
Automated Systolic Array Architecture Synthesis for
High Throughput CNN Inference on FPGAs

Xuechao Wei1,3∗† Cody Hao Yu2,3∗† Peng Zhang3∗

Youxiang Chen3 Yuxin Wang3 Han Hu3 Yun Liang1 Jason Cong1,2,3‡

1Center for Energy-efficient Computing and Applications, School of EECS, Peking University, China
2Computer Science Department, University of California, Los Angeles, CA, USA

3Falcon Computing Solutions, Inc, Los Angeles, CA, USA
{xuechao,ericlyun}@pku.edu.cn, {cody,pengzhang,youxiangchen,yuxinwang,hanhu,cong}@falcon-computing.com

ABSTRACT
Convolutional neural networks (CNNs) have been widely applied
in many deep learning applications. In recent years, the FPGA im-
plementation for CNNs has attracted much attention because of its
high performance and energy efficiency. However, existing imple-
mentations have difficulty to fully leverage the computation power
of the latest FPGAs. In this paper we implement CNN on an FPGA
using a systolic array architecture, which can achieve high clock
frequency under high resource utilization. We provide an analyti-
cal model for performance and resource utilization and develop an
automatic design space exploration framework, as well as source-
to-source code transformation from a C program to a CNN imple-
mentation using systolic array. The experimental results show that
our framework is able to generate the accelerator for real-life CNN
models, achieving up to 461 GFlops for floating point data type and
1.2 Tops for 8-16 bit fixed point.

1. INTRODUCTION
CNN is one of the key algorithms for the deep learning appli-

cations, ranging from image/video classification, recognition, and
analysis to natural language understanding, advances in medicine,
and more. The core computation in the algorithm can be summa-
rized as a convolution operation on the multiple dimensional arrays.
Although the algorithm requires computation power and commu-
nication bandwidth, it also offers significant potential for massive
parallelization and extensive data reuse. Hence, FPGA implemen-
tations of CNN have seen an increased amount of interest from
academia [1–10] due to the customizability of FPGAs.

Some existing CNN designs on FPGAs mainly focus on on-
chip computation engine optimization by exploiting different par-
allel strategies [1–4]. The studies explore parallelism opportuni-
ties in input feature maps [2] and convolution kernels [1, 4]; while
the work in [3] chooses to parallelize output feature maps. These
implementations customize massively parallel processing elements
(PEs) on FPGAs according to specific computation types; they achieve
a high performance that exceeds modern CPUs, thanks to FPGA’s
abundant logic resources and reconfigurability. On the other hand,
some designs take external memory communication into considera-
tion to achieve high throughput at system-level [5–8,11]. The study
in [5] develops a memory-centric design method to maximize data
reuse for memory bandwidth optimization. Meanwhile, to balance
computation to communication ratio, the study in [6] leverages a
∗These authors contribute equally to this work.†This work is done while Xuechao Wei and Cody Hao Yu are interns at Falcon Com-
puting Solutions Inc.
‡J. Cong serves as the Chief Scientific Advisor of Falcon Computing Solutions Inc.
and a distinguished visiting professor at Peking University, in addition to his primary
affiliation at UCLA.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DAC ’17, June 18-22, 2017, Austin, TX, USA
c© 2017 ACM. ISBN 978-1-4503-4927-7/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3061639.3062207

roofline model to identify the optimal design option from a large
design space, while the authors in [7, 8] propose analytical models
to realize this goal. In addition, The authors in [11] quantitatively
analyze different optimization objects, and then propose a specific
dataflow architecture to minimize data movements and memory ac-
cesses. Although those implementations utilize FPGA resources
well to achieve high throughput, the capacity of hardware resources
in the FPGA increases continuously, which provides more than a
thousand floating compute units in one FPGA chip—such as the
Intel Arria 10 [12] and Xilinx Virtex UltraScale+ [13]. Once the ex-
isting customized designs of CNNs are applied to the latest device,
the existing optimization approaches need to deal with the trade-off
between high resource utilization and clock frequency, which leads
to dramatic performance degradation.

To address such challenges, a suitable architecture for FPGAs
plays an important role in developing a scalable CNN implemen-
tation. In particular, a systolic array architecture [14] is a special-
ized form of parallel computing with a deeply pipelined network of
PEs. With the regular layout and local communication, the systolic
array features low global data transfer and high clock frequency,
which is suitable for large-scale parallel design on FPGAs. As a
result, systolic array architecture has been widely used for FPGA
accelerations, such as matrix multiplication [15] and bioinformat-
ics [16]. As a result, researchers attempt to map CNN inference
to systolic array architecture [10, 17] in recent years. Specifically,
Caffeine [10] implements the massive parallelism for CNN infer-
ence on Xilinx Kintex Untrascale device. The design in [10] adopts
a systolic-like architecture to mitigate the timing issue for the large
design, but it still directly connects all PEs to the on-chip memory
and results in not fully local interconnects. This is the reason that
the design in [10] is outperformed by a later work [17] that adopts a
complete systolic array architecture. The authors in [17] propose a
1-D systolic array design in OpenCL for AlexNet [18] CNN model
with the help of an analytical model to realize the best design point
and result in a high throughput design that outperforms all previ-
ous designs. However, this design only supports small models such
as AlexNet as it assumes that all input feature maps reside in on-
chip memory for computation. Moreover, applying the methodol-
ogy in [17] to other CNN models is not straightforward due to the
lack of an automated design space exploration approach. In this pa-
per we investigate the challenges in systolic array implementations
in CNNs, and propose an automated methodology to optimize the
CNN design on systolic arrays. The major contributions can be
summarized in the following.
• A high-throughput CNN design using systolic array. We first

systematically investigate the benefits and challenges of the sys-
tolic design for CNN. Based on our modeling and design space
exploration techniques, the end-to-end throughputs with our gen-
erated designs are able to achieve up to 461 GFlops and 1.2 Tops.
• An analytical model and a design space exploration scheme.

We propose an analytical model to analyze performance and re-
source utilization of systolic designs. To deal with a tremendous
design space, we develop an efficient design space exploration
by considering hardware features, which reduces optimization
runtime from hundreds of hours to less than one minute.
• An end-to-end automation flow. We implement a push-button

http://dx.doi.org/10.1145/3061639.3062207


automation flow to perform CNN design generation from high-
level C code to FPGA. No hardware-related, low-level consider-
ations are necessary for end users.

2. CNN SYSTOLIC ARRAY
In this section we first introduce CNN’s background and the op-

portunity for parallelism. We then present the systolic array ar-
chitecture that we design for CNN implementation. Finally, we
present three main challenges to map a CNN onto a systolic array
architecture.

2.1 Background of CNN on FPGA
A convolutional neural network is a typical deep learning neural

network that is adopted in applications like image and video pro-
cessing. In recent years CNN has evolved quickly, especially with a
boost from the visual recognition challenge (ImageNet [18]). CNN
models, such as AlexNet, VGG, and GoogleNet [18–20], consist of
several to hundreds of cascaded layers. Although these networks
vary significantly in terms of topology and complexity, the basic
computations in each layer are common—such as convolutional,
fully connected, pooling, sigmod and ReLU [21]. Among these
computation blocks, convolutional and fully connected layers con-
tribute over 90% of the computational complexity. Despite the fact
that we have implemented entire AlexNet and VGG16 models on
FPGAs, and fully connected layers can be converted into convolu-
tional layers [10], in the remainder of this paper we focus on the
systolic array architecture synthesis and optimization for convolu-
tional layers.

Code 1: C Code of a Convolutional Layer

L1: for(o = 0; o < O; o++) // Output feature #
L2: for(i = 0; i < I; i++) // Input feature #
L3: for(c = 0; c < C; c++) // Feature column
L4: for(r = 0; r < R; r++) // Feature row
L5: for(p = 0; p < K; p++) // Kernel weight
L6: for(q = 0; q < K; q++) // Kernel height
OUT[o][r][c] += W[o][i][p][q] *

IN[i][r+p][c+q];

A simplified code of the convolutional layer can be summarized
in Code 1. Although the computation pattern is as simple as multi-
plication and accumulation, the calculation requires a huge volume
of both computation power and data transfer bandwidth.

On the other hand, the algorithm also provides considerable po-
tential for both the massive parallelism and intensive data reuse.
In the original six-level nested loop, three (L1, L4, L3) are paral-
lelizable because they do not have data dependency; the remaining
loops (L2, L5, L6) have dependency carried for the accumulation
of array out. However, these loops are still parallelizable by lever-
aging the associative law of the addition operations.

The state-of-the-art FPGAs claim to have a peak performance of
over 1TFlops with thousands of floating point DSP blocks, but fully
exploiting the computing power from many of distributed DSP blocks
is not trivial efficient FPGA designs, which require full pipelin-
ing and massive parallelization on all the DSP blocks. Traditional
methods apply loop unrolling on multiple for-loops to enable mas-
sive parallelization [6] and perform memory partitioning to feed
the multiple data into different DSP blocks [5]. Each copy of the
computation unit in the array is called a process element (PE). PEs
are connected to memory blocks directly. While they are able to
achieve the massive parallelization with full pipelining in the ar-
chitecture design, the implementation of the design may have dif-
ficulty in making the timing closure for a high clock frequency, or
even passing the place and route. The underlying reasons for the
timing issue are three-fold. First, large-scale data reuse between
DSP blocks introduces large fan-out. Second, these direct inter-
connects become long wires when the DSP blocks are distributed
among the whole FPGA chip. Third, large multiplexes are required
for the output data collection.

2.2 Systolic Array Architecture for CNN
We present a novel 2-D systolic array architecture for CNN on

FPGA in Fig. 1. As shown in this figure, each PE shifts the data of
W and IN horizontally and vertically to the neighboring PEs at each

cycle. This 2-D topology matches the 2-D structure in the FPGA
layout so that it can achieve timing constraints easily because of
low routing complexity. In addition, there is a SIMD vector ac-
cumulation inside each PE. The parallelization factor of the SIMD
factor is usually power of two due to the dedicated inter-DSP accu-
mulation interconnect in modern FPGAs.

IB

PE

IB

PE

IB

PE

IB

PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

WB

WB

WB

WB

OB OB OB OB

IN

OUT

W

Figure 1: Systolic Array Architecture for CNN

This architecture is able to tackle the timing issue for massive
parallelization within CNN. Its key features can be summarized as
1) local interconnect and 2) shifting data transfer. As shown in
Fig. 1, the global and large fan-out interconnect is split into lo-
cal interconnects between neighboring PEs. In addition, the in-
put/output data are shifted into/from the PE array and between the
neighboring PEs so that the multiplexes are eliminated. With the
local, short, peer-to-peer interconnects, systolic array architecture
can achieve high frequency even in the case of massive paralleliza-
tion with over a thousand PEs.

...+x
Buffer 0 Buffer 1

filter

(a) PEx,y (b) IByOUT (fm: PEx-1,y)IN (to: PEx+1,y)

OUTxy

IN (fm: IBy-1)

IN (fm: PEx-1,y)

W (fm: PEx,y-1)

W (to: PEx,y+1)

IN (to: IBy+1)

IN (to: PE0,y)

OUT (to: PEx+1,y)
OUTxy

OUT (fm: PEx-1,y)

Figure 2: Structure of PE and Input Feature Map Buffer (IB)

The architectures of a PE with index (x, y) and buffer structure
to store input feature maps (IB) are presented in Fig. 2. For the
PEx,y in Fig. 2 (a), it passes input data down to PEx+1,y and
passes weight data right to PEx,y+1 at each cycle. The PE also
accumulates the product of the input and weight data (OUTx,y)
that passed from its neighboring PEs. In addition, the output data
are also shifted out across the PE array, so the output of PEx,y is
either the result produced by itself (OUTx,y) or the shifted result
from its neighboring PEs.

Moreover, for the input buffer (IB) shown in Fig. 2 (b), double
buffering is enabled for the pipelining. All the input feature map
data are shifted across the IB chain as a pipeline while each IB se-
lectively stores the data that belongs to the corresponding column
of PEs. The similar structure is applied to the buffers for weight
(WBs) and output feature map (OBs) as well so that the entire sys-
tolic array architecture can be fully pipelined.

PE0,0 PE0,1 PE0,2

PE1,0 PE1,1 PE1,2

PE2,0 PE2,1 PE2,2

IN0[0]

IN0[1]

IN0[2]

IN1[0]

IN1[1]

IN1[2]

IN2[0]

IN2[1]

IN2[2]

. .

.

.

.. W0[0]*IN0[0] W0[1]*IN0[1] W0[2]*IN0[2]

W0[0]*IN1[0]

W1[0]*IN0[0]

W0[1]*IN1[1]

W1[1]*IN0[1]

W2[0]*IN0[0]

PE0,0

PE0,1

PE1,0

PE2,0

PEx,y

...

...

0 1 2 ... t (#cycle)

PEx,y@t: OUTx,y[t] += Wx[t-(x+y)] * INy[t-(x+y)]  (1)

t:    i*o*p*q*r*c/row/col/vector                              (2)

W0[0]W0[1]W0[2]

W2[0]W2[1]W2[2]

W1[0]W1[1]W1[2]
X +

W

IN

OUT ...

Figure 3: An Example of Systolic Array Cycle-Level Scheduling

There are several considerations related to systolic array execu-
tion. First, the data required for the computation of the PEs have
to be transferred from the boundary PE and across multiple PEs.
Since only the boundary PE connects to input data, data reuse be-
tween each row and column of PEs is required. More importantly,
a systolic array runs in a regular and synchronized way such that
fine-grained pipelining is performed between every neighboring



PE. Therefore, a suitable scheduling of the PE executions is es-
sential for systolic array design, especially the synchronization of
the data on each PE from different directions. Fig. 3 shows one
possible scheduling of PE execution after performing the feasible
mapping that determines which loop corresponds to which systolic
array dimension (see Section 3.2 for detailed discussions). We use
PEx,y@t to denote the mapping of cycle number t and PE indexes
(x, y) onto data access indexes. It means that at cycle t, the prod-
uct of W and IN accumulates on OUT , as shown by the equation
(1) in Fig. 3. Cycle number t is computed by dividing the total
loop number by row × col × vector as shown by equation (2) in
Fig. 3, where row and col are the number of PEs in row and col-
umn, and vector is the number of SIMD computation within each
PE. As shown in the right part of Fig. 3, PE0,0 gets weight data
W from buffer WB and input feature map data IN from buffer
IB at the first cycle. PE0,0 performs the multiplication of the two
inputs and accumulates the result OUT in the register within the
PE along with previous partial accumulated results. Meanwhile,
the other PEs are stalled because no data is being received from
at least one of its inputs. At cycle 1, the data W from PE0,0 is
passed to PE0,1 and the data IN is passed to PE1,0. As a result,
both PE0,1 and PE1,0 have the required data to perform an exe-
cution. At the same cycle, PE0,0 is able to perform the execution
with new data coming from the input buffers as well. As can be
seen for the 3 × 3 systolic array example shown in Fig. 3, all PEs
are active after five cycles. Thus, they can synchronously read data
from their neighboring PEs, perform computation and pass data to
the next PEs simultaneously in each cycle. After the in-PE compu-
tation has been finished, finally, OUT in the shift register is shifted
across vertical PEs to the corresponded OB.

2.3 Challenges in CNN Systolic Array
Although the systolic array architecture is able to significantly

benefit designs on the FPGA, mapping a CNN computation onto
a systolic array structure is not straightforward. We summarize
the mapping process in three steps and describe their challenges
along with examples using the configuration of AlexNet [18] layer
5, (I,O,R,C, P,Q) = (192, 128, 13, 13, 3, 3), as follows:
1. Find a feasible mapping. We need to first find a feasible map-
ping in the systolic array to guarantee that the proper data is avail-
able at specific locations in the PE array at every cycle. Specifically,
we attempt to select three loops in Code 1 to represent the 3 dimen-
sional parallelism of the 2-D systolic array: PE row, PE column
and the SIMD vector inside a PE. As mentioned in the previous
section, systolic array requires data reuse in both directions, so the
corresponding loops need to carry the data reuse of two different
arrays (W and IN), while the third loop needs to carry the accumu-
lation of the output (OUT). Failing to satisfy this rule will cause a
non-feasible mapping. For example, mapping loop L3 and L4 into
a PE row and column is not feasible because data reuse does not
happen on array W which does not relate to either loop L3 or L4.
2. Select a PE array shape. Next, we select the PE array shape
by determining the size of each dimension, which impacts the per-
formance in terms of 1) the required DSP number, 2) the clock fre-
quency, and 3) the DSP efficiency. The DSP efficiency is defined
as the effective computation ratio performed by DSPs:

Eff =
effective operation no.

total operation no.
(1)

We use an example in Table 1 to illustrate the impact of systolic
array shape. Both configurations map loop (L1, L3, L2) to sys-
tolic arrays (row, column, vector) but with different shapes. As
can be seen, assuming the clock frequency for both configurations
are the same (280 MHz), sys2 has a higher DSP utilization but a rel-
atively lower DSP efficiency compared with sys1. This is because
sys2’s shape (16, 10, 8) does not match the mapped trip counts of
the mapped loops (128, 13, 192).
3. Determine the data reuse strategy. After we identify the sys-
tolic array mapping and shape, we determine the data reuse strategy
by choosing proper tiling sizes to achieve extensive data reuse. In
other words, it requires exploiting the data reuse carried on multi-

Table 1: Impact of Systolic Array Shape to Performance
ROW COL. VEC. DSP Util. DSP Eff. Peak Thrpt.

sys1 11 (L1) 13 (L3) 8 (L2) 71.5% 96.97% 621 GFlops
sys2 16 (L1) 10 (L3) 8 (L2) 80.0% 60.00% 466 GFlops

ple for-loops with long reuse distance, which in turn leads to the
large reuse buffers. However, there are more than ten thousand
design options in the trade-off between the on-chip memory uti-
lization and off-chip bandwidth saving, including selection of the
arrays to be reused, the loops that carry the data reuse, and tiling
sizes for the selected loops carrying data reuse.

Taking sys1 in Table 1 again as an example, since the systolic ar-
ray design we used is fully pipelined, the theoretical peak through-
put is 96.97% × 2 × 11 × 13 × 8 × 280 ' 621 GFlops. This
can be achieved by choosing proper tiling sizes for each loop (e.g.,
T ile(I,O,R,C, P,Q) = (4, 4, 13, 1, 3, 3)) to balance data reuse
and memory bandwidth. However, if we use inappropriate tiling
sizes such as T ile(I,O,R,C, P,Q) = (2, 2, 2, 2, 2, 2), then we
require around 67 GB/s memory bandwidth to achieve the peak
throughput (the analytical model is described in Section 3). In fact,
we only get 162 GFlops on Intel’s Arria 10 with 19 GB/s bandwidth
for this low QoR configuration.
3. ANALYTICAL MODELS

All these design challenges and their interplay need to be con-
sidered in a unified way with high-level modeling. In this section,
we formulate the overall optimization problem as maximizing the
system throughput under the systolic mapping feasibility condition
and resource constraints.
3.1 Architecture Abstraction

Before we can perform the detailed modeling, an abstraction of
the architecture is necessary. A loop tiling representation is pro-
posed in Fig. 4 for this purpose, which establishes the link between
the architecture and high-level program code. The tiled loops in
the intermediate representation contains all the architecture consid-
erations in the systolic array, such as PE array mapping, PE array
shape, data reuse strategy, etc. This representation itself is a se-
quential program, which enables us to perform the modeling in a
general way using program analysis techniques and tools such as
polyhedral model.

// outer loops
L0: for (Lo = 0; Lo < l0; Lo++)
...
Ln: for (Ln = 0; Ln < ln; Ln++)
// middle loops
S0: for (So = 0; So < s0; So++)
...
Sn: for (Sn = 0; Sn < sn; Sn++)
// inner loops
T0: for (T0 = 0; T0 < t0; T0++)
T1: for (T1 = 0; T1 < t1; T1++)
T2: for (T2 = 0; T2 < t2; T2++)
// Orignal loop body

PE PE PE

PE PE

PE PE PE

W(s0, ,sn)

t1

W(s0, ,sn)

IN(s0, ,sn)

PE

IN(s0, ,sn)

...

...

...

...

...

... ... ...
t0

IB

WB

Figure 4: Loop Tiling Representation for Systolic Array Mapping

The program in Fig. 4 is transformed from the original code in
Code 1 by loop tiling. The semantic of the program is preserved
by the transformation if we ignore the precision error of reordering
the floating point accumulation. Then the tiled loops are associated
with the architecture consideration as the following. The overall
computation is performed block by block sequentially, where each
block is corresponding to an iteration of the outer loops (L0-Ln).
Since the blocks are calculated independently, the outer loops do
not impact the throughput.

Once a data block is fetched from off-chip memory, it is stored
in the input buffers (IB and WB) for date reuse. The middle loops
(S0-Sn) represent the sequential processing of feeding data from
input buffers to the PE array. The bounds of the middle loops
~s = (s0, ..., sn) determine the sizes of the reuse buffer. The data
accessed by the PE is represented by the array access address which
is indexed by the iterator of middle loops.

Parallel execution is performed in the PE array in the fine-grained
pipeline. The inner loops (T0-T2) represent the parallelism in the
PE array where each iteration of the inner loops is corresponding
to a parallel DSP unit in the array. The shape of the systolic array



is determined by the bounds of inner loops (~t = (t0, t1, t2)); while
the systolic array mapping feasibility is determined by the relation
between the inner loop iterators and the array access addresses in
the loop body.

In addition, when we perform the loop tiling, the original loop
bounds may not be divisible by the tiling sizes (~s, ~t) we selected.
This leads to a waste of computation that affects the DSP efficiency.
3.2 Feasible Mapping to Systolic Array

As demonstrated in Section 2, the architecture of the systolic ar-
ray is determined by the three inner loops that are selected to map
to PE row, PE column and SIMD vector inside the PE. There are
many alternatives for this loop-to-architecture mapping, but not ev-
ery one of them can finally have a feasible mapping in the systolic
fashion. The condition of the feasible systolic mapping can be sum-
marized as: each of the three array variables (W , IN , and OUT )
has to have fine-grained data reuse carried out at least one of the
three inner loops.

We formulate the condition for feasible mapping by introduc-
ing the binary variables kl to indicate loop-to-architecture mapping
(kl = 1 if the loop l is selected as one of the inner loops; otherwise
kl = 0): ∑

kl = 3, ∀r,
∑

kl × crl > 0 (2)

where crl indicates data reuse of array r on loop l: crl = 1 if loop
l carries the fine-grained data reuse of array r; otherwise crl = 0.

In addition, all the possible fine-grained data reuses in a program
can be analyzed in advance. Since the fine-grained data reuse for
array r on loop l requires the data access on array r in different
loop l iterations to be the same, we use polyhedral model [22] to
represent this condition:

∀~i ∈ D, Fr(...il−1, il, il+1, ...) = Fr(i0, ..., il−1, il + 1, il+1, ...) (3)

where~i is an iterator vector which lists loop iterators from the out-
ermost loop to the inner loop in the loop nest; D is an iteration
domain which defines the range of the loop iterators; Fr is an ac-
cess function which maps the loop iterators into the access indexes
of array r.

3.3 Resource Utilization Modeling
Since the computation is mainly floating-point multiplication and

accumulation, the DSP and on-chip block RAM (BRAM) are the
two critical resource types. The DSP utilization is simply deter-
mined by the product of the inner loop bounds ~t and the DSP usage
per PE that depends on the data type width and the FPGA platform:

D(~t) = DSP _per_PE ×
∏

tl (4)

On the other hand, the modeling of BRAM utilization needs to
consider the data reuse in the input and output buffers. Due to the
double buffering mechanism for hiding data transfer overhead, the
buffer size is equal to two times the data block size of the array.
The block size can be modeled as the total amount of data that is
accessed in the middle and inner loops in Fig. 4.

DAr(~s,~t) =
∣∣∣{~a|~a = Fr(~i) ∧~i ∈ D~s,~t

}∣∣∣ (5)

where ~s and ~t are again the bounds of middle and inner loops, re-
spectively; D~s,~t is the iteration domain of the middle and inner
loops; ~a is the access index vector of a multi-dimensional array.
Counting an integer set with linear constraints can be solved by
the polyhedral library [23], but it has high computational complex-
ity. By leveraging the feature of CNN algorithm, we can simplify
the model by counting the range of each dimension of the array
access index, so that the total size is the product of range size of
each dimension. CNN only have two kinds of index patterns in the
program: the one consists of only one iterator, such as out[o][r][c]
and w[i][o][p][q]; and the other is the sum of two iterators, such as
r+p in the access in[i][r+p][c+q]. For the first case, the range for
the dimension is the bound of the corresponding middle and inner
loops. For the second case, the range can be calculated as the sum
of the bound of the two iterators, e.g. if the bound of r is t0 and
bound of p is 3, the range size of r + p is (t0 + 3)− 1.

To simplify the address generation complexity of multiple di-
mensional arrays, the Intel OpenCL design flow tool will allocate
the actual memory size as the rounding up power of two value. Fi-
nally, the total BRAM utilization is formulated as follows:

B(~s,~t) =
∑
r

(cb + 2
dlog2 DAr(~s,~t)e

) + (cp ×
∏

(~t)) (6)

where cb is a constant BRAM cost for the IBs and OBs, cp is the
BRAM cost for each PE, and ~t is the bound vector of inner loops.
3.4 Performance Modeling

In the CNN systolic design, both computation and data trans-
fer may be the performance bottleneck for different design options.
The adoption of double buffering in the input and output enables us
to model the throughput in a decoupled way, so the overall through-
put T is dominated by the lower one of computation throughput
(PT ) and external memory transfer throughput (MT ).

T (~s,~t) = min(PT (~s,~t),MT (~s,~t)) (7)

Since the systolic array is executed in the fully pipelined way,
each PE will complete two floating point operations (multiplication
and accumulation) in each cycle. However, the quantization effect
(described in Section 2.3) may lead to wasted computation on the
incomplete data blocks on the boundaries of the original loops. By
defining the clock frequency as F , the computational throughput
is modeled as the number of effective floating operations in the
original code performed every second:

PT (~s,~t) = Eff(~s,~t)×
∏

~t× 2× F (8)

where Eff(~s,~t) is the DSP efficiency defined in Eq. 1.
In addition, external memory transfer throughput (MT ) is de-

fined as the number of effective floating point operations performed
in each block divided by the time it takes to transfer the data re-
quired by these operations. Due to the hardware feature, the mem-
ory bandwidth limitation is not only for overall memory access
BWtotal, but for each memory access port BWport (array in, w,
and out). The transferred data amount and bandwidth determines
the data transfer time, so MT can be modeled as follows:

MT (~s,~t) = min(MTt(~s,~t),MTr(~s,~t)), r ∈ R (9)

MTt(~s,~t) =
Eff(~s,~t)× 2×

∏
(~s× ~t)∑

DAr(~s,~t)/BWtotal

MTr(~s,~t) =
Eff(~s,~t)× 2×

∏
(~s× ~t)

DAr(~s,~t)/BWport

(10)

3.5 Putting It All Together
Finally, the overall optimization problem can be formulated as

the combination of the following two subproblems.
Problem 1: Given a nested loop L that functions as CNN, finding
a set S that contains all feasible systolic array configurations:

SL =
{
(~k,~t) |

∑
~k = 3,

∏
~t ≤ Dtotal, ∀r,

∑
kl × crl = 1

}
(11)

where ~k is the mapping vector mentioned in Section 3.2, ~t is the
bounds of the inner loops and Dtotal is total DSP numbers.
Problem 2: Given a systolic array configuration (~k,~t), finding
the optimal bounds of the middle loops ~s so that the overall design
throughput is maximized:

maximizing T (~s,~t), s.t. B(~s,~t) < Btotal, D(~t) < Dtotal

where T , B, and D have been defined in Eq. 7, Eq. 6, and Eq. 4,
respectively.

The complex calculation of B(~s,~t) and H(~s,~t) makes the prob-
lem neither linear nor convex, which in turn leads to the difficulty
in analytical solving. On the other hand, the entire design space of
the two problems is tremendously large, which makes brute-force
search impractical. In fact, our implementation spends roughly 311
hours on traversing every design option for one of the convolutional
layers from the AlexNet [18] CNN model on Intel’s Xeon E5-2667
CPU with 3.2GHz frequency. In the next section, we will show that
the size of design space can be reduced significantly when taking
practical hardware architecture into consideration.



4. DESIGN SPACE EXPLORATION
Under the performance and resource modeling, our design space

exploration identifies a valid design option with the highest through-
put. However, the working frequency for a design is hard to model.
As a result, we develop a two-phase process in Fig. 5 which first
filters the design space into a small set of candidates using the pro-
posed analytical model in Section 3 with a given clock frequency,
and then goes through the hardware generation flow for the selected
designs to obtain the one that has the best on-board performance.

Figure 5: Two-Phase Design Space Exploration

In the architectural-based phase, we reduce the design space by
considering resource utilization and on-chip BRAM features. Due
to the scalability of the systolic PE array architecture we adopted,
the clock frequency will not drop significantly with low DSP uti-
lization, so we can prune the design options with low DSP utiliza-
tion by adding the following constraint into Problem 1.

D(~t) ≥ cs ×Dtotal (12)

where cs is a constant to set a lower bound of DSP utilization de-
fined by a user. The value of cs determines the design space of
the rest of the process. For example, by applying Eq. 12 with
cs = 80%, the number of available systolic PE array mappings
is reduced from 160K to 64K for one of the convolutional layers
from AlexNet [18].

In addition, we also reduce the design space of data reuse strate-
gies in terms of value of ~s by leveraging the fact that BRAM sizes
in the implementation are always rounded up to the power of two.
In details, we prune the design space by only exploring the candi-
dates of ~s whose values are the power of two. The pruned design
space of data reuse strategies can still cover the optimal solution in
the original design space because 1) our throughput object function
is a monotonic non-decreasing function of ~s, and 2) BRAM utiliza-
tion is the same for the options of ~s whose values have the same
rounding up the the power of two. By applying the pruning on the
data reuse strategies, the design space reduces exponentially so that
we are able to perform an exhaustive search to find the best strategy
and result in an additional 17.5× saving on the average search time
for AlexNet convolutional layers.

Consequently, the first phase of our design space exploration pro-
cess takes less than 30 seconds to identify a set of high through-
put design options instead of hundreds of hours. In the second
phase, designs in the set are then synthesized using an Intel SDK
for OpenCL Application [24] to realize the clock frequency. We
use the actual frequency to refine the performance estimation for
deciding the best systolic array design.

5. IMPLEMENTATION AND EXPERIMENT
5.1 End-to-end Automation Flow

We implement a push-button design flow framework to generate
an executable system on FPGAs from a user-written intuitive CNN
program in Fig. 6. A user only needs to specify the nested loop
that functions as a CNN layer using a pragma, as shown in the left
side of Fig. 6. Our automation flow shown in the right side of Fig. 6
first analyzes the user program using the ROSE compiler infrastruc-
ture [25] to obtain necessary information such as iteration domains
and data access patterns. Subsequently, we perform design space
exploration to identify multiple valid design options with the high-
est estimated throughput. The design options are parameterized to
instantiate template files, including OpenCL systolic array imple-
mentation (kernel), as well as the C/C++ software program (host).

#pragma ACCEL systolic auto
for(o = 0; o < O; o++)
for(i = 0; i < I; i++)
for(c = 0; c < C; c++)
for(r = 0; r < R; r++)
for(p = 0; p < K; p++)
for(q = 0; q < K; q++)
out[o][r][c] +=

w[o][i][p][q] *
in[i][r+p][c+q];

Figure 6: Programming Model and Execution Flow

Finally, the instantiated OpenCL kernel is synthesized by the Intel
FPGA SDK for OpenCL [24] for the physical implementation.
5.2 Experimental Setup

We evaluate our model and systolic array architecture design
in Intel’s Arria 10 GT 1150 board which contains 1518 hardened
floating point DSPs. The underlying OpenCL implementation of
the systolic array design is synthesized using the Intel SDK 16.0
for OpenCL application [24]. We adopt two widely used real-life
CNN models, AlexNet [18] and VGG16 [19], for evaluation. We
use 32-bit floating points and fixed points to evaluate our frame-
work. For fixed point evaluation, we use 8-bit data type for weights
and 16-bit for pixels, by which the top-1 and top-5 ImageNet classi-
fication accuracy degradation could be less than 2% [11]. For each
model, we generate the design with the optimal performance for all
layers according to our two-phase DSE process.
5.3 Results and Analysis

In this experiment, we use a unified systolic array design config-
uration for all the convolutional layers in each CNN model instead
of making an optimal design for each layer, because it has big per-
formance overhead to reprogram the FPGA for different layers. For
example, Fig. 7 (a) depicts all valid design options of AlexNet con-
volutional layers using floating point precision with a given clock
frequency (280 MHz) reported by our framework. The density for
each design point represents the throughput where darker means
higher. As can be seen, high throughput design options may cost
moderate BRAM blocks and DSPs due to lower design overhead.
This motivates the first phase of our design space exploration. In
addition, since the frequency is a given constant value, Fig. 7 (a) is
not able to reflect the impact of different clock frequencies.

(a) Pruned Design Space

1 2 3 4 5 6 7 8 9 1011121314
Design Points

340
360
380
400
420
440
460
480
500
520

T
h
ro

u
g
h
p
u
t 

(G
Fl

o
p
s)

Estimated On-board

(b) Model Accuracy Analysis
Figure 7: Design Space and Analytical Model Analysis for AlexNet

To deal with the impact of frequency variant, we use the top 14
design options from Fig. 7 (a) and perform P&R at the same time to
realize the actual clock frequency. Fig. 7 (b) shows a comparison
of on-board results against the analytical model of all 14 designs
sorted by estimated throughput. As can be seen, our design space
exploration identifies 6 designs with the highest estimated through-
put. It means that those designs have the same, minimum com-
putation overhead but adopt different data reuse strategies. This
difference results in different clock frequencies at the P&R stage of
the design flow, and it is hard to be predicted in advance. Accord-
ing to Fig. 7 (b), our model perfectly matches the on-board results
(< 2% error on average) by using the real working frequency. This
illustrates the accuracy of our analytical model.

Table 3 shows the working frequency, resource utilization, and
the systolic array design configuration we used for each CNN model
as an order of PE row, column and vector 1. We can see that the de-

1We only show the by-layer throughputs for floating point precision due to the similar
throughput trend and page limit.



Table 2: Comparison to State-of-the-art Implementations
[9] [10] [10] [11] [17] [26] Ours

FPGA Altera
Stratix-V

Xilinx
VC709

Xilinx
KU060

Arria10
GX 1150

Arria10
GX 1150

Arria10
GX 1150

Arria10
GT 1150

Frequency (MHz) 120 150 200 150 303 370 385 239.62 221.65 231.85
CNN VGG VGG VGG VGG AlexNet VGG VGG AlexNet VGG VGG

Precision fixed
8-16 bit

fixed
16 bit

fixed
16 bit

fixed
8-16 bit

float
16 bit

float
32 bit

fixed
16 bit

float
32 bit

float
32 bit

fixed
8-16 bit

Logic Utilization 153K (25%) 300K (81%) 100K (31%) 161K (38%) 246K (58%) N/A N/A 350K (82%) 354K (83%) 313K (73%)
DSP Utilization 727 (37%) 2833 (78%) 1058 (38%) 1518 (100%) 1476 (97%) 1320 (87%) 2756 (91%) 1290 (85%) 1340 (88%) 1500 (49%)

BRAM Utilization 1500 (58%) 1248 (42%) 782 (36%) 1900 (70%) 2487 (92%) 1250 (46%) 1450 (54%) 2360 (86%) 2455 (90%) 1668 (61%)
Latency/Image (ms) 262.9 65.13 101.15 47.97 1.06 35.5 17.18 4.05 54.12 26.85

Throughput 117.8 354 266 645.25 1382 866 1790 360.4 460.5 1171.3

Table 3: Frequency and Resource Utilization
Model PE shape Freq. (MHz) LUT DSP BRAM FF

AlexNet (11,14,8) 270.8 57% 81% 45% 40%
VGG (8,19,8) 252.6 59% 81% 47% 40%

Table 4: Throughput for Convolutional Layers of AlexNet
Layer 1 2 3 4 5 Avg.
Thrpt. 123.5 225.0 541.7 541.6 600.0 406.1

DSP Eff. 18.51 33.70 81.03 81.03 90.00 40.32

Table 5: Throughput for Convolutional Layers of VGG16
Layer 1 2 3 4 5 6 7
Thrpt. 223.86 450.11 600.27 601.69 601.57 602.44 602.44

DSP Eff. 36.36 72.73 96.97 96.97 96.97 96.97 96.97
Layer 8 9 10 11 12 13 Avg.
Thrpt. 602.42 602.83 602.83 602.49 602.49 602.49 561.38

DSP Eff. 96.97 96.97 96.97 96.97 96.97 96.97 89.11

signs generated by our framework have high resource utilization
and suitable shapes that match most of the layers in CNN models.

The performance of the two designs is shown in Table 4 and
Table 5, respectively. We can see that most of the layers of the
two CNN models achieve near-peak performance. However, the
throughput and DSP efficiency of AlexNet’s layer 1 are much lower
than other layers. For two reasons. First, layer 1 has only 3 large
input feature maps which make the shape of layer 1 quite different
from other layers so that a common design for all layers including
layer 1 is hard to find. As a result, we folded layer 1 to have more
small feature maps to make its configuration more consistent with
others. Second, the kernel size (11) of layer 1 is much larger than
others (5 and 3). In order to obtain one design for all layers, our
framework chose the data reuse strategy that benefit other layers
more. Although the selected data reuse strategy is able to let other
layers achieve high throughput, it causes the throughput of layer 1
to be bounded by memory bandwidth. In addition, the layer 1 of
VGG16 has a lower performance than other layers as well. This
is because the layer 1 image row number (16) is inconsistent with
other layers, and lead to low DSP utilization of PEs’ parallelism and
pipelining. However, VGG16 still has a better overall performance
than AlexNet since it has a more regular network shape that shows
better scalability for its uniform hardware design.

We finally compare the end-to-end results for both models with
state-of-the-art CNN designs in Table 2. We use latency for pro-
cessing one image and throughput for performance comparison. As
can be seen, our performance outperforms all previous work ex-
cept for [17] and [26]. The work in [17] improves DSP utilization
by adopting Winograd transformation [27] that is planned to be in-
cluded in our design in the future. According to the throughput im-
provement reported by [17], the throughput of our designs can be
potentially improved by 2× if applied Winograd transformation.
On the other hand, the authors in [26] implement the accelerator
kernel using System Verilog and wrap the kernel to an OpenCL IP.
Consequently, low-level design optimizations such as register-level
optimization (e.g. limiting the maximum fan-out number for reg-
isters) can be applied to guarantee a higher frequency. Since the
design of [26] includes such CNN model dependent optimization,
it is hard to be adapted for other models.

6. CONCLUSIONS AND FUTURE WORK
In this paper we propose a systolic array architecture for high

throughput CNN on FPGAs. We solve the challenges of PE map-
ping, shape selection and data reuse strategy by accurate modeling
techniques and effective design space exploration strategies. We

also implement a framework to automate CNN to the systolic array
mapping process. Evaluation results show that our design achieves
up to 1171 Gops on Intel’s Arria 10 device.

There are several directions that we can investigate further in the
future. In particular, existing work [17, 28, 29] has demonstrated
that applying Winograd [27] and fast Fourier transformations to
convolutional computation can significantly improve resource effi-
ciency. We believe that these transformations could also benefit our
architecture and further improve the throughput.

7. ACKNOWLEDGMENT
The author would like to thank Intel for providing the Arria 10

board and reference design of systolic matrix multiplication.

8. REFERENCES
[1] S. Cadambi et al., “A Programmable Parallel Accelerator for Learning and

Classification,” in PACT, 2010.
[2] M. Sankaradas et al., “A Massively Parallel Coprocessor for Convolutional

Neural Networks,” in ASAP, 2009.
[3] S. Chakradhar et al., “A Dynamically Configurable Coprocessor for

Convolutional Neural Networks,” ISCA, 2010.
[4] C. Farabet et al., “CNP: An FPGA-based processor for Convolutional

Networks,” in FPL, 2009.
[5] M. Peemen et al., “Memory-centric accelerator design for Convolutional Neural

Networks,” in ICCD, 2013.
[6] C. Zhang et al., “Optimizing FPGA-based Accelerator Design for Deep

Convolutional Neural Networks,” in FPGA, 2015.
[7] N. Suda et al., “Throughput-Optimized OpenCL-based FPGA Accelerator for

Large-Scale Convolutional Neural Networks,” in FPGA, 2016.
[8] S. I. Venieris et al., “fpgaConvNet: A Framework for Mapping Convolutional

Neural Networks on FPGAs,” in FCCM, 2016.
[9] J. Qiu et al., “Going Deeper with Embedded FPGA Platform for Convolutional

Neural Network,” in FPGA, 2016.
[10] C. Zhang et al., “Caffeine: Towards Uniformed Representation and

Acceleration for Deep Convolutional Neural Networks,” in ICCAD, 2016.
[11] Y. Ma et al., “Optimizing Loop Operation and Dataflow in FPGA Acceleration

of Deep Convolutional Neural Networks,” in FPGA, 2017.
[12] Intel Arria 10.
[13] Xilinx Ultrascale Architecture.
[14] H. T. Kung et al., Algorithms for VLSI Processor Arrays, 1979.
[15] J. Wang et al., “Customizable and High Performance Matrix Multiplication

Kernel on FPGA,” in FPGA, 2015.
[16] A. C. Jacob et al., “Design of Throughput-Optimized Arrays from Recurrence

Abstractions,” in ASAP, 2010.
[17] U. Aydonat et al., “An OpenCL Deep Learning Accelerator on Arria 10,” in

FPGA, 2017.
[18] A. Krizhevsky et al., “ImageNet Classification with Deep Convolutional Neural

Networks,” in NIPS, 2012.
[19] K. Simonyan et al., “Very Deep Convolutional Networks for Large-Scale Image

Recognition,” arXiv, 2014.
[20] C. Szegedy et al., “Going Deeper with Convolutions,” arXiv, 2014.
[21] Y. Jia et al., “Caffe: Convolutional Architecture for Fast Feature Embedding,”

in MM, 2014.
[22] D. L. Kuck, Structure of Computers and Computations. John Wiley & Sons,

Inc., 1978.
[23] S. Verdoolaege, “Isl: An Integer Set Library for the Polyhedral Model,” in

ICMS, 2010.
[24] Intel SDK for OpenCL Applications.
[25] ROSE Compiler Infrastructure.
[26] J. Zhang et al., “Improving the Performance of OpenCL-based FPGA

Accelerator for Convolutional Neural Network,” in FPGA, 2017.
[27] S. Winograd, Arithmetic Complexity of Computations, 1980.
[28] C. Zhang et al., “Frequency Domain Acceleration of Convolutional Neural

Networks on CPU-FPGA Shared Memory System,” in FPGA, 2017.
[29] L. Lu et al., “Evaluating Fast Algorithms for Convolutional Neural Networks

on FPGAs,” in FCCM, 2017.

https://www.altera.com/products/fpga/arria-series/arria-10/overview.html
https://www.xilinx.com/products/technology/ultrascale.html
https://software.intel.com/en-us/intel-opencl
http://rosecompiler.org/


 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     0
     1
      

   1
  

 HistoryList_V1
 qi2base





