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Abstract—Nonvolatile static random access memory
(nvSRAM) has been widely investigated as a promising
on-chip memory architecture in energy harvesting sensor nodes,
due to zero standby power, resilience to power failures, and fast
read/write operations. However, conventional approaches back
up all data from static random access memory into nonvolatile
memory when power failures happen. It leads to significant
energy overhead and peak inrush current, which has a negative
impact on the system performance and circuit reliability. This
paper proposes a holistic data backup optimization to mitigate
these problems in nvSRAM, consisting of a partial backup
algorithm and a run-time adaptive write policy. A statistic dead-
block predictor is employed to achieve dead block identification
with trivial hardware overhead. An adaptive policy is used to
switch between write-back and write-through strategy to reduce
the rollback induced by backup failures. Experimental results
show that the proposed scheme improves the performance by
4.6% on average while the backup power consumption and
the inrush current are reduced by 38.1% and 54% on average
compared to the full backup scheme. What is more, the backup
capacitor size for energy buffer can be reduced by 40% on
average under the same performance constraint.

Index Terms—Cache memories, dead blocks, energy harvesting
systems, nonvolatile static random access memory (nvSRAM),
sensor nodes.

I. INTRODUCTION

ENERGY harvesting systems have been widely used in
habitat monitoring, volcano monitoring, and structural

monitoring due to its ultralong operating time without mainte-
nance [1]. However, ambient power inputs suffer from frequent
failures. For instance, ambient radio frequency (RF) power
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varies according to power sources, frequency, distance, height,
and obstacles [2]. Although independent sensing may be done
on those devices under frequent interrupted supply, it may not
work for more complicated history-dependent operations. In
such cases, to ensure continuous operations on battery-less
systems is a challenging task.

To maintain states under an intermittent power supply,
emerging nonvolatile memory (NVM) has been proposed
to replace volatile memories in various levels, such as
register files, static random access memories (SRAMs),
and dynamic random access memories. Typical emerging
memory candidates include phase change memory [3], [4],
spin-transfer torque magnetic RAM [5], [6], and resistive
memory (RRAM) [7]–[10]. However, direct replacement of
the volatile register/cache with NVM suffers from the draw-
backs of high write energy, slow write speed, asymmetric
read/write operations, and low endurance. In order to over-
come these drawbacks, previous studies of hybrid memory
technologies [11], loop retiming [12], and the 3-D-integrated
hybrid memory technique [13] have explored the architectural
level optimization to improve the performance of nonvolatile
caches and nonvolatile main memory.

Another aspect of research focuses on narrowing the
performance gap by combining SRAM and NVM, namely, the
nonvolatile SRAM technique. Nonvolatile SRAM (nvSRAM)
integrates an SRAM cell and a nonvolatile element in cell
levels, forming a direct bit-to-bit connection in a 2-D or ver-
tical arrangement to achieve fast parallel data transfer and
power-on/off speed [14]. Therefore, it provides comparable
power and performance metrics as SRAM, while keeping the
nonvolatile capability when power failures happen. However,
conventional backup strategies which back up full data from
SRAM into NVM in parallel face unnecessary large backup
energy consumptions and high inrush current, which may
cause significant energy and reliability issues. As a result,
various backup polices have been proposed for nonvolatile
memories, such as the sequential backup [15] and compression
techniques [16], [17]. However, sequential backup prolongs
the backup time and compression techniques introduce extra
hardware overhead. What is more, all of the above methods
adopt an over-pessimistic full backup scheme, which assumes
that full data should be stored and is not efficient.

This paper proposes a systematic partial backup strategy for
nvSRAM. It consists of two techniques: 1) a partial backup
technique with statistics-based dead-block prediction (SBDP)
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and 2) a run-time adaptive write policy (AWP). Based on the
statistics of recent used bits (RUBs), SBDP can significantly
reduce the backup energy with trivial hardware overhead.
Hence, it is suitable for nvSRAM backup in embedded appli-
cations. Besides, a run-time AWP is proposed to reduce the
occurrences of rollback caused by excessive dirty blocks.

The fundamental challenges lie in identifying dead blocks
accurately and efficiently based on a simple hardware and
designing proper write policy switching method to trade-
off between different kinds of performance penalties. The
contributions of this paper are as follows.

1) We propose a systematic backup strategy for nvSRAM,
which reduces energy and performance penalties in both
the backup and executing stage.

2) A partial backup strategy with an energy-efficient SBDP
method is presented. It can figure out dead blocks with
trivial hardware overhead and its accuracy is comparable
to state-of-the-art techniques.

3) An online scheduling scheme to accomplish the AWP
process is proposed. The scheme can mitigate the
performance penalty induced by partial backup.

4) We implemented the proposed techniques and evalu-
ated them with MiBench [18] in gem5 simulator [19].
Experimental results show that the proposed scheme
improves the performance by 4.6% on average while
the backup power consumption and the inrush current
are reduced by 38.1% and 54% on average compared to
the full backup.

The rest of this paper is organized as follows. Section II
discusses the background of the proposed strategy. Section III
formulates the systematic backup strategy for nvSRAM. SBDP
and AWP are illustrated in Sections IV and V, respectively.
Section VI shows the experimental results and we conclude
this paper in Section VII.

II. BACKGROUND

This section first describes the typical architecture of an
energy harvesting sensor node which is the target platform of
this paper. After that, related works are provided.

A. Target Platform and Challenges

The target platform can be but not limited to the energy
harvesting sensor node shown in Fig. 1. It consists of an
energy harvesting module, a nonvolatile processor (NVP),
voltage detection circuits (VDCs), bulk capacitors, peripheral
sensors, off-chip data storage, and a wireless transceiver. The
power supply system consists of the dynamic power manage-
ment (DPM) circuit and two capacitors Cbulk0 and Cdecoup,
which are connected in parallel with the PV cell. Because
of the unstable characteristics of ambient energy harvesting,
the power supply usually oscillates between ON and OFF
state. Thus, the sensor node runs intermittently by turning the
DPM load switch off and on to keep the supply voltage in an
operational range [20]. The employment of nvSRAM enables
the system to be suspended during power failures. The VDC
detects a power drop when a power failure arrives. The VDC
generates a backup signal to the NVP, which starts the backup

Fig. 1. Typical energy harvesting sensor node fabricated with nonvolatile
memories. The structure of 8T2R nvSRAM [14] is depicted in the bottom
figure.

operations. The capacitors provide energy to the workload in
order to finish the backup process.

However, the backup process of nvSRAM is both time
and energy consuming. Therefore, the major challenge of the
system lies in the backup efficiency problem, which brings the
following nontrivial challenges.

1) Area Overhead: Large Cbulk is required to provide
enough energy for the backup process. The chip area
overhead induced by a large on-chip Cbulk is nontriv-
ial. For instance, a 4 KB nvSRAM in a state-of-the-art
RRAM-based NVP [21], requires a 172 nF on-chip
capacitor to supply the backup energy. It leads to over
1.6X larger chip area compared to the original chip
without Cbulk.

2) Inrush Current Overhead: The fully parallel backup
causes a large inrush current up to several amperes,
which probably burns surrounding circuits and induces
IR drop to harm the reliability of the entire system [22].

3) Performance Penalty: The backup/restore process pro-
longs the total execution time.

In order to mitigate the above challenges, previous works
have investigated various approaches to optimize the backup
efficiency in term of both hardware and software levels. First,
the structure of nvSRAM is optimized to accelerate the backup
process. Second, plenty of backup policies for nvSRAM have
been proposed to improve the efficiency.

B. Related Work

1) Nonvolatile SRAM: Chiu et al. [14] proposed an RRAM-
based 8T2R nvSRAM depicted in Fig. 1. It consists of a 6T
standard SRAM cell, 2T RRAM-switch (RSWL and RWSR)
and two resistive devices (RL and RR) vertical-stacked over
the 8T SRAM cell. This design achieves fast bit-to-bit par-
allel store/restore operations, but the parallel backup size is
limited by the inrush current. Lee et al. [23] presented a
7T1R nvSRAM design to reduce the store energy by using
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a single NVM device and suppress dc-short current during
restore operations using a pulsed-overwrite scheme. Moreover,
several works have been proposed to optimize the power gat-
ing technique of nvSRAM. Ohsawa et al. [24] presented a
fabricated 32b fine-grained power gating technique applied to
the memory cell array using the 4T2MTJ cell. Shuto et al. [25]
explored the power gating architecture for nvSRAM to save the
static power without degradation of the circuit performance.
In summary, these works mainly focus on the optimization of
nvSRAM in circuit level, while this approach focuses on the
architectural-level backup optimization.

2) Backup Policies: Various backup policies have been
explored to improve the backup efficiency and lower the inrush
backup current in traditional designs. Although the fast paral-
lel backup policies [14], [21] can be reasonable for nonvolatile
register files, it requires unaffordable backup energy and peak
current when used in nvSRAM. Sequential backup reduces
the inrush current by prolonging the backup time [15], but the
backup energy is not reduced and the time is prolonged. To
shorten the sequential backup time, progressive charging to
power-gated modules [26] can be adopted under peak current
constraint. Furthermore, compression before backup [16], [17]
helps to reduce data to be copied with extra computation over-
head. However, above methods adopt a full backup scheme to
store all data in nvSRAM, which is unnecessary and energy
inefficient. Several partial backup techniques have been raised
to avoid unnecessary backup operations. Ma et al. [27] ana-
lyzed the partial backup strategies for in-order and out-of-order
NVPs. But it does not take the impact of the cache part into
consideration. Tsai et al. [28] proposed novel read circuits to
eliminate redundancy in bit levels, where data is backed up
only if there is a difference between the value in the SRAM
cell and that in the nonvolatile element. However, both of them
omit architecture-level optimization.

As previous works either back up all data or mainly focus
on the device and circuit level optimization for nvSRAM,
we explore the orthogonal architecture-level optimization to
improve energy efficiency and reduce peak current, which can
be combined with previous solutions.

III. PROBLEM OVERVIEW

We first describe the hardware and performance models,
followed by the goal of the backup procedure for nvSRAM.
Then, how to achieve the goal by the system level backup
procedure design is discussed. Finally, the proposed backup
flow is presented.

A. Hardware Model

The structure of the hardware can be divided into three
parts: 1) the energy harvester; 2) the workload which is
taken as an energy consumer; and 3) the bulk capacitor Cbulk
working as an energy buffer for the system.

1) Energy Harvester Model: Passive power-down occurs
under various conditions for ambient energy harvesting energy
sources. For instance, power-down occurs in an ambient RF
harvesting system, when the power source moves out of the
acceptable range or stops working. According to the energy

harvesting system in Fig. 1, we use discrete power pulses to
model the power collected by the energy harvester, denoted
as a power pulse set P = {ρ1, ρ2, . . . , ρm, . . .}. Since power-
down triggered by events are independent and random, the
power-on time Ti for power pulse ρi follows the exponential
distribution, that is

fTi(ti) =
{

λe−λti if ti ≥ 0

0 if ti < 0
(1)

where fTi(ti) is the probability density function and (1/λ) is the
expected value of power-on time. The voltage and power-on
time Ti associated with each power pulse ρi can be extracted
from real energy harvesting traces [27].

2) Workload Model: The workload consists of memory,
computational logic, and peripheral devices. Memory and
computational logic are fabricated with nonvolatile devices.
The nvSRAM is used as the basic unit of the M-way
associative L1 cache with N blocks B{b1, b2, . . . , bN}. The
least recently used (LRU) replacement strategy is employed.
Therefore, each block bi can be characterized by a 3-tuple
(vi, ri, di), where vi denotes the valid bit, ri denotes the RUB
used as a symbol for the reference order of intraset cache
blocks, and di denotes the dirty bit for block i. For an NVP
with a N-block nvSRAM, the energy consumption in the
backup process can be expressed as follows:

Ebk = Elg + Eb(Nb + Net) (2)

where Elg is the backup consumption of the nonvolatile logic
part, Eb is backup energy consumption of a cache block, Nb is
the number of blocks to be backed up, and Net is the equivalent
extra blocks introduced by the hardware overhead. Compared
to the full backup strategy, the proposed partial backup scheme
can help to reduce the backup blocks, namely, Nb ≤ N. The
run-time parameters of the system consist of the frequency F
and the system power consumption P.

3) Bulk Capacitor Model: The bulk capacitor provides
energy for the workload to continuously execute and to back
up data after power loss. The workload only operates in a fea-
sible voltage range [Vl, Vh]. After power-off, the energy from
Cbulk is first partially used for workload execution, after which
the rest energy in Cbulk supports to complete the backup pro-
cess. Cbulk is discharged to Vl when the backup process is
finished. After that, the whole system enters into the power-
off state. Once power is on, Cbulk is recharged from Vl to Vh.
Therefore, the backup energy budget is expressed as

Ebudget = Cbulk
V2

h − V2
l

2
. (3)

The backup policy design takes full use of the energy in Cbulk
to execute tasks while guaranteeing the backup process.

B. Performance Model

Fig. 2 shows the diagram of the executed clock cycles, tran-
sition of work states, input power pulses, and the voltage of
Cbulk. During a complete period of a power pulse, the system
lives through the recovery, normal execution, extra-execution,
backup, and idle modes for each power pulse.
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Fig. 2. Diagram of the power pulses ρ and the work states of the system. The
curves show the elapsed cycles Ns and effective cycles Ne. The relationship
between Ne, Nx, and Ns is also shown in the figure.

The blue line and the red line in Fig. 2 represent the increas-
ing trend of the effective cycles Ne and elapsed cycles Ns. The
effective cycles, denoted as Ne, is defined as the total amount
of the cycles that are spent on the actual execution of the
program. The elapsed cycles, denoted as Ns, are defined as
the elapsed cycled during power-on time. Moreover, Np rep-
resents the overhead cycles and Nx refers to the extra cycles
powered by the capacitor energy. Therefore, their relationship
is represented as follows:

Ne = Ns − Np + Nx. (4)

The penalty cycles Np refers to the cycle overhead caused by
the power interruptions. There are five kinds of performance
penalties in a partial backup process.

1) Backup-Failure Penalty: It occurs when the capacitor
energy cannot supply the nvSRAM to back up all dirty
blocks. Assuming it happens at a probability of Pfail,
the system should roll back to its previous backup point,
which wastes Nroll cycles.

2) Recovery Penalty: It happens during the NVP initial-
ization, denoted as Nrec, which consists of four parts:
a) capacitor charging; b) reset IC delay; c) nonvolatile
controller delay; and d) nonvolatile flip-flops (NVFFs)
restore delay [29].

3) Force-Discard Penalty: It is induced in the partial
backup process when all dirty blocks can be backed up,
but the live blocks cannot. Nforce cycles are induced to
refetch data due to cache misses.

4) Miss-Prediction Penalty: It is caused by wrong predic-
tions from the dead block prediction. A penalty will
happen only when a live block is predicted to be dead.
It leads to Nmiss cycles to refetch cache blocks.

5) Extra Write-Stall Penalty: It is defined as the extra write
stalls induced by temporary write through policies. It is
denoted as Nstall. Details will be addressed in Section V.

In general, the total time penalty is expressed as follows:

Np = Nroll + Nrec + Nforce + Nmiss + Nstall. (5)

C. Optimization Goal

Table I summarizes all parameters and definitions in this
paper. We use N(k)

e , N(k)
s , N(k)

x , and N(k)
p to denote the effective

TABLE I
PARAMETERS AND VARIABLES IN THE SYSTEM MODEL

cycles, elapsed cycles, extra execution cycles, and the penalty
cycles of the task during the power pulse k. If n pulses are just
enough for completing the program, the following inequation
must be satisfied:

n = argmin
k

∑
k

N(k)
e ≥ SF (6)

where SF denotes the required computation cycles of the
system. Furthermore, the actual execution time is represented
as follows:

Ta =
n∑

i=1

Ti +
n−1∑
i=1

Ii. (7)

The total backup energy is defined as follows:

Et =
n∑

i=1

E(k)
bk . (8)

The main optimization objective is to maximize the backup
efficiency η of all tasks, which is defined as follows:

η = 1

TaEt
. (9)

Equation (9) indicates that the backup efficiency η is related
to both the execution time and the total backup energy. The
proposed partial backup policy helps to reduce the backup
energy, which mitigates the chip area and inrush current
problem. Meanwhile, backup energy reduction saves more
energy for task execution, which is beneficial to the overall
performance Ta.

D. Workflow of Proposed Method

As the optimization goal can be achieved by reducing the
backup energy and maximizing the effective cycles of each
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Fig. 3. Proposed partial backup flow.

power pulse k. A systematic work flow for each power pulse
is proposed to achieve the optimization goal in Fig. 3. The
meaning of the colors in Fig. 3 matches those in Fig. 2. It
consists of four stages. After power is on, the system starts
with the recovery process. The backup capacitor is recharged
and the data are reloaded from NVM. After that, cache data
is refetched due to data loss in the partial backup process.
Recovery penalties are caused in this stage. After the success-
ful initialization, the system enters into the normal execution
stage with an AWP scheme, which operates in the normal
mode with the write-back policy. A write policy switching is
triggered if the number of dirty blocks exceeds the maximal
backup threshold. A history checking process is adopted to
select the policy, followed by the policy switching. AWP is
aimed to reduce the backup-failure and force-discard penalty
so as to reduce Np. Namely, this strategy targets to reduce the
execution time Ta.

When a passive power down is detected, the system enters
into the partial backup procedure. First, the execution process
is continued by the energy in Cbulk. After the current task is
completed, the dead block prediction is carried out to choose
dead blocks. The partial backup only keeps the live blocks.
The partial backup strategy aims to reduce Ebk and to prolong
the current task execution. Therefore, it reduces Ta. Finally,
the system enters into the power-off state. The proposed partial
backup strategy includes two key techniques: 1) the dead block
prediction technique and 2) the AWPs switching technique,
which will be discussed in Sections IV and V.

IV. STATISTICS-BASED DEAD-BLOCK

PREDICTION ALGORITHM

This section presents the lightweight but accurate SBDP for
the partial backup process. We introduce the concept of dead
blocks and previous works on dead block prediction. After
that, we discuss the theory basis and quantitative analysis of
SBDP. Finally, the circuit implementation is given out.

A. Cache Block Classification

Fig. 4 shows the concept of live/dead blocks. The length
of each hollow rectangle indicates the lifetime of each

Fig. 4. Cache block classification. (a) Live block. (b) Dead block.

cache block. A cache block is alive between the moment when
it is filled and the last reference time point by a read/write
request. Furthermore, the death period is defined as the time
interval between two successive cache lifetimes. Fig. 4(a)
shows two cases of live blocks in a write-back cache. At the
backup time point, both cache blocks are in a live period. If
a cache block is modified, it is marked as a dirty block. The
shadow rectangle in the median block presents a dirty period.
These two cases have different performance penalties when
discarded wrongly. Discarding clean & live blocks causes
miss-prediction penalty or force-discard penalty, while dis-
carding dirty blocks leads to backup failure penalties. Fig. 4(b)
shows two cases of dead blocks. A cache block being in a dead
period or in invalid state at the backup time point is classified
into a dead block. Dead block prediction techniques can help
to distinguish live and dead blocks.

In fact, there are plenty of architecture-level works to predict
dead blocks, such as PC-based [30], [31], counting-based [32],
and time-based [33] predictions. The PC-based [30], [31]
prediction integrates PC bits into the cache tag fields and a
history table is used to track the reference order of cache
blocks. Counting-based [32] dead block prediction uses a
counter to keep track of the approach to identify dead lines
for cache prefetching. Time-based [33] prediction is based on
the principle that a cache line will likely to be dead after it is
replaced after a cache burst happens. However, these complex
prediction methods are dedicated to high performance applica-
tions and introduce unacceptable hardware overheads for low
power systems. Considering the burst count prediction in [33],
it requires more than 2 KB extra hardware to deliver high accu-
racy. The hardware overhead is even comparable to the on-chip
nvSRAM. The high storage overhead also introduces energy
overhead to cause extra performance penalty, while SBDP can
figure out dead blocks with much lower overhead.

B. Prediction Theory Basis

The main principle of SBDP lies in the correlation between
the dead blocks and the cache replacement algorithm. LRU is
a common cache replacement policy. When a cache set is full
and a new block should be fulfilled, the block that has been
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Fig. 5. Example of the correlation between the RUBs and the dead/live
blocks. (a) Image filtering application and the movement of the template.
(b) Data in the four-way associated cache.

Fig. 6. Dead/live blocks ratio versus RUBs for four benchmarks from
mibench.

unused for the longest time is replaced. RUBs are added to
each cache block to represent the access order. Cache blocks
with larger RUB are accessed longer time before those with
smaller RUB. Fig. 5 takes the application of image filtering
running on a four-way associated cache as an example to show
the principle. Assume that the cache block size is equal to
that of a single pixel. The filter template moves from left to
right and from top to bottom in Fig. 5(a). Image blocks are
filled into the corresponding cache set according to address
mapping and the order of RUBs. Cache blocks marked with
the shadow are dead blocks because they would not be covered
by the template again. Fig. 5(b) gives us the intuition that
cache blocks with large RUBs are more likely to be dead.
Moreover, the correlation between the dead/live blocks and
RUBs has the characteristic of time locality. It means that the
distributions of dead/live blocks are stable in different cache
sets for an application. Therefore, the theory basis of SBDP
lies in the correlations between the distribution of RUBs and
the classification of dead/live blocks.

Fig. 6 shows the average block type ratio under different
RUBs when four benchmarks from Mibench [18] are running
on a four-way associated cache. It is observed that the dis-
tribution of block type is different under various RUBs. In
Patricia, all cache blocks of RUB = 0 and RUB = 1 are live.
More than half of blocks are live when RUB = 2, while most
of blocks are dead when RUB = 3. However, in qsort_large,
almost all cache blocks are dead. Specifically, the ratio of
dead/live blocks increases/decreases when the RUB becomes
larger. This observation enables us to predict the block types
(dead/live) based on the RUB information. As we can see,

different benchmarks show various distributions. Therefore, a
dynamic statistical approach should be used to train and get
this correlation for different benchmarks.

C. Quantitative Analysis

We use the binary variable li to indicate the prediction
results for each cache block, where li = 1 (li = 0) means that
block i is predicted to be live (dead). The prediction problem
can be formulated as a logistical regression problem, that is

P(li = 1|ri) = hθ (ri) (10a)

P(li = 0|ri) = 1− hθ (ri) (10b)

where hθ (x) is the hypothesis function and θ is a key param-
eter of the function. If P(li = 1|ri) > P(li = 0|ri), then the
corresponding cache block is predicted to be live. Otherwise,
it is predicted to be dead. Therefore, the first step is to derive
an approximate hypotheses function hθ (x) by referring to his-
torical inputs. Then, predictions are made based on outputs of
hθ (x). We adopt the perceptron learning to make the classifi-
cation, which is the simplest neural network for single-layer
perception. Compared with other candidate algorithms, such
as back propagation network, radial basis function, and deep
belief network, it achieves small error rate with trivial energy
and hardware overhead. We further give the quantitative details
of the training algorithm.

1) Input Features Rearrangement: The input features ri are
discrete variables and the number of feasible values is set by
the cache association. There are plenty of repeated training
examples if all pairs of (ri, li) are used for training, which leads
to a lot of redundant operations in the training step. Instead, we
use an input features rearrangement strategy to diminish the
size of input features. It is achieved by normalizing the input
features ri to the ratio of dead/live blocks for each RUB = j

Lj =
∑N

i=1 I{ri = j, li = 1}∑N
i=1 I{ri = j} for j = 0, 1, 2, . . . , M − 1 (11a)

Dj =
∑N

i=1 I{ri = j, li = 0}∑N
i=1 I{ri = j} for j = 0, 1, 2, . . . , M − 1 (11b)

where I(•) is the indicator function. It equals to one when its
argument is true, and vice versa. M is the degree of cache
association. After applying the input feature rearrangement
strategy, we get dead/live block ratio for each RUB = j and
the input vectors are L and D. Because the prediction is car-
ried out online, we use local input vectors (D(e) and L(e)) as
the training inputs. A decay rule is adopted to update (D(e)

and L(e)). After getting a new sample of the input vector
tuple (D(s), L(s)), the estimation of local input tuple is updated
according to the following rule:

L(e)
new =

1

2
L(e)

old +
1

2
L(s) (12a)

D(e)
new =

1

2
D(e)

old +
1

2
D(s) (12b)

where L(e)
old and D(e)

old are estimated values based on previous
s− 1 samples. (L(e)

new, D(e)
new) is the new estimated tuple when

the sth sample is finished. Equation (12) gives a higher weight
to the latest sample because it is closer to the real distribution.
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Fig. 7. Diagram of dead/live ratios and the optimal decision threshold θopt.

2) Hypotheses Function Type: In the perceptron learning,
a threshold function denotes the output from the perceptron
for input features, which is expressed as follows:

hθ (x) =
{

1 if x ≤ θ

0 if x > θ.
(13)

Function (13) predicts by comparing ri with θ . The training
target is to estimate the parameter θ in terms of input vectors
x = L(e) and D(e), where x = L(e) and D(e) are estimated input
vectors.

3) Training Method: We present a quantitative analysis on
selecting threshold parameter θ to minimize miss-predictions.
For a M-way associated cache with N blocks, the number of
dead/live blocks Nd and Nl classified by hθ (x) can be expressed
as follows:

Nl =
[θ]∑
j=0

L(e)
j

N

M
, Nd =

M−1∑
j=[θ]+1

D(e)
j

N

M
(14)

where y = [x] is the rounding function.
The principle of above equations is shown in Fig. 7. The

red chain line and the blue dashed line represent the ratio of
dead/live blocks versus the RUB number j. The threshold func-
tion hθ (ri) is shown as the solid line. Given a death threshold
θ and a cache block with ri = j, the block is classified into
live block if j < θ , because hθ (ri) = 1. Else it is classified
into dead blocks if j > θ . The shadow area under the curve
represents the total number of miss-predictions Nm, denoted
as the cost function J(θ)

J(θ) =
⎛
⎝ [θ]∑

j=0

D(e)
j +

M−1∑
j=[θ]+1

L(e)
j

⎞
⎠ N

M
. (15)

We choose θ to minimize J(θ) as follows:

θopt = argmin
θ

J(θ). (16)

Gradient descent or Newton’s method can be adopted for opti-
mization. However, these methods are ineffective because the
derivative of (15) is hard to calculate. Intuitively, the opti-
mal death threshold can be obtained at the intersected point
in Fig. 7, where θopt = {θ |D(e)

θ = L(e)
θ }. The equality is true

because the shadow area will increase if the death threshold
deviates from the optimal point. Considering that Lj+Dj = 1

Algorithm 1 SBDP Algorithm
Input:

1: Cache blocks set B{b1, b2, . . . bN}, where each bi is
characterized by 3-tuple (vi, di, ri).

2: Sampling period Ts.
Output:

3: Prediction results set P = {dead(pre)
i |i ∈ [i, N]}.

4: for i=1 to N do
5: dead(pre)

i ← 0;
6: end for
7: Sampling an input tuple (L(s), D(s));
8: Initialize (L(e), D(e)) = (L(s), D(s));
9: Timer tsam starts timing;

10: if tsam ≥ Ts then
11: Sampling an input tuple (L(s), D(s));
12: Update (L(e), D(e)) by Equation (12);
13: θopt = θ |D(e)

θ = 0.5;
14: for i=1 to N do
15: Update dead(pre)

i and live(pre)
i by Equation (18);

16: end for
17: end if

is always satisfied for any j, the solution of (16) is shown as

θopt = θ |D(e)
θ = L(e)

θ = 0.5 (17)

where the optimal threshold value is achieved by searching
D(e)

θ = L(e)
θ for θ = j.

4) Final Prediction Results: After estimating the tuple of
(L(e), D(e)) and deriving the optimal threshold parameter θopt,
the predicted results for every cache block can be obtained.
Since dirty (invalid) blocks should (not) be always backed up,
we add dedicated logics to the hypothesis function. The final
prediction results are expressed as follows:

live(pre)
i = (

hθopt(ri) ∨ di
) ∧ vi (18a)

dead(pre)
i = ¬live(pre)

i = ¬vi ∨
(¬hθopt(ri) ∧ ¬di

)
for i = 1, 2, . . . , N. (18b)

Equation (18a) is based on the theory that dirty blocks or
blocks with ri < θopt must be backed up and invalid blocks
do not need backup. Equation (18b) means that invalid blocks
or clean blocks with ri > θopt are predicted to be dead.

D. SBDP Implementation

We further give the SBDP algorithm and its hardware imple-
mentation. Algorithm 1 outlines the main steps of SBDP.
When a task starts, SBDP is invoked. Lines 1–5 are the ini-
tialization process, where both the prediction results set P
(lines 1–3) and the estimated tuple (L(e), D(e)) (lines 4 and 5)
are reset. After that, the sampling timer starts the time. If the
sampling timer reaches Ts, a new sampling operation is exe-
cuted to update the estimated tuple (lines 8 and 9). Lines 11–13
calculate the optimal threshold θopt and make the predictions
for all cache lines.

To make SBDP efficiently track the optimal threshold θopt
without disturbing normal CPU process, we design a hardware
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Fig. 8. Circuit of the statistics-based predictor.

implementation of SBDP in Fig. 8. It takes a four-way associ-
ated 32 KB cache with 64B block size as an example (➊). The
address field consists of a 19-bit tag, a 7-bit index and a 6-bit
block offset (➋). ➌ and ➍ are the sampling modules to sample
(L(s), D(s)). If a sampling signal is detected, ➌ duplicates RUB
fields from the cache. The state bits are adopted to indicate
whether cache blocks are confirmed to be dead or live. First,
all state bits are reset to 0. A live block is detected if a cache
hit occurs and the state bit of the accessed block in ➌ is zero.
The RUB of the accessed cache block is selected by a cache
index in ➋ and MUX1 in ➍. The corresponding counter in
live block counter arrays is increased by 1. On a cache miss,
a dead block is detected if the state of the evicted block is
zero. The sampling module reads the RUB information of the
evicted cache block indexed by the cache index and MUX2.
The corresponding counter in the dead block counter arrays is
increased by 1. After recording a dead/live block, the state bit
is set to one. When all state bits are set to one, a sampling oper-
ation is finished. ➎ is the recording module to implement (12).
It consists of four one-bit right shifters for half-division and
two 8-bit accumulators for updating. Four comparators (➏)
are used to compare L(e) with D(e) and derive θopt accord-
ing to (17). Combinational logics in ➐ implement (18b) and
output the prediction results dead(pre) for each cache block.
Finally, results are written into the prediction table (➑).

The size of metadata (➌) is (log 2(M)+1)×N for a M-way
associated cache with N blocks. The SBDP consists of several
live block counters and the dead block registers. If the size of
each counter/register is R bit, the total size of SBDP is 4R×M.
Hence, the total structure overhead is N(log 2(M)+1)+4RM.
A prototype chip with SBDP modules is designed under 65 nm
CMOS/RRAM process [22]. The RTL implementation consists
of four 4 KB RRAM-based nvSRAM macros and 16 SBDP
modules inside. The SBDP accelerates the backup operation by
nearly 30% against the sequential backup strategy under peak
current constraint, while the prediction error rate is 1.24% on
average.

V. ADAPTIVE WRITE POLICY

Write-back is attractive in embedded applications since it
saves power and memory bandwidth by reducing the amount

Fig. 9. Comparison between the scheme with and without AWP switching.

of writes to the lower level memory. However, the total penalty
is associated with the backup failure and force discard penalty,
when dirty blocks exceed the maximal backup threshold.
Replacing write-back policy by write-through policy can avoid
this event, but nontrivial write-stall penalty Nstall is introduced.
Therefore, we propose an AWP scheme to achieve a proper
balance.

A. Theory Basis

A backup failure occurs when the number of dirty blocks
exceeds the upper bound. The event of a backup failure,
denoted as F, is defined as

F :
N∑

i=1

I(deadi = 1) > Bsup (19)

where Bsup is the maximum supported block number. It is
derived by (2) and (3)

Bsup = Ebudget − Elg

Eb
− Net. (20)

The philosophy of AWP is to limit the quantity of dirty blocks
by switching between the write-back policy and the write-
through policy dynamically. Fig. 9 illustrates the difference
between the behavior of a work scheme without AWP and an
improved scheme with AWP. The x-axis represents the time
and the left y-axis represents the accumulated effective cycles.
The supported backup blocks Bsup is drawn in the chain line.
The solid line shows the effective cycles and the number of
dirty blocks with the basic write-back policy. The dashed line
represents the effective cycles and the dirty blocks of AWP.
The area between the dirty block number and the supported
backup size Bsup forms a failure region. If a passive power
down occurs in a failure region, a backup failure is induced.
The system must roll back to the previous successful backup
point.

An intuitive policy to avoid backup failure is to switch from
the write-back policy to write-through when the number of
dirty blocks reaches Bsup. This time point is marked as the
decision time point in Fig. 9. However, it may lead to non-
trivial performance overhead since the write-back policy is



1668 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 10, OCTOBER 2017

proved to be more efficient than the write-through policy by
reducing total write stalls. We denote the extra stall cycles
caused by the write-through policy as Nstall(t). Therefore, esti-
mated total effective cycles under the write-back policy or the
write-through policy should be compared before switching the
writing policy.

B. Switching Strategy

We present the quantitative models and derive the optimal
adaptive switching policy. When the processor reaches the
decision point, the system determines whether switching to
the write through policy or not. If the system using the orig-
inal write-back policy, it will enter the failure region and has
a probability to fail. Otherwise, if the system switches to the
write-through policy, no more dirty blocks are generated but
extra write stall penalties are introduced. Thus, the decision
is made by comparing the overall performance profits by two
policies.

Because the exponential distribution followed by the power
on time Ti has the memoryless property, the distribution of the
remaining waiting time for the next power down is the same.
As a result, the probability that a backup failure will occur at
the decision point is shown as follows:

Pfail = P(F) = P(te < L) =
∫ L

0
f (t)dt = 1− e−λL (21)

where F denotes the event of a backup failure defined by (19)
and te is the power-off time point and L is the length of the
failure region in Fig. 9. Assume that the start time of a failure
region is the zero time point. The start time ts and the end
time te of the power supply is marked in Fig. 9. For the write-
back strategy, the roll-back cycles penalty Nroll is defined as
follows if a power-down occurs at time t:

Nroll(te) =
{

fclk(te + ts) if te < L

0 if te > L
(22)

where fclk is the clock frequency. Nstall(L) = 0 in the write-
back policy. The expectation of Ne(L) for a failure region is

E(Ne(L)) = E(Ns(L))− E(Nroll(L))

− E(Nrec(L))− E(Nforce(L))− E(Nmiss(L)).

(23)

Nroll(L) = 0 if a write-through policy is adopted. The
expectation of N′e(L) is expressed as follows:

E
(
N′e(L)

) = E(Ns(L))− E(Nrec(L))

− E
(
N′force(L)

)− E
(
N′miss(L)

)− E
(
N′stall(L)

)
.

(24)

The difference between E(Ne(L)) and E(N′e(L)) is

E(Ne(L))− E
(
N′e(L)

)
= E

(
N′force(L)

)+ E
(
N′miss(L)

)+ E
(
N′stall(L)

)
− E(Nforce(L))− E(Nmiss(L))− E(Nroll(L)). (25)

Nforce and Nmiss are induced only if no backup failure happens,
while N′force and N′miss always exist because the write-through
policy can avoid the backup failures. If a backup failure hap-
pens, the system has to roll back to the last power-on time
point (−ts). Therefore, the items in (25) are calculated as
follows:

E(Nforce(L)) =
∫ inf

L
Nforce(L)f (te)dte = Nforce(L)e−λL (26a)

E(Nmiss(L)) =
∫ inf

L
Nmiss(L)f (te)dte = Nmiss(L)e−λL (26b)

E
(
N′force(L)

) = Nforce(L) E
(
N′miss(L)

) = Nmiss(L) (26c)

E
(
N′stall(L)

) = Nstall(L) (26d)

E(Nroll(L)) =
∫ L

0
fclk(te + ts)f (te)dte

= fclk

λ
− fclke−λL(λL+ 1)

λ
− fclkts

(
e−λL − 1

)
.

(26e)

Equation (25) can be rewritten as follows:

E(Ne(L))− E
(
N′e(L)

)
= (

1− e−λL)
(Nmiss(L)+ Nforce(L)− fclkts)

+ Nstall(L)− fclk

λ
+ fclke−λL(λL+ 1)

λ
. (27)

If (27) <0, the system needs to be switched to the write-
through policy at the decision point. Otherwise, the write-back
policy is kept. Typically, Nmiss(L) and Nforce(L) are small
enough to be ignored compared with other factors in (27).
If the extra write stall number increases linearly with time t,
Nstall(L) can be further expressed as Nstall(L) = nsLfclk where
ns is the average extra number of write stalls. Therefore,
E(Ne(L)) − E(N′e(L)) < 0 is equivalent to the following
inequation:

nsL−
(
1− e−λL)

ts − 1

λ
+ e−λL(λL+ 1)

λ
< 0. (28)

We can define TH as

TH = nsL−
(
1− e−λL)

ts − 1

λ
+ e−λL(λL+ 1)

λ
. (29)

The write policy switching occurs only if TH < 0. The mathe-
matical expression is in accordance with the intuitive analysis
in the following aspects. First, TH < 0 is less likely to be satis-
fied with the increasing of ns. It means that the system should
stay in the write-back policy, if the runtime performance over-
head caused by write-through dominates more. Second, TH
has a negative correlation with ts. It is because that if the
last backup time point is far away from the current time
point, the rollback penalty will increase and thereby the pol-
icy transition will occur more easily. Third, there is not a
monotonic relationship between TH and L. It is because the
probability of a power failure increases with the increasing
of L. But the number of extra write stalls induced by write-
through policy also increases. Therefore, both write-back and
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Fig. 10. Hardware implementation of the AWP.

TABLE II
SIMULATION SETUP

write-through policies have their superiority and are likely to
be adopted.

C. AWP Implementation

The organization of the multilevel cache consisting of a
write buffer and a policy switching module is shown in
Fig. 10. To implement the AWP algorithm, the system mon-
itors the total amount of dirty blocks by the dirty block
counter (➊). A backup warning signal is triggered each time
when the number of dirty blocks exceeds the threshold Bsup.
The CPU interrupt is triggered and TH is calculated by CPU
according to (29), where ts is provided by a timer (➋). λ is
obtained through some energy prediction techniques such as
the EWMA algorithm [34]. L and ns are estimated by refer-
ring to the program history. If TH < 0, the CPU sends a
signal to trigger the policy switching. Therefore, only a dirty
block counter and a timer are needed, which causes trivial
hardware overhead.

VI. EXPERIMENTAL RESULTS

In this section, we provide comprehensive evaluations to
demonstrate the efficiency of the proposed backup flow. We
first give the experiment setup. Furthermore, we compare the
SBDP with other state-of-the-art techniques and analyze the
peak current influence. Finally, we show the tradeoff between
backup capacitor and performance gain.

A. Experiment Setup

We implement the NVP with nvSRAM in gem5 [19]
to model a typical computation system on a sensor board.

Fig. 11. Prediction accuracy of SBDP compared with fixed threshold θ

predictors. The solid line shows the variation of death threshold (θ ) of SBDP
for different benchmarks.

The simulator is configured to model a fabricated NVP
chip [35]. The parameters of nvSRAM is derived from the
previous work [14] and listed in Table II. All benchmarks
come from Mibench [18]. We fast forward 10M instructions at
the beginning to warm up caches and execute 60M instructions
of a single benchmark.

B. SBDP Evaluation

SBDP is to properly change the threshold parameter θ of the
hypotheses function dynamically. Fig. 11 shows the prediction
accuracy of SBDP compared with the fixed threshold policies
(θ = 2 and θ = 3). As shown by the solid line, the threshold
(θ ) of SBDP varies from 0 to 3 under different benchmarks. It
validates that the proposed architecture can dynamically track
and update RUB. Compared with the fixed threshold policy,
the proposed adaptive threshold policy outperforms or equals
to the fixed threshold policy. The average accuracy of SBDP
is up to 92% while those in fixed threshold policies are 83.6%
(θ = 2) and 83.7% (θ = 3).

Table III compares prediction accuracy, hardware and
performance overhead induced by the proposed strategy
with several state-of-the-art dead-block prediction methods
[Reftrace [30] and cache burst [33] and adaptive write-
back policy (AWS)]. Some interesting results are observed.
Although the prediction accuracy of SBDP is not the highest,
it outperforms all other strategies with more accurate predic-
tions by introducing the smallest 17.2% performance overhead.
This is because other complicated dead block prediction tech-
niques introduce more backup energy overhead due to large
storage overhead. They cause large performance penalties from
force discard and backup failures, which dominate the overall
performance penalties.

Moreover, SBDP+AWP can provide better performance
than SBDP only approach. With the help of AWP, the backup
failure penalty decreases from 38.5% to 0% at the expense
of a few extra write-stall penalties. The total performance
penalty is reduced to 17.2%. Compared with SBDP+AWS
strategy [36], SBDP+AWP strategy can further reduce the
performance penalty by 16.1% due to the elimination of
backup failures.



1670 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 10, OCTOBER 2017

TABLE III
COMPARISON OF ACCURACY, STORAGE OVERHEAD, AND PERFORMANCE OVERHEAD FOR DIFFERENT DEAD BLOCK PREDICTIONS

C. Performance Comparison With Full Backup Strategy

To give an intuitive analysis of the system performance,
a power pulse set with uniform distribution is adopted. We
use the average power length Ta, duty cycle of the power
pulses D, the average performance penalties Na

p and average
extra cycles Na

x during one power pulse to estimate the system
performance. According to (6) and (7), the number of power
pulses for a task is [SF/(TaF + Na

x − Na
p)], where S is the

initial task execution time and F is the system frequency. The
actual execution time is listed as

T = TaSF

D
(

TaF + Na
x − Na

p

) (30)

T ∝ 1

TaF + Na
x − Na

p
. (31)

We define the performance net income G = Na
x −Na

p to denote
the gap between extra execution cycles and penalty cycles.
And (31) is rewritten as T ∝ [1/(TaF + G)]. G is a major
factor influencing the performance. The baseline is the full
backup strategy. Fig. 12(a) shows the percent of performance
improvement of SBDP to baseline, where the y-axis is the
percent of execution time reduction. Fig. 12(b) compares G
between SBDP and baseline.

According to Fig. 12(a), we notice that the performance
of SBDP is always superior to that of baseline. Furthermore,
the performance net income G of SBDP is always larger than
baseline in Fig. 12(b). The performance improvement rate fluc-
tuates under different capacitor sizes. The full backup point
marked in Fig. 12(a), denoted as Cfull, indicates the capacitor
size, which can exactly support the backup of all cache blocks.
It is interesting to observe that the performance improvement
is not monotonic when the capacitor volume varies. When
C = 25 nF increases to Cfull = 33.7 nF, the improvement
decreases because SBDP can discard dead blocks efficiently.
When C = 40 nF increases to C = 50 nF, the performance
improvement decreases. It is because the two-order deriva-
tive of T to G is less than zero, when C increases and
G(partial)− G(full) remains constant. Counter-intuitively, we
can observe that improvement increases from C = 33.7 nF to
C = 40 nF. It is because G(partial) − G(full) increases dra-
matically from Cfull to C = 40 nF, and there exists some extra
write stall cycles at the point of Cfull, which is removed at
the points larger than Cfull. Moreover, the backup energy of
SBDP is reduced by 38.1% compared to baseline at Cfull.

Fig. 12. Performance comparison between the proposed partial backup strat-
egy and the full backup strategy. The performance income factor G refers to
the gap the extra execution cycles and the penalty cycles. (a) Performance
improvement rate to the baseline. (b) Performance income G compared to the
baseline.

D. Peak Current Analysis

In this section, we provide the analysis of the peak cur-
rent comparison between SBDP and the full backup strategy.
If the peak current constraint is added to the backup process,
distributed backup proposed in [22] should be used to miti-
gate the inrush current hence the recovery time is prolonged.
Fig. 13 shows the backup time comparison between SBDP
and the full backup method under peak current constraint. We
notice that the performance improvement rate becomes larger
with the decreasing of the peak current constraint, because the
recovery energy and time of SBDP is shorter. Therefore, SBDP
is less sensitive to the peak current constraint and performs
better in peak current limited designs. The backup current can
be further reduced by combining SBDP with other orthogo-
nal backup techniques under peak current constraint, such as
compression before backup, progressive charging, sequential
backup, and so on.
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Fig. 13. Performance improvement rate with different peak current constraint.

Fig. 14. Performance gain versus capacitor size.

E. Capacitor Selection for Different Benchmarks

The capacitor size Cbulk has great impacts on the execu-
tion time of all benchmarks. Fig. 14 shows the performance
gain versus backup capacitor volumes for different bench-
marks. The performance gain denotes the time reduction rate
of SBDP to the execution time without power interruptions.
Fig. 14 indicates that the performance gain increases as the
backup capacitor volume increases. To select a proper capaci-
tor size to finish all data backup in a task, different benchmarks
have different capacitor requirements. If the performance over-
head budget is set to 10%, a 20 nF capacitor is sufficient for
basicmath_large but a 27 nF Cbulk should be used for FFT_i.
Note that the performance gain of gsm_toast drops dramati-
cally with the decreasing of capacitor volume, because backup
failures happen if Cbulk is too small. On average, the capacitor
size is reduced by 40%. Moreover, if a performance oriented
selection strategy is used, a large off-chip capacitor should be
adopted. However, a very large Cbulk is not needed in most
cases, because the performance gain tends to be steady after
a certain threshold. It is limited by the power-off interval and
the capacitor charging time. The overall performance can be
improved by 4.6% by choosing a proper capacitor.

VII. CONCLUSION

This paper proposes an energy efficient, low inrush current
partial backup scheme for nvSRAM-based caches in non-
volatile sensor systems. We reduce the backup burdens through

a partial backup strategy along with an AWP scheme. A
statistics-based dead-block predictor is proposed to identify
dead blocks accurately with low power consumption. An AWP
scheme is employed to further reduce the overall performance
overhead caused by energy limitation. Experimental results
show that our approach can reduce the backup capacitance by
40% compared to the conventional full backup strategy and the
inrush current by 54% on average in the area oriented design
while improve the performance by 4.6% in the performance
oriented design. In the future, the proposed backup scheme
will be integrated into nvSRAM to meet the increasing demand
of low power applications, such as mobile phones, PCs, and
servers. The energy efficiency can be further improved with
the near- or sub-threshold design techniques.
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