
2220 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 6, JUNE 2016

FCUDA-NoC: A Scalable and Efficient
Network-on-Chip Implementation

for the CUDA-to-FPGA Flow
Yao Chen, Swathi T. Gurumani, Member, IEEE, Yun Liang, Guofeng Li, Donghui Guo, Senior Member, IEEE,

Kyle Rupnow, Member, IEEE, and Deming Chen, Senior Member, IEEE

Abstract— High-level synthesis (HLS) of data-parallel input
languages, such as the Compute Unified Device Architec-
ture (CUDA), enables efficient description and implementation
of independent computation cores. HLS tools can effectively
translate the many threads of computation present in the parallel
descriptions into independent, optimized cores. The generated
hardware cores often heavily share input data and produce
outputs independently. As the number of instantiated cores
grows, the off-chip memory bandwidth may be insufficient to
meet the demand. Hence, a scalable system architecture and
a data-sharing mechanism become necessary for improving
system performance. The network-on-chip (NoC) paradigm for
intrachip communication has proved to be an efficient alter-
native to a hierarchical bus or crossbar interconnect, since it
can reduce wire routing congestion, and has higher operating
frequencies and better scalability for adding new nodes. In this
paper, we present a customizable NoC architecture along with
a directory-based data-sharing mechanism for an existing
CUDA-to-FPGA (FCUDA) flow to enable scalability of our system
and improve overall system performance. We build a fully
automated FCUDA-NoC generator that takes in CUDA code and
custom network parameters as inputs and produces synthesizable
register transfer level (RTL) code for the entire NoC system. We
implement the NoC system on a VC709 Xilinx evaluation board
and evaluate our architecture with a set of benchmarks. The
results demonstrate that our FCUDA-NoC design is scalable and
efficient and we improve the system execution time by up to 63×
and reduce external memory reads by up to 81% compared with
a single hardware core implementation.
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I. INTRODUCTION

H IGH-LEVEL synthesis (HLS) has increasingly been
adopted in hardware design to improve design time and

to perform design space exploration. Development, debug,
and design space exploration in high-level languages allow
improved breadth of exploration and reduced designer’s effort.

A variety of input languages have been used with
HLS, including Java [1], Haskell [2], [3], C/C++ [4]–[8],
OpenCL [9]–[11], C# [12], SystemC [13], [14], and
CUDA [15]–[18]. In general, using serial languages, such
as C/C++, HLS tools use user input and automatic paral-
lelization to generate a single, monolithic accelerator kernel.
In contrast, using parallel languages, HLS tools generate small
simple accelerators for independent threads of computation
with the intention that multiple accelerators are instantiated
to scale implemented parallelism. As a popular parallel pro-
gramming language, there are many existing kernels in CUDA,
and CUDA-to-FPGA (FCUDA) can explore kernel compu-
tation with FPGAs as an accelerator [15]–[18]. This also
provides a common programming language that can program
heterogeneous computing platforms that contain both graphic
processing units (GPUs) and FPGAs [18].

In the FCUDA flow [15]–[18], each hardware core has
private on-chip memory and computation logic, and multiple
cores are instantiated to improve throughput and latency.
This throughput-oriented synthesis allows fine-grained scaling
of the parallelism but also places stress on on-chip com-
munication and external memory bandwidth. When instan-
tiating many cores, they must share access to external
memory ports. Furthermore, the cores may process over-
lapping data; thus, the opportunity to share data on-chip
can reduce off-chip bandwidth pressure. For example, with
cores accelerating matrix multiplication (Fig. 1), independent
blocks process overlapping input data that can be shared
on-chip.

For a multicore accelerator design, cores must be inter-
connected to share access to external memory ports, as well
as to enable intercore communication for data-sharing. Cores
may be interconnected through a shared bus, point-to-point
connections, or a network-on-chip (NoC). Shared busses are
area efficient but do not scale in total bandwidth as the number
of cores increases. In contrast, point-to-point interconnections
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Fig. 1. Example of data sharing.

scale the total bandwidth, but the O(n2) scaling in connection
area is infeasible for large designs. Between these two options,
NoC interconnects balance bandwidth scaling and area con-
sumption.

NoC router designs have been well studied in recent
years [19]–[28]. In this paper, we significantly enhance an
existing NoC router to provide flexible bandwidth depending
on area-performance tradeoff, and integrate it into our prior
FCUDA flow and study the scalability and efficiency of the
NoC design. We develop an automated flow that generates a
fully configurable NoC system with a set of input parameters,
such as network size, number of router ports, flit widths,
and type of external memory (DDR2/DDR3). In addition, we
develop a distributed data-sharing mechanism in our NoC
system that efficiently reuses on-chip data and reduces
off-chip bandwidth pressure. Efficient data sharing is critical
to the NoC to improve performance and scalability before
external bandwidth is saturated.

This paper contributes to the study of throughput-oriented
HLS with the following.

1) A method for transparently integrating HLS-generated
cores with an NoC.

2) A scalable and fully configurable NoC that effectively
integrates many HLS cores into a system-level design.

3) A high-performance data-sharing mechanism that allows
efficient external bandwidth utilization.

4) A flexible NoC generation flow that allows
exploration and selection of application-specific NoC
architecture.

5) An HLS-enabled fully automated system generation flow
that generates the entire NoC design for a specific
application.

The rest of this paper is organized as follows. We first
review related works in HLS and NoC design in Section II.
We discuss the FCUDA hardware core generation flow
in Section III and the NoC design in Section IV. Finally,
we present and analyze the results from the experimental
evaluation of our FCUDA-NoC systems in Section V.

II. RELATED WORK

HLS has heavily been studied, with active projects in both
industry and academia [1]–[18]. Many of these approaches tar-
get single monolithic cores with all parallelism optimizations
internal to the core design. However, several works have con-
sidered a throughput-oriented design [9]–[11], [15]–[18], [29],
where the cores are intended to be multiply instantiated

at the system level to improve system throughput. This
approach allows for scaling through multiple instantiation, but
the design and optimization of the cores’ interconnection is
understudied.

There is significant prior work in the design and
generation of general networks for both application-
specific integrated circuit (ASIC)- and FPGA-based sys-
tems [19]–[28], [30]–[32]. In prior work, networks are
either designed independently as a generic network used
with a variety of cores [22], [24]–[26], [30]–[33], or as
an application-specific NoC [20], [21], [27]. Several such
works include automatic generation of NoCs for FPGA
platforms [22], [25], [34]–[36].

Despite these earlier works, there is no prior work inte-
grating NoC designs with HLS-produced cores. In order to
effectively integrate HLS cores and a network, it is important
to transparently retain the core’s interface with scalable perfor-
mance. Thus, in this paper, we first extend our prior FCUDA
synthesis flow [15]–[18] to enable network support for the
HLS-generated hardware computing cores. We then design a
fully configurable NoC router based on a prior open-source
router [22]. In addition, we develop a fully automated NoC
generation framework that produces a configurable and com-
plete NoC system providing scalable and efficient performance
with multiple instantiated HLS-generated cores.

III. BACKGROUND

Our FCUDA-NoC platform customizes the FCUDA flow to
enable transparent integration of the HLS-generated accelera-
tor cores in an NoC, including both efficient external memory
bandwidth sharing and a mechanism for automatically sharing
data between cores’ local memories. Before we discuss the
customizations to the FCUDA flow, the NoC router archi-
tecture, and design of the data-sharing mechanism, we first
introduce the FCUDA flow and the original NoC router and
interconnection architecture.

A. CUDA-to-RTL Flow
We choose our existing CUDA-to-RTL for FPGA (FCUDA)

flow [15]–[18] for integration with the NoC system.
We preferred the FCUDA flow for the following reasons:
1) earlier work [18] has shown that there is an intrinsic
advantage in using a parallel language input for HLS to
capture parallel computations more naturally; 2) CUDA is
widely used and can provide a common programming lan-
guage to program heterogeneous compute platforms contain-
ing both GPUs and FPGAs; and 3) FCUDA can explore
kernel computation with FPGAs as an alternative accelerator
for the existing CUDA kernels. Our FCUDA flow is based on
source-to-source translation of accelerator kernels written in
CUDA. CUDA kernels may be annotated with user pragmas to
define optimizations, such as loop unrolling, loop pipelining,
data merging, and grouping of computation and communi-
cation operations. Alternatively, the design space automa-
tion [16] and compute/data partitioning [17] may be performed
automatically.

After optimization, our flow translates the original CUDA
code into C code annotated with pragmas for Xilinx Vivado
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Fig. 2. Interface of a generated kernel core.

Fig. 3. FCUDA mapping.

HLS. Vivado is then used to synthesize the C code into
RTL that can be subsequently implemented on an FPGA.
Vivado produces a single accelerator core that uses the
Advanced eXtensible Interface-compatible ap_bus interface.
An example kernel core along with the snippet of the code
using pragmas is shown in Fig. 2. The arguments As and
Bs use ap_memory interface, and memport uses the ap_bus
interface protocol. The core is shown to be generated appropri-
ately with the corresponding protocols. The core also has ports
for gridDims and blockDims to specify workload distribution.
Though Vivado generates efficient single core accelerators,
instantiation of multiple cores, connection of communication
signals between the cores, and platform integration with
memory controllers are left to the user. Furthermore, during
synthesis, Vivado HLS has no contextual knowledge about
the number of cores that will be instantiated, the total amount
of work per accelerator core or the potential for data-sharing
between cores; the optimization of data-sharing must be per-
formed during core integration.

Each accelerator core is allocated private on-chip block
random access memory (BRAM), registers, and functional
units. One accelerator core execution will perform compu-
tation corresponding to one or more CUDA thread block’s
work, as shown in Fig. 3. Thus, optimization within a single
core explores fine-grained parallelism within a small group
of threads, and coarse-grained parallelism is further explored
through multiple instantiation of accelerator cores. These
explorations trade resource sharing among threads in the same
core, total work per-core execution and parallelism among
multiple cores.

B. Existing NoC Architecture

We develop our NoC architecture based on an existing
open-source NoC originally designed for Xilinx Virtex-4

FPGAs [22]. The open-source router is designed to have four
or five input/output ports. Input data are buffered through first-
inputs–first-outputs (FIFOs) at the input ports: if the desired
output port is available, data can propagate in a single cycle.
Each output port can transmit a single flit per cycle, and
hence the input FIFO will be emptied as fast as it can be
filled. However, if no output port would be available, the input
FIFO will quickly fill up. To avoid overruns, the input module
will signal the sender that no further data should be sent as
soon as it reaches almost full level. Thus, this back-pressure
signal stalls the neighboring routers before FIFOs are full. The
design uses wormhole routing to avoid the need for larger
packet buffers and to reduce latency. The NoC is statically
routed: during network generation, all routes are statically
precomputed and filled into each router’s routing table. XY -
routing is used to avoid adding complexity to the hardware.
In this paper, we select a 2-D-mesh interconnect topology
for its good bandwidth and scalability characteristics and
simple organization [37]. We customize the original, open-
source router to extend the maximum total network size and
maximum connection width. We will discuss our modifications
to the router and other NoC features in Section IV.

IV. FCUDA-NoC PLATFORM

Our FCUDA-NoC platform generation consists of multiple
stages and is shown in Fig. 4. The platform generation script
takes in CUDA code along with a set of input parameters
describing the network, including network size, packet size,
and directory size. In the first stage, CUDA is translated into
annotated C code, with parameterized inputs corresponding
to block dimension, thread dimension, and block and thread
indices in CUDA. Using these input parameters, the C-level
implementation computes the workload distribution [15], [16].
In the second stage, we use Vivado HLS to generate a
computing core from the annotated C code; this core can be
instantiated multiple times: each core has unique dimension
and index parameter settings to distribute total workload. In the
NoC integration stage, a single compute core is integrated
into a wrapper module with a customizable NoC router,
dual-ported BRAMs for local storage, and arbitration logic.
Multiple instantiations of the wrapper module are connected
in a top-level module. The generated top-level module instan-
tiates multiple cores, connects them in the 2-D-mesh topology,
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Fig. 4. NoC tool flow.

and connects the computation cores to the memory con-
troller. Our platform generation supports DDR2-, DDR3-, and
BRAM-based memory models. The output from this third
stage is the generated top-level module and the corresponding
testbench files. Finally, the simulation and implementation
projects are built for the generated NoC system automatically.

In order to automate core generation, NoC generation
and platform integration, as well as optimize data-sharing
opportunity, we develop a set of new features on top of
the original infrastructure, including address space mapping,
BRAM accessibility, and distributed control. We will now
discuss the core generation in detail.

A. CUDA-to-RTL Core Generation

In an NoC-based system, because all communications pass
through the network, all ports must be merged into a single
memory space. Furthermore, to integrate the cores transpar-
ently, local memories must be integrated so that both the core
and the network can interact with the memories. To map all
input data into a single memory space, each input array is
assigned an offset address. A data-sharing mechanism must
additionally maintain a mapping between external addresses
and the location of data in local BRAMs. Finally, each core
has private control. We will now discuss the implementation
of these new features in more detail.

1) Address Space Mapping: Inside the CUDA kernels,
interfaces to external memory are pointers to device memory.
Vivado HLS converts these pointers to independent communi-
cation ports. However, this will increase the number of ports if
the CUDA kernel tends to use multiple pointers. Furthermore,
NoC routers do not scale well with the number of ports per
router. We solve this problem by combining all the memory
interfaces into one port. We map multiple individual arguments
into a single external port with internally applied offsets.

Although Vivado-generated cores use valid memory
addresses to request data, the cores do not maintain a mapping
between external addresses and values stored in the local
(scratchpad style) BRAM storage. The cores iteratively request
and write back data to different data portions in external

Fig. 5. Wrapped kernel core.

memory, the same physical location in local storage may be
reused multiple times for different external memory addresses.
Thus, without an additional mapping between external mem-
ory addresses and local storage location, we cannot determine
if a particular global address has a local copy. We generate
a mapping function to ensure that for any external memory
address which can determine whether valid data for that
address is stored in a BRAM or not. A one-to-one mapping
ensures that there is no false data sharing. We implement
the mapping function statically using the number of thread
blocks, thread block dimensions, and instantiated core number
to determine the storage location in local BRAMs.

2) BRAM Accessibility: BRAMs are assigned to the cores to
temporarily store the requested data from external memory and
intermediate computing results. Xilinx Vivado can take advan-
tage of dual-ported BRAMs to improve memory throughput.
However, to integrate these BRAMs into an NoC transparently,
we reserve one BRAM port for the NoC for memory transac-
tions and data-sharing transactions, and the other port for the
compute core, as shown in Fig. 5. To implement sharing of
the dual-ported BRAMs, we export all input and output arrays
as function parameters so that we can instantiate and connect
the BRAMs in the NoC integration stage. Thus, the BRAM
can be accessed either by the core or by the NoC interface
through a BRAM controller.

3) Control: The original FCUDA flow creates a single
top-level module that includes several core instantiations.
It also has a centralized control for mapping the computation
onto separate cores [15]–[17], as shown in Fig. 6(a). There is
one set of external interfaces to the core, and the centralized
control is responsible for workload distribution to the cores.
However, for improved scalability, each core can compute
workload distribution independently using the per-core block
dimension, thread dimension, and block and thread index
parameters [Fig. 6(b)]. These parameters are fixed for any
particular system design; logic synthesis may perform local
optimizations of each core instantiation.

B. Data-Sharing Mechanism
A critical aspect of the performance scalability for an

FCUDA-NoC generated system is the ability to efficiently
share on-chip data. An efficient sharing mechanism enables
better use of external bandwidth as well as reducing average
request latency when latency of an on-chip access is less than
the latency of an off-chip access. Thus, an efficient sharing
mechanism improves both performance and scalability of the
networks before external bandwidth is saturated.

In this paper, it is also critical that the sharing mechanism
is transparent; cores are synthesized as independent blocks
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Fig. 6. Centralized control and decentralized control.

of datapath, memory, and control that are not designed to
facilitate sharing of memory values with other cores. Thus,
we develop a directory-based data-sharing mechanism that
serves as an intermediary between the HLS-generated cores
and the external memory system. Using the address mapping
described in Section IV-A1, we can perform a lookup to
determine if the requested data are already on-chip. To further
reduce external memory bandwidth demand, we also support
automatic merging of multiple memory requests to the same
address. We will now discuss these features in more detail.

Our directory-based data sharing is conceptually similar to
cache coherence [38]–[41], but with several key distinctions.
In the CUDA programming model, cores may share input
data, but outputs are not guaranteed to be coherent. The
CUDA programming model supports local synchronization
within a thread block, which would be implemented inside one
computation core, or global synchronization between kernel
calls through global memory, which would be implemented
as separate core types. Thus, we do not need to track data
updates; the directory-based sharing is purely a performance
optimization, and we do not need to track every item in
the memory space to guarantee correctness. Thus, we can
customize the number of tracked memory locations (directory
size) without affecting correctness.

1) Directory-Based Data Sharing: In the FCUDA-NoC
system, each node in the network is connected to an NoC
router which consists of a directory and a routing logic part.
External memory addresses are statically assigned to a home
directory in the routers, such that the location of the directory
for any external address is statically known. However, in
order to effectively scale the system, the directory is not
necessarily allocated enough storage to simultaneously track
all memory addresses. As discussed above, this does not
affect correctness but may affect sharing opportunity; if a
corresponding directory entry is not found for an address,
the access will produce an external memory access. A large
number of directory entries ensure that when data are on-chip,
it will be found correctly but also consumes resources that
may have been used for additional cores. We will examine the
relation between directory size and performance in Section V.

Input addresses are split into tag, index, and offset fields
similar to typical caching. The index maps each address in the

Fig. 7. Directory protocol.

system to a single directory index using the mapping function,
as described in Section IV-A1. An update to the directory
simply erases the prior information that was stored at the
index.

Each directory entry contains a tag field, location field, and
valid bit. As in typical caching, the tag is used to distinguish
between addresses that can be stored to the same directory
index. The location field contains the network address of the
core that contains the requested piece of data, and the valid
bit specifies whether or not the entry contains valid data.

The directory protocol is shown in Fig. 7. On a memory
read (1), the request is first routed to the home directory node
for that address. If the directory has a tag mismatch or invalid
entry, the request is forwarded to the memory controller (2),
and once data returns, the directory is updated (6), and the
requesting core receives data (5). The memory controller sends
two network packets, one to the directory and one to the
requesting core to separate the data payload and directory
update. If the directory has a tag match, the request is instead
forwarded to the core with the data (3), which forward the
data to the requesting core (4).

On a memory write, the directory system is ignored.
As per the CUDA programming model, it is not permitted
for other thread blocks (other instantiated hardware cores) to
view data updates. Thus, memory writes do not update the
directory but may produce invalidations if a memory location
changes from a valid to invalid mapping (7). Only memory
controller responses are allowed to update directory entries;
this simplifies the protocol as routers and cores cannot generate
update packets.



CHEN et al.: SCALABLE AND EFFICIENT NoC IMPLEMENTATION FOR THE FCUDA FLOW 2225

If there are multiple simultaneous requests for the same
(off-chip) data, there would be multiple external memory
requests. These duplicated requests will increase average
memory access latency and external memory bandwidth use.
Thus, we also track outstanding memory requests at the
addresses’ home node. When a subsequent memory request
reads the directory and determines that the mapping is not
valid but has already produced an outstanding memory request,
it will wait for the data to return instead of producing an
additional memory access. When the data returns to the core
that produced the original memory request, it will also be
forwarded to the second requesting core.

There is a possibility that in the intermediate time between
moving the waiting memory transaction from the address’
home node to the actual location data will return to, the data
are already evicted before being forwarded. This may cause
the request to wait indefinitely for the data. Thus, we also
have a waiting timeout; if a waiting request is not serviced
in the specified number of cycles, it will produce an external
memory request.

The directory system is implemented in a single dual-ported
BRAM shared between all the input ports of the NoC router.
In the 2-D mesh, there are four directional links and the link to
the core; because the core is more likely to generate addresses
mapped to its own router, the core is given priority to the direc-
tory to ensure low-latency address lookups. Furthermore, to
ensure forward progress and to improve sharing opportunities,
directory updates are given priority over read accesses.

C. CUDA-to-RTL NoC Router Architecture

The generated network for an FCUDA-NoC system should
have several characteristics in order to make the system
scalable in both the number of instantiated cores as well as
the performance of the resulting system. Thus, an NoC router
must be as follows.

1) Area Efficient: The router design should have minimal
area overhead.

2) Performance Efficient: The router design should not be
the critical path, or affect achievable frequency.

3) Flexible Bandwidth: The router should be customizable
to trade implementation area and communication band-
width.

Thus, to meet these goals, we extend the original open-
source router design in order to increase flexibility in the
design and implementation of the NoC. Before we discuss
details of router customization, we first introduce the packet
format for the interface protocol and the routing protocol.

1) Packet and Flit Format: In our statically routed NoC,
the packet format contains standard fields for tracking packet
validity, backpressure, and the next hop as well as the source,
destination, address, and data for the packet. The fields con-
tained in a packet are shown in Table I. In order to simplify
the communication protocol, the packet and flit are designed to
have the same header fields based on signals in Table I. Fig. 8
shows the packet format and flit format in the network. The
link width between two components in the network is equal
to the flit size, consisting of address, backpressure, flags, and
data payload. A packet may require multiple flits at smaller

TABLE I

LIST OF FIELDS IN A PACKET

Fig. 8. Packet and flit format.

TABLE II

LIST OF PACKET TYPES

flit sizes. In our NoC, the routers and cores are individually
addressed, so that data response packets are routed directly to
cores, and directory lookups or updates are routed to the cores’
routers. For different network sizes, the n bits of dest and src
are thus chosen, such that all routers and cores can be assigned
unique addresses. We additionally reserve a single address to
represent the memory controller. Thus, the total required bits
can be computed as in

2n ≥ 2 × (node number) + 1. (1)

In order to further reduce the connection width between
routers, the data and addr fields can be divided into small
parts and be transported in multiple flit payloads.

In addition, to support the transparent data-sharing mech-
anism, we extend the types of packets to include directory-
lookup and directory-update packets for determining whether
an external memory address is already in local BRAMs, and
updating the storage location, respectively. A list of packet
types is shown in Table II.

2) NoC Router: We extend the original router design pre-
sented in Section III-B to improve flexibility in both target
platform as well as architectural parameters for the network
design. First, we eliminate use of any device specific hardware
primitives. Then, we parameterize router parameters. Fig. 9
shows the block diagram of the extended router. The router
consists of two main components: 1) a user configurable
directory and 2) a user configurable routing logic. The router is
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Fig. 9. Architectural block diagram of FCUDA-NoC router.

shown with a configurable number of input/output ports, each
with its own FIFOs. We further explain and refer to this figure
while discussing the router components in the following. The
router features are in the following:

1) configurable number of input/output ports;
2) configurable network size;
3) configurable flit payload size, 1/2/4/8 bytes;
4) user configurable directory entry size;
5) user-specified routing table.
We now discuss the details of the important parameters for

the router components.
Flit Size: The flit size corresponds to the width of the

communication channel between routers, and thus higher flit
sizes will also correspond to increased routing resources as
the system size scales. The flit header size is changed with the
network size accordingly, as we described in Section IV-C1.
As a decisive parameter for the flit width, the flit payload
size can be configured in increments of 1 byte (1/8 of the
data payload size). In this paper, we test flit payload sizes
of 1, 2, 4, and 8 bytes, which corresponds to 28, 36, 52,
and 84 bits with a 5-bit address field (up to 3 × 3 network,
addressing routers and cores indvidually), and 36, 44, 60, and
92 bits with a 9-bit address (up to 12 × 12 network). The
wormhole flow control used in the original open-source router
is retained in our router [22]. The last bit signal is used when
the flit size is smaller than the packet size to ensure that all
data in one packet can be sent without interruption.

Input/Output Ports: Each input and output port is associated
with FIFO buffers that depend on the flit setting. The total
capacity of the buffers is user specifiable, and may store
multiple packets. Depending on the packet type, the input
ports will either communicate with the directory system (for
data sharing), or go through the bypass path to the routing
logic to send the flit to specified output port or port buffers.
The bypass path is shown in Fig. 9 (green region) connect-
ing the input FIFOs directly to the routing logic through
a multiplexor. Only address requests and directory-update
packets access the directory, and both packets only access
the directory presented in address’ home node. Thus, most
router traversals will not need to access the directory and we
optimize for this common case of skipping directory access
through a bypass path to minimize latency. In addition, the
arbiter (Fig. 9) is responsible for arbitrating BRAM port
access between multiple input ports using a simple round-robin
scheme. Without port access conflicts and directory access, the
router can receive/send one flit in two clock cycles. With a

Fig. 10. Generated system architecture. Key R: FCUDA-NoC router.
Key C: CUDA kernel hardware core.

directory access, it requires between two to eight additional
clock cycles including cycles for buffering of flit data and
accessing the directory entry.

Routing and Topology: The NoC is statically routed using
XY -routing and a one-hot encoded routing table for determin-
ing the next hop based on final destination The wormhole flow
control of the open-source router is retained in our design [42].
In regular topologies, static routing is straightforward to com-
pute and implement. The static routing minimizes resources
spent on routing logic.

Although our router architecture could implement multiple
different topologies, we concentrate on the 2-D-mesh topology
for an efficient tradeoff in area, cross-sectional bandwidth,
scalability, and routability of the communication links. The
generated system architecture is shown in Fig. 10. Each com-
putation core (C) is connected to a router (R) using one port of
the router, while the other ports are used to connect to the other
routers in a 2-D-mesh topology. The NoC and the memory
operate at two different clock frequencies, and communication
between the memory controller and the NoC is through asyn-
chronous FIFO embedded in the memory controller. This is
designed to enable the network part to run at a different clock
frequency from the memory controller, thus enables support
for different external memories (DDR2/DDR3).

We automatically generate routing tables for the network,
using a modified A*-based mechanism [43] to compute the
all-pairs shortest path between the cores in the network. The
routing tables are generated and automatically populated in
the routers by our automated NoC generation flow.

V. EXPERIMENTS

We will now present the experimental evaluation of our
FCUDA-NoC systems. First, we will demonstrate the scal-
ability of the NoC architecture in terms of area consumption
and its effect on the maximum number of instantiated cores.
We will then demonstrate performance scalability with and
without the on-chip data-sharing feature. We also present
the impact of on-chip data sharing in reducing the total
number of external memory transactions. Finally, we will
evaluate the impact of different network settings on the system
performance.
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TABLE III

CUDA KERNELS

TABLE IV

ROUTER COMPARISON

For our experiments, we use five benchmark applications.
The primary goal of this paper is to evaluate the NoC,
in particular, the benefits of on-chip data-sharing feature.
Thus, we select benchmarks with both low and high data-
sharing opportunities. The applications, data dimensions, and
descriptions of the CUDA kernels are presented in Table III.

For our experiments, we initially perform functional
simulation using ModelSim 10.1 and then perform logic
synthesis using Xilinx Vivado 14.2 targeting a Xilinx Virtex-7
XC7VX690T FPGA chip. For simulations, we use the DDR3
memory model and generate a memory controller (mig7.0.1)
using the memory interface generator tool integrated in
Xilinx Vivado 14.2 [44]. All designs are synthesized on a
64-core AMD Opteron server with 256 GB of RAM. We then
perform board-level implementation for the designs that are
synthesized (including placement and routing) within the
routing resource limit using a Xilinx VC709 platform, which
contains a Xilinx Virtex-7 FPGA. The VC709 platform
contains DDR3 memory. We use the highest achievable
clock frequency for implementing our designs on the board.
We also validated our simulation-based latency in clock
cycles with on-board measurements and found out that the
variation was <1.5%. The main difference between cycle
accurate simulation and on-board implementation is caused
by the nondeterministic effects of arbitration and memory
initialization time. In addition, we use functional simulation
to estimate the runtime of larger designs that cannot fit on
the VC709 due to routing resource restrictions, to evaluate
network scalability and demonstrate capabilities on future
FPGAs that may have more routing resources.

In the initial experiments, we synthesize the individual net-
work routers and cores to gather area and achievable frequency
information. We then analytically compute the maximum
number of instantiable cores, and compare these analytical
estimates to fully synthesized NoC systems.

A. Resource Usage

We first compare our FCUDA-NoC router to two other
popular open-source routers with their corresponding best
performance settings in terms of resource usage and clock
cycles per hop in Table IV. Both of these two routers are
well known as their high-performance router implementation.
When all the routers are set to 64-bits data width, the

Fig. 11. Router resource usage for different flit payload sizes and different
address field sizes with and without directory.

CONNECT [34] router has the smallest resource utilization
and the same cycle/hop efficiency as our FCUDA-NoC router.
The CONNECT router provides a Web page-based generator
to produce an optimized network, but it is not straightforward
to integrate computation cores and to customize the network.
The Stanford University router [33] has similar resource con-
sumption as our FCUDA-NoC router but has lower cycle/hop
efficiency. Compared with these other routers, our selected
original router has similar or superior area and performance.

We then synthesize the individual NoC routers and FCUDA
accelerator cores independently to evaluate resource usage and
achievable frequency. Fig. 11 shows the resource usage of a
single router for different flit data payload sizes and address
field sizes from 5 bit (up to 3 × 3 network) to 9 bit (up to
12 × 12 network), the routing table size is changing with the
network size as well. As the data payload, address field and
routing table size increase, there is only minor variation in the
per-router resource usage. In all the cases, a single router uses
<0.68% of the Virtex-7 FPGA, with lookup table (LUT) usage
as the constraining resource. The router without a directory
does not use BRAM resources; with a directory, each router
consumes a single BRAM, which corresponds to 0.03% of
available BRAMs (one block out of 2940 blocks of 18-Kbit
RAMs). All versions of the router have achievable frequency
greater than 400 MHz when synthesized individually.

We also synthesize each FCUDA core in both the orig-
inal version [15]–[17] as well as the version that merges
memory interfaces and enables dual-ported memory use, for
NoC integration (Fig. 12). Similar to the NoC routers, each
individual core consumes <1.2% of the target Virtex-7 FPGA,
and the LUT usage is the limiting resource in all the cases.
The version for NoC integration consumes slightly more
resources. Because each FCUDA core must use only one port
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Fig. 12. Kernel core resource utilization for different benchmarks with/without NoC support.

of the dual-ported memories, the internal logic is partially
serialized, requiring additional registers and control logic.
All the individual benchmark FCUDA cores with and without
NoC support can achieve a clock frequency higher than
142 MHz.

Comparing the synthesis results of the router and core, we
find that the smallest router is less than half the size of the
smallest FCUDA core, and even the largest router version
is roughly the same size as the FCUDA cores. Using the
synthesis data of individual cores and NoC routers, we build a
simple analytical model to estimate the resource consumption
of the network as we scale the number of nodes; we do not
consider routing and connection overhead. With this model, we
analytically compute the maximum number of cores that can
be instantiated in our Xilinx Virtex-7 FPGA. Let us assume
N is the number of computing nodes, also equal to the number
of routers in our system; RRes is the resource consumption of
the NoC router with the smallest flit setting without directory;
�R′

Res is the additional resource consumption of increasing
the flit width; �DRes is the additional resource consumption
of adding the directory system on top of the router;

∑N
0 CRes

is the total resource consumption of the kernel cores, and
MRes is the constant resource consumption of the external
memory controller instantiated in our system. We now model
the sum of all resources SRes for an ideal implementation that
has zero-cost core interconnection using

SRes =
N∑

0

(
RRes + �DRes + �R′

Res

) +
N∑

0

CRes + MRes.

(2)

Setting RRes and �R′
Res to 0 demonstrates the maximum

number of instantiable FCUDA cores if we did not have the
network router overhead. Next, we also calculate the maximum
number of instantiations using the smallest (1-byte flit payload,
no directory) and the largest (full data payload, with directory)
versions of the NoC router. Fig. 13 shows the maximum
instantiable cores for each combination of FCUDA core and
router, and since our system is in a 2-D-mesh topology, the
sizes are shown as n ∗ n. Though the router overhead is
fixed in terms of the number of resources, the impact on the
number of instantiable cores is dependent on the size of the
FCUDA kernel core. cp being the smallest kernel core

Fig. 13. Number of cores that can be instantiated in the target FPGA.

(from Fig. 12), adding the router significantly reduces the
number of instantiable cores, while the difference in instan-
tiable cores is less for conv1d. On average, the smallest
and the largest router reduces maximum instantiable cores
by 41.8% and 65.4%, respectively. This optimistic modeling
of resources helps the user to estimate the maximum pos-
sible network size for each of the benchmark application.
In practice, a synthesized design will use more resources than
our analytical estimation, since we do not attempt to model
additional resources due to routing and resource contention.

In addition, we estimated the routing capacity of our
targeted platform using the FPGA routing resource estimation
method presented in [45] and determine that a 64-router net-
work consumes more than 95% of the global routing resources.
For this reason, placement and routing failed for networks
of 64 or more nodes. After we perform full FCUDA-NoC
system synthesis (Section V-B), we determine that our analyt-
ically computed area consumption underestimates actual area
by 5.4% on average. However, this simple analytical model
helps estimate the maximum instantiable network either based
on resource usage or routing capacity. With sufficient routing
ability, the user can maximize instantiations using a small
router, or sacrificing maximum instantiable cores to use a
larger router. With constrained routing resources, the user can
freely maximize router and core features, understanding that
the maximum network size may be constrained by routing
resources rather than total design area. The impact of the data
sharing will be explored later in this section.

Our FCUDA-NoC architecture can potentially instantiate
large networks of cores. Depending on core design, the
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Fig. 14. Performance and resource scaling of mm without directory.

Virtex-7 may have sufficient area for over 100 cores, yet
the maximum network size is <64. However, increasing the
number of instantiated cores does not necessarily guarantee
improved performance. Furthermore, for efficient workload
distribution, our mesh topology requires a square array of
cores with the mesh dimensions being an exact divisor of the
CUDA kernel workload. Thus, in the board-level performance
evaluations, we use network sizes of 1, 3 × 3, 4 × 4, and
6 × 6 cores.

Although network sizes of 8 × 8 and above are infeasible
on our Virtex-7, we use frequency and resource consump-
tion results to demonstrate the network scalability assum-
ing the availability of a sufficiently capable architecture.
In Section V-B, we will demonstrate the area and performance
scaling properties of our FCUDA-NoC platform with different
network settings followed by a study of the effectiveness of
on-chip data sharing.

B. Scalability Evaluation

We now study the scalability of the NoC systems generated
for the benchmarks. The network size scales from one core to
the maximum mesh network size that can fit on our VC709
platform.

First, we present the scaling of performance and resource
utilization without on-chip data sharing for the benchmarks
in Figs. 14–17. To evaluate scalability, we compute speedup
compared with designs with a single core. We only present the
LUT utilization data, since we demonstrated earlier that LUTs
are the limiting resources for scaling of our network. The
network size impacts the achievable clock frequency of the
system; we achieve 140 MHz for all one core implementation,
125 MHz for the 9 and 16 core implementation, and 100 MHz
for the 36 core implementation. We use 100-MHz clock
for the larger networks that are infeasible on the selected
Virtex-7. Results of dct and idct benchmarks are nearly the
same; we only present the results of dct. We display resource
scaling and performance speedup of both minimum flit size
(1-byte flit payload) and maximum flit size (full flit payload).
The data size used in this experiment is equal to (biggest
network size)×(data per-core compute). We observe that
adding more cores to the network does not necessarily improve
the performance (mm and conv1d) as external memory band-
width may become saturated and be the bottleneck after
a certain network size for memory intensive benchmarks.
However, if the benchmark is computation intensive (cp, dct,

Fig. 15. Performance and resource scaling of cp without directory.

Fig. 16. Performance and resource scaling of dct without directory.

Fig. 17. Performance and resource scaling of conv1d without directory.

and idct), we observe a proportional increase in performance
as the network size is increased.

Next, we enable on-chip data sharing and use a directory
size of 512 entries and present the scaling of performance
and resource utilization for the benchmarks in Figs. 18–21.
We preserve the same format, as shown in Figs. 14–17, for
consistency and easier comparison. We observe that on-chip
data sharing has significantly improved the performance
scaling of mm benchmark by over 5.26× due to the poten-
tially higher sharing opportunity. We also observe improved
performance in cp and dct(idct) due to on-chip data sharing,
despite not being memory bandwidth limited. Adding the
directory-based on-chip data sharing has an impact on the
LUT utilization: the average overhead in terms of LUT usage
of adding directories is between 2.35% in small networks
and 15.6% in large networks. Overall, the resource utilization
curve and the performance curve have similar trends. This
proves that additional resources for network improvement
and data sharing improve the system performance. How-
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Fig. 18. Performance and resource scaling of mm with directory.

Fig. 19. Performance and resource scaling of cp with directory.

Fig. 20. Performance and resource scaling of dct with directory.

Fig. 21. Performance and resource scaling of conv1d with directory.

ever, conv1d has negligible performance improvement due to
on-chip sharing. This could be due to the limited data reuse
characteristic of the benchmark. To further understand the data
reuse potential of the benchmarks, we evaluate the reduction
in total number of memory reads for each of the benchmarks.

For evaluating the number of memory accesses, we select
the maximum flit payload size of 8 byte and 512-entry direc-
tory size for the network in order to eliminate the impact of the
flit width and directory size. For the baseline, we use a network

Fig. 22. Normalized off-chip memory read of different benchmarks with
different network sizes.

Fig. 23. Highest achievable speedup without and with data sharing.

with flit payload size of 8 byte and data sharing disabled.
Thus, in the baseline case, the number of external memory
reads is equal to the total number of memory reads by all
cores as all requests have to access external memory. Fig. 22
shows the normalized external memory reads in the directory-
enabled network compared with the baseline network. Since
the on-chip data reuse is enabled by the directory system and
the directories are distributed in every router, the total directory
size increases when the network scales. This translates to
increased on-chip data reuse before the reuse ratio reaches the
upper limit of the application. mm has the highest opportunity
for data reuse and has reduced the number of external memory
reads by 81%. This reduced memory accesses translated to
improved performance scaling in Fig. 18. On the other hand,
conv1d has the least opportunity for data sharing and has
reduced the memory reads only by 33.85%. Though the
data reuse ratio for conv1d increases as the network scales,
the overhead of on-chip communication also increases and
limits any performance improvement. We confirmed from the
collected run-time information that the average data access
latency for conv1d is longer compared with other benchmarks.

To enable direct comparison, Fig. 23 shows the high-
est achievable speedups without data sharing and with
data sharing for the benchmarks. It also shows the corre-
sponding resource utilization. The highest achieved speedups
with directory-enabled NoC are consistently higher than the
speedup achieved without directories for all benchmarks.
On average, the highest achievable speedup without directory
is 15.8×, and it goes up to 21.6× with directory enhancement.
In some benchmarks, such as mm and conv1d, we observe that
the directories not only obtain higher speedup but also achieve
them with fewer number of cores (hence, comparatively fewer
resources) than the NoC with no directories. Overall, the
results demonstrate that though the directory system and net-
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Fig. 24. System execution time of 36 cores mm.

Fig. 25. System execution time of 36 cores cp.

Fig. 26. System execution time of 36 cores dct.

Fig. 27. System execution time of 36 cores conv1d.

work enhancements will consume additional resources, which
can otherwise be used for instantiating more cores in the
system, they significantly improve the system performance for
applications with high data reuse opportunity. We now explore
different network settings and study their impact on system
performance.

C. Application-Specific Network Setting Exploration
We now study the impact of flit size and directory size on

the system execution time. Network with 1-byte flit payload
size and no data sharing is considered as the baseline, and the
results of the other network settings are normalized to the base-
line and shown in Figs. 24–27. The graphs show the impact of
network settings on a 6 × 6 network for all the benchmarks.

Fig. 28. Memory read of different benchmarks with 36 cores.

The size of directory varies from 0 to 512 in powers of 2,
and dir0 represents no data sharing. The directory is designed
to enable on-chip data reuse, and increasing directory size
improves on-chip data sharing before the sharing ratio reaches
the upper limit of the particular benchmark. The difference
in data reuse characteristics of the benchmarks also lead to
different requirements of network settings, especially directory
sizes. In general, higher flit sizes provide better performance
at the cost of additional LUT resources. Smaller flits, though
resource efficient, cause long on-chip communication latency.
In the case of mm, there is high data-sharing opportunity, as
each core has a potential of reusing as much as 83.3% of its
data items from other cores. Although other benchmarks have
sharing opportunity, the data in the above-mentioned figures
demonstrate that the replacement of data items in on-chip
storage together with the temporal locality of other cores’
requests yields little additional benefit if we can track the
16 most recent data items. Other data items are either unlikely
to be requested by other cores or unlikely to be on-chip by
the time they are requested. As the directory system needs the
whole data address to trace the location of the on-chip data, a
smaller flit size requires more buffering time to get the whole
address data, and leads to long execution time overhead.

Finally, we present the impact of directory size on the
memory accesses in Fig. 28. Intuitively, higher directory
sizes should increasingly reduce external memory accesses,
since a large number of reads will be serviced by on-chip
data. We observe this general trend in the results, though
each benchmark attains the maximum memory reduction at a
different directory size. Flit sizes have no effect on the external
memory accesses and only impact the system performance by
affecting on-chip latencies. The performance improvement of
mm is strongly related to memory read reduction, while cp,
dct, idct, and conv1d benefit from both memory reduction and
increased flit size.

In summary, the on-chip data reuse feature in our
FCUDA-NoC significantly improves system performance for
memory intensive applications, such as mm. For applications
that are computation intensive, we require data sharing and
increased flit width to improve system performance. In the
case, a tradeoff between resources usage and performance is
desired, or for benchmarks that are not significantly affected
by flit size, users can reduce the flit size accordingly. Using the
configurable network router generator, we enable selection of a
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customized NoC design based on the individual characteristic
of the input application.

VI. CONCLUSION

In this paper, we presented an NoC architecture integrated
with our prior FCUDA flow. We designed a configurable
directory enhanced NoC router to enable on-chip data sharing.
Our automated flow to generate the entire NoC system at RTL
level with CUDA code input, and implement the architec-
ture on a Xilinx VC709 evaluation board. Our FCUDA-NoC
architecture is highly parameterized and allowed exploration
of the NoC’s design space. The design choices in our system
enable creating an NoC that considers tradeoffs between router
features and total network size to suit the application and meet
performance requirements.

With our configurable FCUDA-NoC architecture, we
demonstrated the capability of generating a complete NoC
system with CUDA code input. Using the FCUDA-NoC
architecture, we achieved a speedup of upto 63× (40.6× on
average) and reduced external memory reads by upto 81%
(56% on average) compared with a single hardware core
implementation. In future work, we plan to develop new topol-
ogy generation methods in order to generate different network
topologies (e.g., torus versus mesh) for different benchmarks,
as well as explore clustering and additional network hierarchy
exploration.
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