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Abstract—In recent years, Convolutional Neural Networks
(CNNs) have become widely adopted for computer vision
tasks. FPGAs have been adequately explored as a promising
hardware accelerator for CNNs due to its high performance,
energy efficiency, and reconfigurability. However, prior FPGA
solutions based on the conventional convolutional algorithm
is often bounded by the computational capability of FPGAs
(e.g., the number of DSPs). In this paper, we demonstrate
that fast Winograd algorithm can dramatically reduce the
arithmetic complexity, and improve the performance of CNNs
on FPGAs. We first propose a novel architecture for imple-
menting Winograd algorithm on FPGAs. Our design employs
line buffer structure to effectively reuse the feature map data
among different tiles. We also effectively pipeline the Winograd
PE engine and initiate multiple PEs through parallelization.
Meanwhile, there exists a complex design space to explore. We
propose an analytical model to predict the resource usage and
reason about the performance. Then, we use the model to guide
a fast design space exploration. Experiments using the state-
of-the-art CNNs demonstrate the best performance and energy
efficiency on FPGAs. We achieve an average 1006.4 GOP/s
for the convolutional layers and 854.6 GOP/s for the overall
AlexNet and an average 3044.7 GOP/s for the convolutional
layers and 2940.7 GOP/s for the overall VGG16 on Xilinx
ZCU102 platform.

I. INTRODUNCTION

Deep convolutional neural networks (CNNs) have

achieved remarkable performance for various computer vi-

sion tasks including image classification, object detection,

and semantic segmentation [1, 2]. The significant accuracy

improvement of CNNs comes at the cost of huge computa-

tional complexity as it requires a comprehensive assessment

of all the regions across the feature maps [3, 4]. Towards

such overwhelming computation pressure, hardware acceler-

ators such as GPUs, FPGAs, and ASICs have been employed

to accelerate CNNs [5–17]. Among the accelerators, FPGAs

have emerged as a promising solution due to its high

performance, energy efficiency, and reprogramability. More

importantly, High Level Synthesis (HLS) using C or C++

has greatly lowered the programming hurdle of FPGAs and

improve the productivity [18–20].

∗Work done while the author interned at Sensetime.
†Corresponding Author.

A CNN typically involves multiple layers, where the

output feature maps of one layer are the input feature maps

of the following layer. Prior studies have shown that the

computation of the state-of-the-art CNNs are dominated

by the convolutional layers [6, 7]. Using the conventional

convolution algorithm, each element in the output feature

map is computed individually by using multiple multiply-

accumulate operations. While the prior FPGA solutions of

CNNs using this algorithm have demonstrated preliminary

success [5–9, 11], greater efficiency is possible when the

algorithm itself can be more efficient. In this paper, we

show how convolution using Winograd algorithm [21] can

dramatically reduce the arithmetic complexity, and improve

the performance of CNNs on FPGAs. Using Winograd

algorithm, a tile of elements in the output feature map are

generated together by exploiting the structural similarity

among them. This helps to cut down the arithmetic com-

plexity by reducing the required number of multiplications.

It has been demonstrated that fast Winograd algorithm can

be used to derive efficient algorithms for CNNs with small

filters [16].

More importantly, the current trend of CNNs is towards

deeper topologies with small filters. For example, all con-

volutional layers of Alexnet employ 3× 3 and 5× 5 filters

except the first layer [3]; VGG16 only uses 3×3 filters [22].

This opens up the opportunities of using Winograd algorithm

for efficient implementation of CNNs. However, although

using Winograd algorithm on FPGAs is appealing, several

problems remain. First, it is crucial that the design can not

only minimize the memory bandwidth requirement but also

match the memory throughput with the computation engines.

Second, there exists a large design space when mapping

the Winograd algorithm onto FPGAs. It is very difficult

to reason about which designs will improve or harm the

performance.
In this paper, we design a line-buffer structure to cache the

feature maps for Winograd algorithm. This allows different

tiles to reuse the data when the convolution operations

progress. The computation of Winograd algorithm involves

a mixed matrix transformation of general purpose matrix

multiplication (GEMM) and element-wise multiplication

(EWMM). Then, we design an efficient Winograd PE and
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Figure 1: Comparison of conventional and Winograd convolution algorithms. We assume the stride S is 1 for Winograd algorithm .

initiate multiple PEs through parallelization. Finally, we

develop analytical models to estimate the resource usage

and predict the performance. We use the models to explore

the design space and identify the optimal design parameters.

This paper makes the following contributions.

• We propose an architecture for efficient implementa-

tion of CNNs using Winograd algorithm on FPGAs.

The architecture employs line-buffer structure, general

purpose and element-wise matrix multiplication for

Winograd PE, and PE parallelization.

• We develop analytical resource and performance mod-

els and use the models to explore the design space to

identify the optimal parameters.

• We perform rigorous validation of our techniques us-

ing the state-of-the-art CNNs including AlexNet and

VGG16.

Experiments using the state-of-the-art CNNs demonstrate

the best performance and energy efficiency of CNNs on

FPGAs. We achieve an average 1006.4 GOP/s for the con-

volutional layers and 854.6 GOP/s for the overall AlexNet

and an average 3044.7 GOP/s for the convolutional layers

and 2940.7 GOP/s for the overall VGG16 on Xilinx ZCU102

platform. This comes to 36.2 GOP/s/W energy efficiency for

AlexNet and 124.6 GOP/s/W energy efficiency for VGG16.

II. BACKGROUND

A. CNN Basics

In general, CNNs is composed of a series of layers and

each layer in turn is composed of input feature maps, filters

and output feature maps. Among these layers, convolu-

tional layers account for the major computation. CNNs are

trained off-line and FPGAs are mainly used for accelerating

the inference phase [5, 7, 8, 23]. Figure 1(a) presents a

typical convolutional layer and its implementation using

conventional algorithm. With the conventional convolution

algorithm, each element in the output feature map is com-

puted individually by multiplying and accumulating the

corresponding input feature data with filters.

B. Winograd Algorithm
The trends of CNNs are moving towards deeper topolo-

gies with small filters. The conventional convolution algo-

rithm is general, but less efficient. As an alternative, convo-

lution can be implemented more efficiently using Winograd

minimal filtering algorithm [21].
Let us denote the result of computing m outputs with

the r-tap FIR filter as F (m, r). Conventional algorithm

for F (2, 3) requires 2 × 3 = 6 multiplications. Winograd

algorithm computes F (2, 3) in the following way:

In = [z0 z1 z2 z3]
T
F = [x0 x1 x2]

T
Out = [y0 y1]

T

[
z0 z1 z2
z1 z2 z3

]⎡
⎣x0

x1

x2

⎤
⎦ =

[
m1 +m2 +m3

m2 −m3 +m4

]
=

[
y0
y1

]
(1)

m1,m2,m3,m4 are:

m1 = (z0 − z2)x0 m2 = (z1 + z2)
x0 + x1 + x2

2

m4 = (z1 − z3)x2 m3 = (z2 − z1)
x0 − x1 + x2

2

(2)

Only 4 multiplications are necessary for computing m1−
m4. The one-dimensional convolution using Winograd algo-

rithm can be formulated using the transformation matrices

A, B and G as follows,

Out = AT[(GF )� (BTIn)] (3)

BT =

⎡
⎢⎣
1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

⎤
⎥⎦G =

⎡
⎢⎣
1 0 0
1
2

1
2

1
2

1
2
− 1

2
1
2

0 0 1

⎤
⎥⎦AT =

[
1 1 1 0
0 1 −1 −1

]

where � is element-wise multiplication (EWMM). In this

paper, we use two-dimensional Winograd algorithm F (m×
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m, r×r), where the output tile size is m×m, the filter size

is r × r and the input tile size is n × n (n = m + r − 1).

The output tile can be derived as follows,

Out = AT [U � V ]A

U = GFGT V = BTInB
(4)

By defining the transformation matrices A, B, and G,

we can formulate the 2-D Winograd algorithm as a mixed

general purpose and element-wise matrix multiplication as

shown in Figure 1(b). The transformation matrices are

generated offline once the n and r are determined. In our

implementation, the multiplication with the constants in the

transformation matrices are converted to shift operations

(like × 1
2 ), which is more efficient and uses only LUT and

Flip Flops on FPGAs.

As shown in Figure 1(b), each time Winograd algorithm is

called, it generates a tile of size m×m together. The number

of multiplications is determined by � in Equation 4. To

compute the m×m tile in the output feature map, Wingograd

algorithm requires n2 multiplications while the conventional

algorithm requires m2r2 multiplications. For example, for a

4× 4 output tile generated by convolving a 6× 6 input tile

with a 3×3 filter, conventional convolution needs 42×32 =
144 multiplications, while Winograd algorithm only needs

6 × 6 = 36 multiplications. However, Winograd algorithm

requires more additions than conventional algorithm as it

needs to add the intermediate results together.

III. ARCHITECTURE DESIGN

In this paper, we propose a FPGA accelerator design

for CNNs based on two-dimensional Winograd algorithm.

Defying conventional convolution algorithm where each

element in the output feature map is computed individually,

Winograd algorithm can generate a tile of output feature

maps together by exploiting the structural similarity among

the elements in the same tile of the input feature map. More

clearly, given a size n×n input tile and r×r filter, we employ

Winograd algorithm to generate a size m×m (n = m+r−1)

output feature map. To derive the next m×m tile of output

feature map, we just need to slide the input tile by m and

perform the same Winograd computation as shown in the

Figure 1 (b).

Several challenges arise when designing and implement-

ing the Winograd algorithm based CNN accelerator on

FPGAs. First, the convolution layers have high memory

bandwidth demand. We observe that the neighboring tiles

share input feature map data both horizontally and vertically.

We leverage on this observation to design line buffers to

maximize the data reuse (Section III-B). Second, different

from the conventional convolution algorithm, Winograd al-

gorithm generates a tile of output feature maps at a time.

This requires all the elements in the input tiles and filters

are ready at the same time before the Winograd transfor-

mation starts. We design an efficient PE engine for the

Figure 2: Architecture overview

Winograd algorithm (Section III-C) and instantiate multiple

PEs through parallelization (Section III-D). Third, different

implementation parameters (tile size, parallelization degree)

form a large design space with multiple dimension resource

and bandwidth constraints. We propose an analytical model

for performance prediction and leverage it to explore the

space efficiently (Section III-E).

A. Architecture Overview

Figure 2 presents the architecture overview of convolu-

tional layer based on Winograd algorithm on FPGAs. We

identify data reuse opportunities in the feature maps of

neighboring tiles. To this end, we naturally implement line

buffers. There are multiple channels of input feature maps

(M ) as shown in Figure 1. Each line of the line buffers

stores the same rows across all the channels. Winograd PEs

fetch data from line buffers. Concretely, given an n×n input

tile, a Winograd PE will generate an m×m output tile. We

initiate an array of PEs by parallelizing the processing of the

multiple channels. Finally, we use double buffers to overlap

the data transfer and computation. All the input data (e.g.

input feature maps, filters) are stored in the external memory

initially. The input and output feature maps are transferred to

FPGAs via a FIFO. However, the size of the filters increases

significantly as the network goes deeper. It is unpractical to

load all the filters to on-chip memory. In our design, we

split the input and output channels into several groups. Each

group only contains a portion of filters. We load the filters

group by group when they are needed. In the following, we

assume there is only one group for easy illustration.

B. Line Buffer Design

There exist data reuse opportunities both horizontally and

vertically. Clearly, two neighboring tiles share (r − 1) × n
elements for each input feature map as shown in Figure

1(b). To exploit the data reuse opportunities, we store a few

lines in the on-chip memory. Each input line buffer contains

M×W elements, where M is the number of input channels

and W is the width of the input feature maps as shown in

Figure 2. Each output line buffer contains N ×C elements,

where N is the number of output channels and C is the

width of the output feature maps as shown in Figure 1 (b).

However, different layers may have different feature map
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Figure 3: Winograd PE design

width and channels. In practice, We set W as the maximal

width of all the feature maps.

To reuse the data, we store n+m input lines in on-chip

memory in total and rotate the lines as a circular buffer. More

clearly, initially, Winograd engines will read the first n lines

from the line buffer directly, meanwhile the next m lines

of the line buffer will load data from external memory. The

computation of the n lines and the transfer of m lines are

done in parallel by employing the double buffer design. Note

that the stride between two neighboring tiles in Winograd

algorithm is m. Therefore, Winograd PE engines will skip

the next m lines and process the following n lines from the

line buffer and the skipped m lines will be overwritten by

the new load data from the external memory. During this

process, if it reaches the bottom of the line buffer, it will

rotate to the beginning of the line buffer.

C. Winograd PE Design

Figure 3 gives the dataflow of our Winograd PEs. We

divide the Winograd algorithm in Figure 1 (b) into 4 stages

so that different tiles can be effectively overlapped through

pipelining. The transformation matrices (A, B, G) are com-

puted offline once the Winograd tile size is determined. In

stage 1, the input tiles and filters are transformed. Note that

the filter transformation can be done offline. The reason we

choose to transform it online is to save the on-chip BRAM

resources. Moreover, this will not cause extra delay as the

transformation of input and filter can be done in parallel as

they are independent. In stage 2, we use an array of DSPs

to perform the EWMM computation. In stage 3, we perform

additional transformation. Finally, in stage 4, we accumulate

the output tiles from different input channels.

The Winograd algorithm in Figure 1 (b) is implemented

using local buffer to store the transformation matrices. In our

implementation, we completely partition the transformation

and intermediate matrices to registers. This helps to improve

the memory bandwidth as it alleviates the memory bank

conflicts. Note that when we multiply the constants in the

transformation matrix with the input and filters, we do not

use the DSPs. Instead, we implement the multiplication with

constants using shift operations, which are implemented as

Look Up Table (LUT) arrays on FPGAs.

D. PE Parallelization

To initiate an array of PEs, we can parallelize the row and

column of the input feature maps, and the input and output

channels. This corresponds to parallelizing/unrolling the four

loops (row, col, ti, to) surrounding the Winograd engine in

Figure 1 (b). We choose not to parallelize the row_loop as it

will significantly increases the size of line buffers. Different

parallelization strategies of the other three loops can lead

to different data sharing and throughput [7]. Similar to [7],

we choose to parallelize the ti_loop and to_loop loops as

the parallelization of col_loop can lead to serious memory

bank conflicts. We define the unroll factors of ti_loop and

to_loop are Pm and Pn, respectively. Therefore, there are a

total of Pm × Pn Winograd PEs in parallel. We implement

the parallelization through loop unrolling.

Together with loop unrolling, we also partition the in-

put, output and filter buffers to sustain efficient memory

bandwidth. Clearly, we implement 4 dimension filters which

include dimension row, column, input and output channels.

We partition each dimension. We implement 2 dimension

input and output buffers and partition each dimension. Table

I gives the partition factors for various buffers.

Table I: Memory partition factors.

buffers Column Row Input channels Out channels

filter r r Pm Pn

input n - Pm -

output m - - Pn

E. Design Space Exploration

Our Winograd implementation involves a few design

parameters, input tile size (n), and parallelization degree

(Pm and Pn). Given an input tile size n, since the filter size

is fixed for a neural network layer (e.g., 3 × 3, 5 × 5), the

output tile size m can be determined (m = n−r+1). These

design parameters affect both the performance and accuracy.

Here, we develop an analytical model that can predict the

performance of Winograd algorithm on FPGAs. Then, we

rely on it to explore the design space.

As mentioned in Section II-B, the multiplication saving

increases as the input tile size n increases. However, the

range of the constants in the transformation matrices will

increase as n increases, which may cause precision loss.

In this work, we use fixed-point 16 bits to represent both

data and filter. We set the precision to 2−10 for filters to

maintain a high accuracy as prior work [23]. Under this

precision constraint, we set the maximum value for n to 8

as beyond this we can not precisely represent the constants

in the transformation matrix.

In the following, we model the resource consumption

and predict the performance for different input tile size n
and parallelization degree Pm and Pn. As mentioned in

Section II-B, only the EWMM operation will consume DSP.

Therefore, the number of DSPs only depends on the size of

input tile and parallelization degree.

DSP = n2 × Pn × Pm (5)
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LUT is difficult to predict. Here, we approximate its

consumption using linear regression models,

LUT = αr
n × Pm × Pn (6)

where αr
n is the LUT consumption of a single Winograd PE

with the input tile size n and filter size r. αr
n is pre-trained

on different platforms.
The number of BRAM banks is computed by adding

the banks for filter, input and output buffers based on the
memory partition factors in Table I.

Banks = r2 × Pm × Pn

+ (n+m)× n× Pm

+ 2×m2 × Pn

(7)

We also model the memory bandwidth between the on-

chip and off-chip memory. To efficiently utilize the resource,

the data transfer speed must be greater than or equal to the

computation speed. The time to process n rows of input data

in the line buffer is,

Tcompute = (�W
m

�×� M

Pm
�×� N

Pn
�×II+Pdepth)× 1

Freq
(8)

where Freq is the operating frequency of the FPGAs.

II denotes the iteration interval of the pipeline. In our

implementation, loops in Figure 1 (b) are perfectly pipelined,

so the II = 1. Pdepth is the pipeline depth, which can be

ignored when the loop trip count is large enough.

The computation is in parallel with the transfer of m rows

of input and output data.

Ttransfer =
m×W ×max(N,M)× 16

Bandwidth
(9)

We require that Ttransfer � Tcompute. Therefore, we can

get the bandwidth requirement as,

Bandwidth � m2 × � Pm × Pn

min(N,M)
� × 16× freq (10)

We define the Tinit as the time to load the first n rows

of the input image into on-chip memory and filters,

Tinit =
M ×N × r × r + n×W ×M

Bandwidth/16
(11)

The total operations and processing time of the convolu-

tion are,

OPs = H ×W ×M ×N × r2 × 2 (12)

Ttotal = �H
m

� × Tcompute + Tinit (13)

We define the effective performance of convolution based

on Winograd algorithm as,

Perfeff =
OPs

Ttotal
(14)

Now, given a convolutional layer represented by

Figure 4: FC layer implementation

Figure 5: Automatic tool flow

{H,W,M,R,C,N, r}, our goal is to find the optimal so-

lution {n, Pm, Pn} to maximize the performance (Equa-

tion 14) with resources and bandwidth constraints. To solve

this problem, we rely on our performance models to explore

the design space and identify the optimal solution.

F. Implementation of Other Layers

In addition to convolution layers, there are also other lay-

ers in CNNs such as Fully Connected (FC) layers, Pooling

and Rectified Linear Unit (ReLU) layers. Here, we describe

how to implement these layers.

FC layers connect all the neurons in the previous layer

to every single neuron in the weight matrix as shown in

Figure 4(a). The computation is a matrix-vector product.

The operations in FC layers can be treated as EWMM by

filling the input neurons and its corresponding weights into

a matrix. To reuse the Winograd PE, FC layers only need

to bypass the transformation stages (stage 1, 3 in Figure

3). The weights in FC layers are significantly larger than

the input neurons. Therefore, similar to [8], we load the

entire input neurons of FC layer into on-chip memory but

stream the weights using FIFO interface. In addition, the

FC computation contains no data reuse opportunities. To

improve the memory bandwidth, an effective approach is

to increase the batch size Nbatch (the number of input

images). Specifically, we assemble a batch of images from

the previous layer, these images are processed together.

Max Pooling layers are widely used in CNNs, which

output the maximum values in subregions of input feature

maps. ReLU layers sets any input value less than zero to

zero. ReLU and Pooling are implemented by introducing

comparison operators to the output buffers.
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Figure 6: Resource utilization and performance results for 3× 3 filter

Figure 7: Resource utilization and performance results for 5× 5 filter

IV. AUTOMATIC TOOL FLOW

We design an automatic tool flow to automate the mapping

of CNNs onto FPGAs as shown in Figure 5. The flow

consists of four steps. In step 1, CNN architecture and

FPGA configuration are fed into the design space exploration

engine (DSEE). Clearly, we use Caffe prototxt to describe

the structure of CNNs [24]. The FPGA configuration pa-

rameters include the memory bandwidth, number of DSPs,

logic cells and on-chip memory capacity. Then, the output

of DSEE is the optimal solution {n, Tm, Tn} as described

in Section III-E. In step 2, based on the optimal solution,

we develop a Code Generate Engine (CGE) which can

generate the Winograd convolution functions automatically.

The functions describe the whole accelerator architecture

including line buffers, buffer management, and Winograd

PEs. The generated implementation is HLS compatible C

code. Pragmas such as memory partition factors, loop unroll

factors Tn Tm and FIFO interfaces are inserted into the

functions. In step 3, we use Xilinx HLS tool to synthe-

size the code into register transfer level. Finally, we use

Xilinx SDSoC (software-defined system-on-chip) tool-chain

to generate the bitstream.

V. EXPERIMENT EVALUATION

A. Experiments Setup

We evaluate our techniques on two FPGA platforms:

Xilinx ZC706 and ZCU102. Xilinx ZC706 platform consists

of a Kintex-7 FPGA and dual ARM Cortex-A9 proces-

sors. The external memory is 1 GB DDR3. Our FPGA

implementation is operated at 166MHz frequency on this

platform. Xilinx ZCU102 consists of an UltraScale FPGA,

quad ARM Cortex-A53 processors, 500 MB DDR3. Our

FPGA implementations is operated at 200MHz frequency on

this platform. To measure the runtime power, we plugged a

power meter in the FPGA platform.

In the following, we first present the model and resource

analysis results for a typical convolution layer (Section V-B).

Then, we perform case studies using the state-of-the-art

CNNs including AlexNet and VGG16 (Section V-C). It

should be noted that the performance we report in the

following is the effective performance. It is computed by

dividing the total operations by the total processing time

(Equation 14). For conventional algorithm, the effective

performance is always bounded by MaxF , the maximum

computational capability of the FPGA platform. MaxF =
DSP × Freq × 2, where 2 means multiply and add op-

erations. However, for Winograd algorithm, the effective

performance can exceed the MaxF as Winograd algorithm

can increase the effective DSP efficiency by reducing the

number of multiplications required by convolution.

B. Model and Resource Analysis

In this subsection, we evaluate our analytical models and

analyze the resource usage of Winograd algorithm using a

single convolutional layer. We use a typical input feature

map size: 224(H)×224(W ) and try two different filter sizes:

3× 3 and 5× 5. Figure 6 and Figure 7 compare the predict

and actual performance for different input tile size and

parallelization degree, and give the corresponding resource

utilization. The experiments are performed on Xilinx ZC706.

We can see that our performance prediction is very accurate.

On average, the prediction error is 15.4% and 13.7% for

filters 3 × 3 and 5 × 5, respectively. The sources of the

inaccuracy may come from the discrepancy of actual and

peak bandwidth and DDR access latency.

Thanks to the Winograd algorithm, DSP is no longer

the limiting resource for most cases as shown by Figure 6

and 7. Instead, BRAMs and memory bandwidth can be the

limiting resources. The BRAMs consumption comes from

a few aspects. First, unlike the conventional convolution,

Winograd convolution requires more buffers because of

the line buffer structure. Second, paralleling Winograd PEs

requires memory partition to sustain the on-chip memory

bandwidth. Finally, when the computation efficiency im-

proves, the off-chip bandwidth might become the bottleneck.

Overall, Winograd algorithm saves the DSPs and improves

the overall resource utilization.
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C. Case Study

Here, we evaluate our Winograd implemention using

AlexNet and VGGNet. Table II gives the parameters for each

network in our implementation.

Table II: Design parameters

ZC706 (ZCU102) n Pn Pm Nbatch

Alexnet(3× 3) 6(6) 2(4) 8(8) 32(128)
VGG16(3× 3) 7(6) 4(4) 4(16) 32(128)

1) AlexNet: AlexNet consists of five convolution and

three FC layers [3]. The input image is 224 × 224. All the

convolution layers use small filters (5× 5 and 3× 3) except

the first convolution layer (11 × 11). For the first layer,

We choose to use the conventional convolution algorithm

for implementation. For the rest layers, we use a uniform

3× 3 filter for Winograd algorithm. For the 5× 5 filter, we

implement it using four 3× 3 filters with zero padding.

Table III gives the results. [7] only gives the convolution

implementation without FC layers and [5] only gives the

overall CNN performance without the detailed results for

each convolutional layer. Compared to prior work [7], we

improve the average convolution performance from 61.6

GOP/s to 1006.4 GOP/s1. For the overall CNN, we improve

the performance from 72.4 GOP/s to 854.6 GOP/s compared

to [5].

Table III: Performance comparison for Alexnet

[7] [5] Our Impl Our Impl
Precision 32bits float 16bits fixed 16bits fixed 16bits fixed

Device VX485T GSD8 ZC706 ZCU102

Freq (MHz) 100 120 167 200

Logic cell (K) 485.7 695 350 600

DSP2 2800 1963 900 2520

BRAM (Kb) 2060 × 18 2567 × 20 1090× 18 1824× 18
conv1 (GOP/s) 27.5 - 83.1 409.6

conv2 (GOP/s) 83.8 - 501.7 1355.6

conv3 (GOP/s) 78.8 - 610.2 1535.7

conv4 (GOP/s) 77.9 - 401.2 1361.7

conv5 (GOP/s) 77.6 - 355.6 1285.7

conv average
(GOP/s) 61.6 - 271.8 1006.4

CNN average
(GOP/s) - 72.4 201.4 854.6

Power (W) 18.6 19.1 9.4 23.6

DSP Efficiency
(GOP/s/DSPs) 0.022 0.037 0.224 0.339

Logic cell
Efficiency

(GOP/s/cells/K
0.127 0.104 0.575 1.424

Energy
Efficiency

(GOP/s/W)
3.31 3.79 21.4 36.2

To make a fair comparison across different platforms.

We also present the total resource efficiency and energy

1In [7], FC layer is not implemented. So the efficiency value of [7] is
calculated based on the average performance of convolution.

2In Xilinx ZC706 (Kintex-7) Platform, a single DSP(DSP48E1) slice
can be implemented as one 18×25 fixed-point multiplier. In Altera GSD8
(Stratix-V) Platform, a single DSP slice can be implemented as two 18×18
fixed-point multipliers

efficiency on each platform. In Table III, we can see that our

implementation achieves better resource efficiency, which

comes from the reduction of arithmetic complexity and novel

architecture. Our implementation also improves the energy

efficiency from 3.79 GOP/s/W to 36.2 GOP/s/W.

2) VGGNet: In VGG16 [22], all convolutional layers are

with 3 × 3 filters, which fit well for Winograd algorithm.

VGG16 consists of 5 convolution groups with different

input size (224, 112, 56, 28, 14). Table IV compares our

techniques with prior works. For the convolutional layers, we

improve the average performance from 136.5 - 488 GOP/s to

3044.7 GOP/s compared to [5, 8, 23]. For the overall CNN,

we improve the performance from 117.8 - 354 GOP/s to

2940.7 GOP/s.

Similar to AlexNet experiments, we also measure the

resource efficiency and energy efficiency. Similar findings

hold for VGG16. We notice that we achieve higher perfor-

mance for VGG16 than AlexNet. This is because VGG16

uses uniform convolution structure, while AlexNet uses

two different convolution structures. We also find that the

performance of convolutional layer decreases as the network

goes deeper. This is due to the fact that the initial time (Tinit)

accounts for more total time (Ttotal) and the initial time only

involves data transfer without actual computation.

Table IV: Performance comparison for VGG

[23] [5] [8] Our Impl
Precision 16bits fixed 16bits fixed 16bits fixed 16bits fixed

Device ZC706 GSD8 XC7VX690T ZCU102

Freq (MHz) 150 120 150 200

Logic cell (K) 350K 695K 693K 600K

DSP 900 1963 3600 2520

BRAM (Kb) 1090×18 2567 × 20 2940 × 18 1824× 18
conv1 (GOP/s) 123.8 - 320 2734.7

conv2 (GOP/s) 235.3 - 635 3212.4

conv3 (GOP/s) 235.3 - 600 3111.1

conv4 (GOP/s) 254.8 - 585 3069.3

conv5 (GOP/s) 70.2 - 400 2431.4

conv average
(GOP/s) 187.8 136.5 488 3044.7

CNN average
(GOP/s) 137.0 117.8 354 2940.7

Power (W) 9.6 - 25 23.6

DSP Efficiency
(GOP/s/DSPs) 0.152 0.06 0.10 1.16

Logic cell
Efficiency

(GOP/s/cells)
0.391 0.196 0.511 4.901

Energy
Efficiency

(GOP/s/W)
14.3 - 14.2 124.6

D. Comparison with GPU

In this subsection, we conduct a comparison between

GPU and FPGA platforms. For GPUs, we measure the

performance of VGG16 using Caffe framework [24] on

NVIDIA TitanX platform. To make a fair comparison, we

test the performance of TitanX with the latest CuDNN 5.1

[25] as Winograd algorithm is also included in CuDNN 5.1.

Power on GPU is obtained using NVIDIA profiling tools.

Table V shows the comparison results. As shown, TitanX
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Table V: Comparison with GPU platform

Device TitanX1 TitanX2 ZC706 ZCU102
Technology 28 nm 28 nm 28 nm 16 nm

Precision 32bits float 32bits float 16bits fixed 16bits fixed

CNN average
(TOP/s) 4.98 5.60 0.67 2.94

Power (W) 130 134 9.4 23.6

Energy efficiency
(GOP/s/W) 38.3 41.8 72.3 124.6

1 We use the default implementation in Cudnn5.1, selected layers will
call Winograd algorithm.

2 We force every layer to use the Winograd algorithm.

gives better better performance, but our implementation on

Xilinx ZCU102 FPGA achieves much better (2.98X) energy

efficiency.

VI. RELATED WORK

Recently, FPGAs are gaining popularity for use as acceler-

ators for deep learning tasks due to its high performance, low

power and reconfigurability. Most FPGA accelerators focus

on the implementations of convolutional layers using the

conventional algorithms[5, 7, 10, 11, 14, 23]. Zhang [7] et

al. propose a design space exploration technique to optimize

the throughput from computation resources and bandwidth

aspects. Qiu et al. [23] propose a dynamic-precision data

quantization to increase DSP efficiency. Several other studies

target a uniform implementation for convolutional layer and

FC layer [5, 8, 15]. In [5], 3D convolution operations is

flattened as 2D general purpose matrix multiplication, which

is widely adopted on GPU platforms. But on FPGAs, it can

result in massive memory usage. Zhang [8] et al. present

an uniform representation for convolutional layers and FC

layers, which can share the same computing resources. Song

[15] et al. propose a general purpose accelerator using

kernel-partition method.

A few studies also focus on reducing the arithmetic

complexity of convolution [10, 16, 26, 27] using non-

conventional algorithms. Zhang et al. [10] reduce the compu-

tation using low-rank approximation which is based on min-

imizing the reconstruction error of nonlinear response. Lavin

[16] evaluates Fast Fourier Algorithm (FFT) and Winograd

algorithm on GPU platforms. But FFT shows less efficiency

for convolutions with small filters. [26] implements FFT

on FPGA platform for CNN. But it shows little reduction

of computation complexity with small filters like 3 × 3.

Aydonat et al. [27] apply Winograd algorithm on Arria

10 FPGA platform. But they only use 1-D Winograd to

reduce arithmetic complexity. In our work, we evaluate 2-D

Winograd algorithm on FPGA platforms and use line-buffer

structure to enable data reuses and performance models to

guide design space exploration.

VII. CONCLUSION

FPGAs have been widely used to accelerate CNN-based

applications. However, prior implementations based on the

conventional convolutional algorithms are mainly limited by

the computational capability on FPGAs. In this work, we

propose a CNN architecture on FPGAs based on Wino-

grad algorithm, which can effectively reduce the arithmetic

complexity. We also develop analytical models to estimate

the resource usage and performance. Our implementations

of Alexnet and VGG16 achieve the overall performance of

854.6 GOP/s and 2940.7 GOP/s, respectively on ZCU102

FPGA platform, which outperforms all previous work.
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