseline Path
ORAM (labeled as ‘Traditional ORAM’) with different
label queue sizes. Note that only path merging is ap-
plied when the label queue size is set to 1. The baseline
path length always equals 25 because a complete path
from the leaf to root must be traversed in traditional
Path ORAM. It is easy to tell that the average length of
the accessed ORAM path reduces when the label queue
size increases. Statistically, the average ORAM path
length is application-independent but decreases linearly
with log(Label Queue size).

Figure 10 also shows the reduction in DRAM latency
of each ORAM request, which is directly impacted by
the reduction in path length. In fact, the reduction of
DRAM latency is even more significant than that of the
path length. This is because the DRAM row-buffer miss
rates also decreases with the length of ORAM path.
Here the results include both real data ORAM re-

quests and dummy ORAM requests. As previously dis-
cussed, applying path merging and request scheduling
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Figure 10: Average ORAM path length and av-
erage DRAM latency (marked as “Δ” and “×”)
with different Label Queue sizes.
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Figure 11: Normalized total number of ORAM
requests.

can induces extra dummy ORAM requests. In Fig-
ure 11, total ORAM requests are normalized over base-
line Path ORAM for comparison. We found that the
number of extra ORAM requests increases with the La-
bel Queue size. For most workloads, the increase is
moderate because the dummy request replacing is ap-
plied. For some workloads, significant extra ORAM re-
quests can be still observed (e.g., over 25% for Mix2). It
is mainly because these workloads have really low mem-
ory intensity in some periods during execution. Thus, a
lot of extra dummy ORAM requests are generated. On
average, the total number ORAM requests is increased
by only 5% even for a Label Queue size of 128.
Note that both path length and the number of dummy

requests affect the ORAM performance. In order to pro-
vide a comprehensive and straightforward evaluation of
ORAM performance, we introduce a metric called av-
erage data request ORAM latency (shorten as ORAM
latency). It represents the completion time of a LLC
request since it enters the ORAM controller. ORAM
latency can reflect both the reduction in memory traffic
and queueing latency, and directly reflect the overhead
of ORAM.
The ORAM latencies of Fork Path ORAM with tradi-

tional ORAM are compared in Figure 12 with different
label queue sizes. For most workloads, ORAM latency
decreases at first as the queue size increases. However,
when the queue size is increased from from 64 to 128,
ORAM latency is increased. It means that the benefits
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Figure 12: ORAM latency with different label
queue sizes
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Figure 13: ORAM latency with different caching
designs.

of path length reduction has been offset by the extra
dummy requests induced by using such a large queue
size. Thus, it is proper to set label queue size to 64,
which is used as default value in the rest of this work.
The efficiency of merging-aware caching is evaluated

in Figure 13. Apparently, ORAM latency is reduced
after using on-chip caching. Compared to prior treetop
caching, merging-aware caching (labeled as MAC) can
further reduce ORAM path length and consequently,
achieve a further reduction in ORAM latency. We vary
MAC sizes from 128K bytes to 1M bytes and com-
pare them to the case using 1M bytes treetop caching.
On average, using merging-aware caching can achieve
a reduction in ORAM latency comparable to treetop
caching with only about 1/4 of cache size.

5.2.2 Full System Evaluation
Figure 14 presents the results of the slowdown of

program execution time, which is normalized to the in-
secure processor. The label queue size is set to be 64, as
mentioned in Section 5.2.1. The cache size of MAC is
set to 128KB, 256KB and 1MB while the cache size of
treetop caching is fixed at 1MB. We can see that Fork
Path ORAM improves the system performance signifi-
cantly. When the cache size of MAC is 1MB, system
execution time reduces by 58% and 29%, compared to
the traditional ORAM and that using a 1MB treetop
caching, respectively.
Fork Path ORAM can also help reducing energy con-
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Figure 14: Slowdown of full system execution
time.
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Figure 15: Energy consumption of ORAM mem-
ory system.

sumption of memory accesses. Total energy consump-
tion of ORAM, including both external memory and
ORAM controller, is shown in Figure 15. Although
extra components are added in ORAM controller, the
total energy consumption of ORAM is still reduced be-
cause it is dominated by the energy consumption of ex-
ternal memory system. On average, the energy con-
sumption is reduced by about 38% compared to the
traditional ORAM when both path merging/scheduling
and 1MByte MAC are adopted. Even compared to the
case using 1MByte treetop caching, we can still achieve
15% energy reduction.

5.3 Sensitivity Analysis
In this subsection, we evaluate efficiency of Fork Path

ORAM with different system configurations and work-
loads for sensitivity analysis. Note that we fix the la-
bel queue size at 64 and set the capacity of merging
aware cache to 1MByte. As previously discussed, we
use ORAM latency to measure the ORAM efficiency.
Figure 16 compares the ORAM latency of in-order

and out-of-order processors. The ORAM latency of in-
order processor is significantly higher than that of out-
of-order one. It is because of the low memory intensity
in in-order execution. Hence, using in-order processor
induces more extra dummy ORAM requests with the
same label queue size of 64. The comparison further
proves that Fork Path ORAM is more efficient when
memory intensity is high. In fact, a smaller label queue
size may be preferred for an in-order processor.
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Figure 16: In-order vs. out-of-order
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Figure 17: ORAM latency with (a) 1/2/4/8
thread(s) (b) different ORAM sizes

Figure 17(a) shows the ORAM latency when the num-
ber of thread varies. We simulate multi-program bench-
marks, which are selected following the similar method
in Table 2, on a processor with 1/2/4/8 cores. Then,
the geometric mean of ORAM latency using Fork Path
ORAM is normalized to that of traditional ORAM. We
can find that, when the number of threads increases,
the advantage of ORAM latency improves at the same
time. It is mainly because the memory intensity in-
creases with the thread number and hence, demonstrat-
ing an improved efficiency of ORAM.
Figure 17(b) presents the ORAM latency with dif-

ferent ORAM sizes. Here we fix the thread number to
4. Similarly, the geometric mean results are listed and
compared to traditional ORAMwith multi-programmed
benchmarks in Table 2. We can find that, with the in-
crease of ORAM size, the efficiency of ORAM latency is
moderately degraded. It is because the length of a com-
plete path from leaf to root of the ORAM tree increases
with the ORAM size, but the reduction of ORAM path
length is fixed with the same Fork Path ORAM design.
Figure 18 shows the ORAM latency at different num-

bers of DRAM channels. The results are all normal-
ized to traditional ORAM with corresponding configu-
rations. We can find that Fork Path ORAM is more
efficient with less memory channels. It is because the
absolute ORAM latency increases with less channels.
Thus, the ratio of pending real data ORAM requests in
the label queue increases accordingly.
Figure 19 shows the normalized ORAM latency of
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Figure 18: Speedup of ORAM latency with
1/2/4 DRAM channel(s).
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Figure 19: ORAM latency of multi-threading
applications (4-thread).

multi-threading workloads from PARSEC. The number
of threads is set to 4 so that one thread is running
on each core. ORAM latency is also reduced signifi-
cantly compared to baseline traditional Path ORAM.
How much the ORAM latency can be reduced depends
on the numbers of extra dummy ORAM requests that
are related to memory intensity.

6. RELATED WORK
Oblivious RAM is first proposed by Goldreich and

Ostrovsky [15, 14]. Since then, numerous follow-up
works been been performed to improve its feasibility
and efficiency [11, 10, 9, 16, 17]. Among these works,
Path ORAM [10] has drawn wide attentions because of
its simplicity and high efficiency and considered as one
of the most promising protocols for a secure processor.
Ren et al. propose several optimization techniques for

basic Path ORAM, such as background eviction, static
super block, and subtree layout [18]. In background
eviction, DRAM utilization, access overhead, and stash
overflow possibility are all improved. In static super
block, several adjacent program addresses are mapped
to the same label. Hence, one path load may fulfill
several requests because of locality. The subtree layout
can reduce the row buffer miss when DRAM is applied
to store an ORAM tree.
Maas et al. demonstrate Phantom [13] – the first

hardware implementation of Path ORAM, in which tree-
top caching and min-heap eviction are proposed to re-

duce the latency of path accesses and stash operations.
Fletcher et al. propose a dynamic scheme to protect

the timing channel of ORAM accesses [25]. With lim-
ited leakage of information, their scheme reduces 30%
performance degradation compared to a zero-leakage
scheme with the same power consumption. Freecursive
ORAM [12] is presented by the same group later where
PosMap Lookaside Buffer (PLB) and PosMap compres-
sion are introduced to mitigate the overhead of PosMap
accesses. Results show that 95% PosMap-related ac-
cesses to the memory are reduced.
Yu et al. propose PrORAM [19] in which dynamic

prefetching is introduced. Compared to static prefetch-
ing (i.e., static super block), dynamic prefetching is
more flexible to join or disjoin adjacent blocks accord-
ing to the program’s locality. Experiments demonstrate
that PrORAM offers on average twice performance gain
w.r.t. static prefetching.

7. CONCLUSION
ORAM has become an important component of mod-

ern secure processors, however, followed by significant
overhead on memory accesses. By examining the state-
of-art Path ORAM design, we find that there is a large
volume of redundant ORAM memory requests that can
be removed without harming the security. Based on this
observation, we propose a novel Fork Path ORAM to
remove these redundant accesses using the path merg-
ing and request scheduling techniques. Moreover, a
merging-aware caching technique is developed to im-
prove caching efficiency. Our results show that apply-
ing Fork Path ORAM can substantially reduce the over-
head of memory accesses, resulting in significant system
performance enhancement especially in the case where
memory intensity is high.
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