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Abstract—Heterogenous computing is gaining increasing attention
due to its promise of high performance with low power. Shared
coherent cache based CPU-FPGA platforms, like Intel HARP, are
a particularly promising example of such systems with enhanced
efficiency and high flexibility. In this work, we propose a hybrid
strategy that relies on both static analysis of applications and
dynamic control of cache based on static analysis to minimize
the contention on the FPGA cache in the emerging CPU-FPGA
platforms with shared coherent caches. In the static analysis, we
analyze memory access patterns of the accelerated kernels on
FPGA using reuse distance theory and generate kernel charac-
teristics called Key values. Thereafter, a dynamic scheme for
cache bypassing and partitioning control based on these Key
values is developed to increase the cache hit rate and improve
the performance. We validate our proposed strategy using a
system-level architectural simulator for CPU-FPGA heterogeneous
computing systems. Experiments show that the proposed strategy
can increase the cache hit rate by 22.90% on average and speed
up the application by up to 12.52% with negligible area overhead.

1. Introduction

Nowadays, as the traditional power and performance scaling

benefits following Moore’s law are diminishing, heterogeneous

computing system is gaining popularity to satisfy the increasing

demand of energy-efficient high-performance computing. Among

various heterogeneous computing systems, the CPU-FPGA plat-

form is considered to be one of the most promising systems thanks

to FPGA’s overall advantages on high performance, low power

and reconfigurability to implement different acceleration functions

(denoted as kernels). Microsoft has deployed customized FPGA

boards called Catapult in its data center to work with CPU as

accelerator and improve the page ranking throughput of the Bing

search engine by 2x with only 10% more power [12], which reflects

the potential of CPU-FPGA platforms.

Cache coherent CPU-FPGA platform is a new architecture pro-

posed to improve the data communication efficiency and simplify

the programming model, where CPUs and the FPGA fabric share

the memory space via a cache coherent memory sub-system. In

such platforms, the FPGA not only shares the L2 cache with CPUs,

but also owns one L1 cache within the coherence domain, so that

the FPGA can act as a coherent peer to CPUs and access the full

memory space with coherence guaranteed. Several industry ven-

dors have prototyped such type of CPU-FPGA platforms as one of

their future architectural development directions. For example, Intel

has shipped the HARP system integrating the Xeon E5 server pro-

cessors and Stratix V FPGA fabric via the QuickPath Interconnect

(QPI) bus [5], where there is a coherent L1 cache on FPGA side

for quick memory access of the accelerated kernels. IBM has been

developing the Coherent Accelerator Processor Interface (CAPI) on

the POWER8 platform to integrate the FPGA to the CPUs [17],

which also provides a coherent FPGA L1 cache. Several works

have demonstrated the significant benefits in performance and

energy efficiency of such systems in various application domains

[14] [19], such as big data, genomics, etc. With the shared coherent

cache, the data movement and coherence maintenance explicitly

controlled by software can be eliminated. The data communication

delay between CPU and FPGA via the shared coherent cache could

be reduced compared with the traditional DMA-based data transfer,

especially for the accelerated kernels with irregular memory access

patterns. Therefore, the cache coherent CPU-FPGA platform is

highly promising to meet today’s fast-growing demand for energy-

efficient high-performance computing.

However, these cache coherent CPU-FPGA systems may suffer

from severe FPGA L1 cache contention when the number of the

concurrent kernels running on the FPGA increases. The memory

accesses issued by different kernels could have conflicts, resulting

in a large quantity of cache misses on the FPGA cache. Worse

still, the FPGA cache miss penalty is particularly non-trivial in

most designs due to the loose coupling between the private L1

cache of FPGA and the shared L2 cache which usually resides

on the CPU side. As a result, the FPGA cache contention will

substantially degrade the system performance and raise the power

consumption, weakening the original benefits of the CPU-FPGA

platforms. Therefore, it’s crucial to alleviate the FPGA L1 cache

contention to maintain the performance and energy efficiency

benefits for cache coherent CPU-FPGA platforms.

Different than the cache management methods proposed for

CPU systems, since the accelerated kernels are pre-given in cache

coherent CPU-FPGA systems, the pre-analysis of the data reuse

requirement of the kernels is enabled, and hence the cache re-

quirement of each kernel can be derived in an offline step. The

execution pattern of the FPGA kernels provides the opportunity to

incorporate the reuse distance based pre-analysis results into the

runtime cache management, which can capture the memory access

features not only more accurately, but also with less overhead due

to the elimination of the runtime profiling need. In addition, the

kernel based execution on FPGA makes it suitable to perform cache

bypassing at kernel granularity so that the bypassing granularity

can be consistent with the partitioning granularity, which enhances

the feasibility to combine bypassing and partitioning for a better

cache utilization. Motivated by these unique advantages of cache

coherent CPU-FPGA systems on cache management, in this work
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we propose a static and dynamic combined kernel-aware cache

management scheme which integrates cache bypassing and cache

partitioning techniques based on the reuse distance analysis to

alleviate the FPGA L1 cache contention and optimize the cache

utilization. To the best of our knowledge, this is the first work

aimed at the cache management for cache coherent CPU-FPGA

systems. The main contributions of this work are as follows:

• A static analysis flow using LLVM to analyze the memory

access pattern of the accelerated kernels in terms of the reuse

distance theory

• A dynamic cache bypassing control at accelerated kernel level

with the consideration of kernel priority

• A novel cache partitioning and replacement policy that allows

utilization of free cache space, partition saturation and release

of non-active partitions

• A comprehensive management scheme to combine static anal-

ysis, cache bypassing, cache partitioning to enhance cache

access efficiency

2. Related Work

Although there is no previous work on cache partitioning or

cache bypassing customized for CPU-FPGA platforms, a lot of

work has been done for cache partitioning and cache bypassing in

the aspect of multi-core CPUs and GPUs.

2.1. Cache Bypassing

In [6], the cachelines with little data reuse are identified by

access count based predictors and the cache access will bypass

the L2 cache if there is no dead cacheline in L2 cache. A

gradually decremented protecting distance is calculated for each

cacheline based on runtime reuse history in [4], where the coming

access will bypass the cache if the protecting distance of all the

cachelines currently in the cache is larger than 0. The work in

[8] tracks the reuse history of the incoming cacheline and records

the optimal bypassing decision for previous references with a PC

indexed counter to give the current bypassing decision. In [1], the

instructions which lead to the highest miss rate and bring non-

reused cachelines are marked to bypass the cache. The work in [18]

bypasses the micro-cache when a load is not reused in a certain

cycle or it brings a non-reused cacheline according to the compiler

analysis and profiling.

While most existing solutions perform bypassing at instruction

level, our scheme makes the bypassing decision at accelerated

kernel level which is customized for the FPGA execution pattern.

Moreover, our scheme not only guarantees the data coherence, but

also takes into account the priority of the kernels.

2.2. Cache Partitioning

In [13], a runtime monitor records the miss number change

for each task when varying its partition size and greedily assigns

the partition size based on the monitored value. The work in [10]

implements a page coloring method for cache partitioning and

proposes three partitioning algorithms with different objectives

to assign the partitions. The paper [3] proposes a method to

dynamically choose between two partitioning strategies, where

a greedy algorithm based on runtime monitored data generates

multiple candidate partitioning patterns to be applied in a time

sharing way. The work in [7] introduces two different partitioning

methods, a static one searching all possible partitioning patterns

and a dynamic one gradually adjusting the partitioning pattern

based on the cache miss feedback.

Different from most previous cache partitioning methods where

every task’s data are needed to be allocated in cache, our scheme

allows kernels not to utilize any space in cache, which can further

alleviate the cache contention. In addition, our scheme is specially

aimed at the partitioning for accelerated kernels and allows the

cachelines occupied by each partition to vary from its assigned

cachelines, which offers more flexibility to fully utilize the space.

Moreover, our proposed scheme is fundamentally new for cache

management in the following aspects:

• Customized for FPGA L1 cache in cache coherent CPU-

FPGA platforms, which is an untouched research area.

• Comprehensively integrate cache bypassing, cache partition-

ing and reuse distance analysis, while most previous work

only covers one of these techniques.

• Combine static analysis and dynamic control, while most

previous work only focuses on one perspective.

3. Background

3.1. Reuse Distance Theory

A reuse distance profile [2] can be calculated given an ordered

memory access trace. For each access, the reuse distance is the

number of unique addresses or cachelines accessed between current

access and the most recent previous access to the same address or

the same cacheline. The distance will be set to infinity (∞) if

there is no previous access. The reuse distance analysis can be

done at address granularity or at cacheline granularity. The cache

hit/miss rate can be derived according to the cacheline level reuse

distance profile. For a full-associative cache of n cachelines with

least recently used (LRU) replacement policy, any access with a

reuse distance d larger than or equal to n (d ≥ n) will miss. Also,
any access with a reuse distance d smaller than n (d < n) will hit.
In this way, the total hit rate and miss rate can be obtained from

the cacheline level reuse distance profile. For set-associative cache,

the reuse distance analysis can be done by treating each set as a

small full-associative cache. The analyzed memory access trace

for each set is extracted from the whole memory access trace with

the order kept, but only includes the accesses to the corresponding

set.

Based on the reuse distance profile, the reuse distance his-

togram can be obtained. The total number of the accesses with a

certain distance is called the frequency of that distance. The reuse

distance histogram counts the frequency of each distance from 0

to ∞. The total hit and miss number can be easily calculated from

a cacheline level reuse distance histogram. For a full-associative

cache with n cachelines, the total hit number is the sum of the

frequencies in the histogram from distance 0 to distance n − 1,
while the sum of the frequencies from distance n to distance ∞ is

equal to the total miss number. For set-associative case, since each

set is treated as a small full-associative cache, the total hit/miss

number can be calculated by summing up the hit/miss number of

all the sets.
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3.2. Cache Coherent CPU-FPGA Platform

In emerging cache coherent CPU-FPGA platforms such as

HARP and POWER8 CAPI, multi-core CPUs and the FPGA

fabric are integrated via bus connection such as QPI. An example

architecture for such system is shown in Figure 1. The FPGA fabric

and multi-core CPUs share the memory subsystem including L2

cache, main memory, etc. Similar as in each CPU, an L1 cache

is also provided in an FPGA enabling quick memory accesses for

the accelerated kernels implemented on the FPGA. The CPU L1

caches, FPGA L1 cache, L2 cache and main memory are within

the same coherence domain with the support of coherence protocol

like MESI. Multiple accelerated kernels can be instantiated on the

FPGA and share the FPGA L1 cache, which is a common case

since different threads on the multi-core CPUs can all request the

FPGA acceleration. Usually, the L2 cache resides on the CPU side,

which causes an unbalanced L2 cache access delay for CPUs and

the FPGA. Therefore, the overhead for handling the FPGA L1

cache miss will be relatively larger compared with the CPU L1

cache miss overhead. In addition, a bypassing path can be designed

in the FPGA control logic to enable the response data for a memory

request to bypass the FPGA cache and be directly sent to the kernel

from L2 cache.

Figure 1: CPU-FPGA System Architecture

The programming model is simplified in such platforms due to

the coherent cache hierarchy, which eliminates the need of explicit

software control for data movement and coherence maintenance.

Usually, the CPU initiates bus based transfer to the FPGA for

sending the control messages to start the execution of the FPGA

accelerated kernel. Each kernel will be assigned a continuous

memory region from the whole virtual memory space to allocate

the kernel related data, which is called workspace. Such assigned

workspace is specified by setting the base address and space

size in the control messages. As long as the kernel receives the

start signal from the control messages, it will start execution and

generate memory requests to the FPGA L1 cache. The kernel

and its associated CPU thread share the same virtual memory

space, which eases the programming of the accelerated kernel.

The virtual to physical address translation for kernel memory

request is accomplished through checking a preloaded page table

on FPGA. When completing execution, the kernel sets a finish

signal, which can be polled by CPU to broadcast the status of the

kernel execution.

4. Proposed Methodology

Our scheme consists of a reuse distance based static analysis

and a runtime control mechanism combining cache bypassing and

partitioning. As the first step, an automatic LLVM analysis will be

applied to each accelerated function to generate its memory access

trace and corresponding reuse distance histograms. In terms of the

reuse distance histograms, the LLVM analysis calculates 4 values

for each accelerated function, which are denoted as Key values.
Each kernel will be associated with one unique partition, thus each

set of the 4 Key values describes the features of one partition.
These Key values will guide the runtime dynamic control.

The dynamic control mechanism consists of cache bypassing,

cacheline replacement and partition retirement, where the cache

bypassing control includes the bypassing decision making, partition

replacement and partition insertion. The pre-calculated Key values
from the static analysis will be configured into the dynamic control

to be used when performing the controls. The Key values will

guide the cacheline replacement policy and the cache bypassing

control. Section 5 and Section 6 describe the static analysis and

the dynamic control in detail, respectively.

5. Static Analysis

During each kernel’s execution, it will generate memory

requests to the FPGA L1 cache with the associated addresses.

With the memory access trace of each kernel, the reuse distance

histograms can be obtained, which can be further used to calculate

the 4 Key values. The first step of the static analysis is to obtain
the memory access trace. Although the memory request address is

the sum of the base address and the address offset, the generated

reuse distance histograms will not be affected if we only analyze

the address offset trace regardless of the base address, since the

reuse distance histograms are determined only by the relative

difference among the addresses. Therefore, we treat the trace of

the address offset of the ordered memory requests as the memory

access trace and derive the reuse distance histograms.

Since high level synthesis (HLS) is usually used to generate

the HDL file for the accelerated kernel based on the C code of

the accelerated kernel function, the memory offset trace can be

obtained by directly analyzing the C code with an LLVM pass.

In the LLVM pass, each memory request in the kernel function

with its corresponding address offset will be extracted in order,

which forms the memory offset trace. Alternatively, if the kernel

is not generated through HLS but directly specified by a given

HDL code, the Verilator [15] simulation can be applied to the

HDL code to extract the memory requests in order together with

the associated address offset.

After obtaining the memory offset trace of each kernel, the

reuse distance histogram is generated for each set of the cache at

cacheline granularity. The method to generate the reuse distance

histograms follows the discussion in Section 3.1. We denote the

reuse distance histogram for set i as Hi, then for a cache with 64

sets, there will be H0 to H63. In each reuse distance histogram

Hi, we denote the frequency of distance j as Hi(j), which means
there are totally Hi(j) accesses to set i with reuse distance j in
that set. Ni represents the total number of all the accesses coming

to set i as in equation (1), which sums up the frequencies of all
different distances in histogram Hi. Si defines a set of distances

which satisfy two conditions as in equation (2) with a tunable

threshold α, where Asso defines the total number of ways in

the cache. The first condition eliminates the distances whose

frequencies are too small compared with the total access number

Ni, which means there are only negligible number of accesses
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with such distance. The second condition makes the set Si only

focus on the distances smaller than the cache associativity, which

means all the accesses with distance in Si can hit in cache. With

these two conditions, the Si only includes the distances whose

access frequency is not negligible and whose corresponding

accesses can hit in the cache.

For each kernel, based on the corresponding reuse distance

histograms, 4 Key values are calculated: K, Kmin, Kmax and

Kcoin. Since each kernel corresponds to a unique partition, a

kernel also means a partition here. For the histogram of each set

Hi, we can derive kmini and kmaxi using Si as in equation (3)

and (4). kmini is the minimal distance in set Si (min(Si)) plus
1, which indicates that if the number of cachelines assigned to the

kernel in set i is smaller than kmini, there will be nearly no hit

in set i for the accesses from the kernel. kmaxi is the maximal
distance in Si (max(Si)) plus 1, which means that assigning

more than kmaxi cachelines in set i to the kernel will no longer
improve the hit rate. If we consider all the sets together, the

Kmax and Kmin can be obtained as in equation (5) and (6). Here

Set is the number of sets in the cache. Kmax indicates that if

the number of occupied cachelines of the kernel in a set reaches

Kmax, no more cachelines in this set should be occupied by the

kernel. Otherwise, the extra occupied cachelines will not improve

the hit rate but only waste the cacheline resource. As well, the

intuition behind Kmin is that the kernel should be assigned at

least Kmin cachelines in a set. Otherwise there will be nearly

no hit for the accesses from this kernel due to the insufficient

cacheline assignment, and the cachelines assigned to this kernel

will be wasted.

Ni =

∞∑

s=0

Hi(s) (1)

Si = {s|Hi(s)/Ni > α, 0 ≤ s < Asso} (2)

kmini = min(Si) + 1 (3)

kmaxi = max(Si) + 1 (4)

Kmin =

Set∑

i=0

kmini/Set (5)

Kmax =

Set∑

i=0

kmaxi/Set (6)

Cij is defined as in equation (7), which quantifies the cache

benefit when the number of cachelines assigned to the kernel in set

i is j. In the first term,
∑j−1

m=0 Hi(m)

j
represents the cache hits per

assigned cacheline when j cachelines are assigned to the kernel in
set i. β is a tunable weight parameter and the denominator in the
first term is a normalization factor. A larger first term indicates a

better utilization of the assigned cachelines due to more covered

cache hits per cacheline. The second term means the proportion of

the cache hits covered by the j assigned cachelines to the cache
hits covered by all the cachelines in the set. A larger second term

indicates that more cache hits can be enabled. To assign a best

suitable number of cachelines in a set to a kernel, not only the

hits per assigned cacheline should be large, but also the assigned

cachelines would better cover more hits. Therefore, combining the

first and second terms with two tunable weight parameters β and

γ, the cache benefit for assigning j cachelines in set i to the kernel

can be measured with Cij . β and γ can be chosen according to

the degree of emphasis on different terms and both are set to 0.5

in this work. Considering all the sets together, K can be obtained

following equation (8), which is the value for j among 1 to Asso
maximizing the sum of cache benefit metric Cij for all sets i. K
gives the best suitable cacheline number assigned to the kernel

to make the cache resource utilization as efficient as possible,

because of the maximal aggregated cache benefit. Accordingly,

Kcoin can be derived following equation (9), which quantifies the

benefit per cacheline with the best assigned cacheline number K
from a view of combining all sets. In summary, K decides the

best partition size for the kernel and Kcoin is a metric to quantify

the potential benefit of allocating the partition into cache.

Cij = β
Asso

∑j−1
m=0 Hi(m)

j∑Asso−1
m=0 Hi(m)

+ γ

∑j−1
m=0Hi(m)

∑Asso−1
m=0 Hi(m)

(7)

K = {j | maximize
Set−1∑

i=0

Cij , 1 ≤ j ≤ Asso} (8)

Kcoin =

Set−1∑

i=0

∑K−1
m=0Hi(m)

Ni ×K /Set (9)

A set ofK,Kcoin,Kmin andKmax will be generated for each

kernel based on its corresponding reuse distance histograms for all

the sets in cache. Since each kernel corresponds to one partition, a

set of Key values also describe the features of a partition, which
will guide the dynamic control for bypassing and partitioning.

6. Dynamic Control

The dynamic control logic includes a bypassing control block,

a partition table and a replacement block. The architecture of the

dynamic control logic is shown in Figure 3, where the black arrows

represent the data request/response flow of an access and the blue

arrows represent the control interactions among different blocks.

The bypassing control block is in charge of the bypassing decision

making, partition insertion, partition replacement and partition

retirement. Cache bypassing can be performed on the FPGA L1

cache when there is a cache miss. When the missing cacheline

is fetched back from the L2 cache, it can bypass the FPGA L1

cache and be directly sent to the kernels without allocated in the

cache. A bypassing decision is made in parallel with the normal

cache access process, which maintains the low access latency of

the cache. It means that when there is a memory request, the

cache is accessed normally, meanwhile the bypassing control block

makes the bypassing decision in case the cache access misses. The

detailed rules of the bypass decision making will be introduced

in Section 6.1. If the decision is not bypassing, under the cache

miss case the replacement block will select an existing cacheline

and replace it with the newly fetched cacheline according to

the replacement policy described in Section 6.2. The bypassing

decision is no use for the cache hit case.

Besides making the bypassing decision, the bypassing control

block also performs the operations including partition insertion,

partition replacement and partition retirement to control the cache

utilization at the partition granularity to maximize the benefits

of cache for all the kernels. To control the cache utilization of

each partition, two states are defined for a partition in a set:

active and negative, and the states are recorded in the partition
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Figure 2: Example for Partitions in a 4-way Cache

table. An active partition is allowed to occupy the cache while a
negative partition should not occupy the cache. An assigned size
is given for each active partition, which represents the number

of cachelines in a set assigned to the partition. The number of

cachelines actually occupied by the partition will be controlled

following the assigned size but may be different from it depending

on the cacheline’s availability. The assigned size of a negative
partition is 0. In the beginning, all the partitions are negative.
The active bit will be updated only when inserting or releasing
a partition. Inserting a partition means changing a partition from

negative to active, which indicates allocating this partition into
cache while the assigned size will be decided for the inserted

partition. Releasing a partition means changing it from active to
negative, indicating this partition should no longer occupy the

cache. Partition release happens during partition replacement or

partition retirement to increase the free space in the cache, which
we will introduce in more details in Section 6.1 & Section 6.3.

Partition replacement is to replace some existing active partitions
for priority consideration and the counter based partition retirement

mechanism is to release the partitions from cache when they are not

accessed recently. Only updating the active bit and assigned size
in the partition table is needed to insert or release a partition. For

a cache set, the capacity is equal to the associativity of the cache.
The sum of the assigned size for all active partitions will not
exceed the capacity. free space defines the number of remaining
cachelines except the assigned ones in the capacity, which can be
assigned to new partitions.

The bypassing control block and the replacement block will

need to check the partition table for each partition’s status and

assigned size to make corresponding decisions. After execution of

operations, for example, partition insertion, partition replacement

and partition retirement, the bypassing control block will also

update the partition table correspondingly. The detailed control

steps of the dynamic control can be illustrated as in Figure 4,

we will discuss these steps in the next subsections.

Figure 3: Architecture of Dynamic Control

Figure 4: Dynamic Control Flow

6.1. Cache Bypassing Control

As discussed above, the operations of bypassing control block

include the bypassing decision making, partition insertion, replace-

ment and retirement when needed. When a memory request arrives,

a partition ID is associated with the coming request, which is set

by the requesting kernel to indicate which partition the request

belongs to. With this partition ID, the partition table is checked by

the bypassing control block. As shown in Figure 4, the active bit
of the partition is checked first. If the active bit is 1, the request
will not bypass the FPGA L1 cache, but the cacheline replacement

will be incurred under the cache miss case according to the policy

given in Section 6.2. But if the active bit is 0 which means the
partition is negative, we should consider whether to insert this

partition into the cache as analyzed in the next paragraph.

Algorithm 1 Bypassing Decision When an Access to Partition A

is Made

1: if A.active bit = 1 then
2: return not bypass
3: else
4: for each active partition B do
5: if B.K coin+ T < A.K coin then
6: release B :
7: B.acitve bit = 0
8: B.assigned size = 0
9: update free space
10: end if
11: end for
12: if free space >= A.K min then
13: insert A :
14: A.active bit = 1
15: A.assigned size = min(A.K, free space)
16: update free space
17: return not bypass
18: else
19: return bypass
20: end if
21: end if

The partition with larger Kcoin will benefit more from cache

than a partition with smaller Kcoin. Therefore, for the priority

consideration, the negative partition for the coming request with
larger Kcoin can replace the current active partitions with smaller
Kcoin, which is called partition replacement so that the whole

cache benefit would be enlarged. In the control scheme, we set a

tunable threshold T . The current active partitions whose Kcoin

are smaller than Kcoin of the coming partition minus T will be

released. By releasing the lower priority partitions, the free space
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will be expanded, so that the cachelines originally assigned to

the lower priority partitions now can be assigned to the coming

partition. In this way, the partition replacement can be achieved.

The available free space will be then compared with Kmin of

the coming partition. If the free space is smaller than Kmin,

the coming partition will not be inserted into cache since from

static analysis, we know that Kmin is the minimal requirement for

number of cachelines to enable data reuse for the corresponding

kernel. Therefore, the request will bypass the FPGA L1 cache when

its corresponding cacheline is fetched back from L2 cache, and

the coming partition remains negative. If the free space is no
smaller than Kmin, the partition should be inserted into cache

with assigned size min(free space,K). The partition table will
be updated and the selected available cacheline will be replaced

with the new cacheline of the coming partition under cache miss

case. The bypassing decision and partition replacement/insertion

control can be summarized in Algorithm 1.

Here, we notice that the low priority partitions will be released

first even though the new partition may not be inserted. It is for the

ease of the control and counting the available free space. Since
the partition release only updates the status in partition table, it is

easy to do the release. If the new partition is not inserted, when

the low priority partition is requested again in the later memory

access, its status can be quickly updated and it will still be active
in cache as it had not been released.

6.2. Partitioning Oriented Replacement Policy

A cacheline replacement policy is proposed to select the cache-

line to be replaced when a non bypassing cache miss occurs.

Partition insertion, partition replacement and partition retirement

only update the partition table, they need go through cacheline

replacement following the proposed replacement policy to achieve

their desired status and control. By restricting which partition the

replaced cacheline can be from, the number of occupied cachelines

of each partition will be controlled, so that the cache partitioning

can be achieved. A partition ID is associated with each cacheline

in our scheme. If a cacheline is not occupied by any partitions,

it’s free. In the beginning, all cachelines are free. If a cacheline
is occupied by an active or negative partition, the cacheline is
called active or negative, correspondingly.

Figure 5: Process of Cacheline Replacement

The partition of an access not bypassing the FPGA L1 cache

must be active. As shown in the Figure 4, there could be two

situations for the not bypass decision which require the cacheline

replacement. One is that the partition is just decided to be inserted.

Another is that the partition is already active, but its existing
cachelines do not contain the requested data and give a cache

miss. No matter which situation, when the bypassing decision is

not bypassing and there is a cache miss, the Kmax and occupied

cacheline number of this partition is compared first. If the number

of occupied cachelines of this partition reaches Kmax, no more

cachelines should be occupied by this partition. Thus, the replaced

cacheline can only be from the cachelines already occupied by this

partition and we choose the LRU cacheline among all cachelines

of this partition to be replaced. Note that the occupied cacheline

number is the number of cachelines actually occupied by the

partition and may be different from the assigned size.

Algorithm 2 Replaced Cacheline Selection when an Access of

Partition A Results in a Miss

1: if A.occupied cachelines >= A.K max then
2: return the LRU cacheline of partition A
3: else if free or negative cacheline exists then
4: return the LRU cacheline among free and

negative cachelines
5: else if saturated partition exists then
6: return the LRU cacheline among saturated

partitions
7: else
8: return the LRU cacheline of partition A
9: end if
Then if the number of occupied cachelines is smaller than

Kmax, this partition can occupy more cachelines. In this case,

we first check whether there are free or negative cachelines

since these cachelines are free to be used. If any such cacheline

exists, the LRU cacheline among all eligible cachelines is replaced.

Otherwise, whether there is saturated partition needs to be further

checked. The saturated partition means the active partition whose
number of actually occupied cachelines are more than its assigned

size. In our scheme, the number of cachelines occupied by a

partition may exceed its assigned size when there are enough

available cachelines, which enables a full utilization of all available

cacheline resource. If there is any saturated partition, the LRU

cacheline among the cachelines of all saturated partitions will be

replaced, which can balance the cacheline occupation and alleviate

the saturation. Then, if there is no free or negative cacheline
and no saturated partition, each active partition can only use the
occupied cachelines of itself, since all other cachelines have been

occupied by other non saturated active partitions and cannot be
used. Therefore, the LRU cacheline among the cachelines occupied

by the partition of the missing request will be replaced. The

complete partitioning oriented replacement control is demonstrated

in Algorithm 2, which returns the selected cacheline to be replaced.

A replacement block is in charge of the selection of replaced

cacheline with the help of the partition table. As soon as a cache

miss occurs and the bypassing decision is made, the replacement

block will start selecting the cacheline to be replaced. The selection

will execute in parallel with the missing cacheline being fetched

when a miss occurs, so that the latency can be overlapped with the

large cacheline fetch latency.

6.3. Partition Retirement Mechanism

If an active partition is not accessed for a long time, we release
it from cache to make space for other partitions. This process

is called partition retirement. A counter based method is applied

for partition retirement. In a set, each partition owns one counter.

When a memory request of a partition comes to the set, the counter

of this partition will be set to 0. At the same time, the counters
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for other active partitions are all incremented by 1. In this way,
the active partition which is not accessed for a long time will

have a large counter number. If the number of a counter is larger

than a threshold M , its associated partition should retire and be

released from cache. A retired partition is set to negative, so
that its occupied cachelines are free to be used by other active
partitions.

The partition retirement is handled by the bypassing control

block. When a request comes, besides the bypassing decision

making, partition replacement and partition insertion described

in Section 6.1, the bypassing control block will also update the

counters and modify the partition table according to the partition

retirement decision.

6.4. Overhead

In the partition table, for each partition in each set, there are

one active bit and one register for the assigned size. In addition, a
register is used to record the free space for each set. All the Key
values are set in the partition table to be used by the replacement

block and bypassing control block. For a 4-associative cache with

16KB capacity, only 116B resource is needed for the partition table

when there are 4 kernels, which only brings an overhead of 0.7%.

Moreover, in the cache, each cacheline will be associated with

a partition ID and the occupied cacheline number of each partition

needs to be recorded in each set, which requires only 128B resource

for a 4-associative cache with 16KB capacity when there are 4

kernels. This overhead is only about 0.7%.

The latency overhead of the dynamic control is also negligible.

When a request comes, the bypassing control block executes in

parallel with the normal cache access and the bypassing decision

will be referred to only when the cache access misses. Therefore,

the cache hit latency will not be affected. The cache miss latency

will also not be affected much, since the bypassing decision can

be obtained after some simple bits checking and comparisons,

whose latency overhead is not only small compared with the large

latency of fetching a cacheline from the L2 cache, but also can

be overlapped with the normal cache access process. The partition

table update including partition retirement, partition insertion and

partition replacement will also execute in parallel and not affect the

normal cache access process. Furthermore, the cacheline selection

for replacement can be completed in parallel with the process

of fetching the missing cacheline from L2 cache, so that the

corresponding latency overhead can be overlapped with the large

cacheline fetch latency. In this way, our scheme only introduces

negligible latency overhead, which guarantees the efficiency of our

scheme. The related detailed analytical data will be shared in a

future version of this work.

7. Experimental Results

To assess the effectiveness of our approach, we compare our

cache management scheme against a typical baseline design where

the FPGA cache adopts the LRU replacement policy without cache

bypassing and partitioning, which is commonly used in most

designs and denoted as LRU in this paper. The baseline LRU

replacement policy is proved to be advanced and near-optimal

in [16]. The detailed experiment setup is explained as follows.

The dynamic control module is implemented on a CPU-FPGA

simulator PAAS [9], which supports cycle-accurate simulation

of typical cache coherent CPU-FPGA systems. The accelerated

functions are based on Polybench [11]. 12 different combinations

of the benchmarks from Polybench are evaluated, where each

combination combines 3 benchmarks as the accelerated kernels as

defined in Table 1. Each combination is evaluated with the cache

associativity of 1, 2, 4, 8, respectively, for the FPGA L1 cache.

The system is configured with one CPU core and an FPGA fabric

which holds three kernels with different acceleration functions. The

FPGA L1 cache is set to be 16KB with the cacheline size of 64B.

The shared L2 cache is set to be 256KB with 8 associativity. The

write-back policy is applied to the caches. These are typical settings

for coherent cache based CPU-FPGA systems. In addition, since

our strategy is only applied to the FPGA L1 cache, it will be

scalable with increased number of CPUs, FPGAs and kernels.

We calculate the FPGA L1 cache hit rate for each evaluation

case, which equals to the number of FPGA L1 cache hits over

the number of all the memory requests from kernels. The average

hit rate on different associativities is shown in Figure 6 for each

benchmark combination. The hit rate improvement is defined as

the difference between the hit rate under our scheme and the hit

rate under the baseline case LRU . With our scheme, the hit rate
improvement can be from 2% to 37% with an average of 22.90%

for all the evaluated cases. The average hit rate improvement is

annotated in Table 1 for each benchmark combination. All the

evaluated cases show a large improvement on the FPGA L1 cache

hit rate, which indicates our scheme can successfully increase

the FPGA cache hit by a large degree and alleviate the cache

contention for cache coherent CPU-FPGA systems.

As the FPGA cache hit rate increases, more requests can be

satisfied by the FPGA L1 cache. The number of FPGA cache

misses and the number of requests from FPGA to the shared L2

cache will be reduced significantly. Handling the FPGA cache

misses and requesting data from FPGA to the L2 cache are time

consuming and power consuming, especially for the cache coherent

CPU-FPGA system where the L2 cache is usually located at the

CPU side and with more distance from FPGA. Therefore, with our

scheme, the performance and energy efficiency can be improved

by a large degree.

The speedup is defined as the percentage of the execution time

difference between our scheme and the baseline case LRU over

the baseline case execution time. For all the evaluated cases, the

speedup can be up to 12.52% with an average of 4.99%. We

annotate the average speedup for each benchmark combination in

Table 1. As we can see, our scheme can reduce the total execution

time a lot by alleviating the FPGA cache contention. Moreover,

if the number of kernels increases or more memory requests are

sent from kernels, the cache contention will become severer with

increased cache miss rate. In this case, our proposed strategy which

can alleviate the cache contention and increase the cache hit rate

will benefit more, thus can bring even more speedup.

8. Conclusion

In this work, a static and dynamic combined cache management

strategy is proposed for emerging cache coherent CPU-FPGA

platforms, which is aimed at a better utilization of the FPGA L1

cache. An automatic LLVM pass is first developed to analyze the

accelerated functions with reuse distance theory and generate sets

of Key values for describing the memory access patterns. With the
generated Key values, a novel dynamic control mechanism is ap-
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Figure 6: Average Hit Rate of the Evaluated Benchmark Combinations

Table 1: Average Hit Rate Improvement and Average Speedup for the Benchmark Combinations
combination A B C D E F G H I J K L

combined
benchmarks

trmm
floyd warshall
gesummv

floyd warshall
covariance
trmm

gemm
floyd warshall

trmm

trmm
gesummv
covariance

gemm
covariance
trmm

seidel 2d
floyd warshall
covariance

gemm
seidel 2d

floyd warshall

covariance
gemm
seidel 2d

floyd warshall
gesummv
covariance

gemm
floyd warshall
gesummv

covariance
gemm

floyd warshall

gesummv
covariance
gemm

hit rate improvement 18.5% 25.25% 21.5% 21.25% 19.5% 26.25% 11% 22.25% 33.25% 19.5% 25% 31.5%
speedup 4.3% 5.9% 2.7% 3.1% 5.1% 7.0% 5.9% 3.7% 4.9% 5.1% 8.2% 4.0%

plied to flexibly control the cache bypassing and cache partitioning

at runtime to alleviate the cache contention and increase the cache

hit rate. To the best of our knowledge, this is the first work aimed

at the cache management for cache coherent CPU-FPGA systems.

As well, different from previous cache management methods,

this work comprehensively integrates reuse distance theory, cache

bypassing and cache partitioning through a static and dynamic

combined strategy. Experiments on PAAS show that the proposed

scheme can significantly increase the hit rate for the FPGA cache

by 22.90% on average.
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