
Integrated Instruction Cache Analysis and Locking in
Multitasking Real-time Systems

Huping Ding2, Yun Liang1, and Tulika Mitra2

1Center for Energy-efficient Computing and Applications, School of EECS, Peking University
2School of Computing, National University of Singapore

{d-huping,tulika}@comp.nus.edu.sg, ericlyun@pku.edu.cn (contact author)

ABSTRACT
Cache locking improves timing predictability at the cost of perfor-
mance. We explore a novel approach that opportunistically em-
ploys both cache analysis and locking to enhance schedulability in
preemptive multi-tasking real-time systems. The cache is spatially
shared among the tasks by statically locking a portion of the cache
per task. To overcome the issue of limited cache space per task,
we keep a portion of the cache unlocked and let all the tasks use it
through time-multiplexing. Compared to locking the entire cache
for each task during execution, our approach obviates the cost of
reloading locked blocks at preemption. But we require static cache
analysis for WCET estimation and cache related preemption delay
(CRPD) analysis of the unlocked cache space. We design an algo-
rithm to make appropriate locking decisions through accurate cost-
benefit analysis. Experimental results show that our integrated ap-
proach leads to substantially improved schedulability results com-
pared to cache analysis and cache locking employed individually.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]: [Real-
time and embedded systems]

General Terms
Algorithm, Design, Performance.

Keywords
Real-Time, Multi-tasking, WCET, CRPD, Cache Locking.

1. INTRODUCTION
Multi-tasking real-time systems demand predictable timing be-

havior from the underlying architectural mechanisms employed to
execute the tasks. Modern micro-architectures, however, perform
aggressive dynamic optimizations to improve performance at the
cost of timing predictability. The instruction cache is one such ar-
chitectural feature that is ubiquitous in real-time embedded sys-
tems. But the instruction cache introduces two challenging prob-
lems in multi-tasking real-time systems. First, in the presence of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’13, May 29-June 07 2013, Austin, TX, USA
Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

an instruction cache, it is difficult to estimate the Worst-case Exe-
cution Time (WCET) [28] of a task through program analysis as it
is not known statically whether a memory access will hit or miss
in the cache. Second, in a preemptive multi-tasking system, when
a task T gets preempted by another task T ′, the memory blocks of
T are replaced by those of T ′ in the cache. Once T resumes exe-
cution, it needs to bring in the replaced memory blocks again into
the cache. This cost is known as Cache Related Preemption Delay
(CRPD) [13] and adds a variable delay to the fixed context switch-
ing cost. The delay depends on the number of replaced memory
blocks that are used again in task T . The schedulability analysis of
a task set requires both the WCET and the CRPD values.

At the other end of the spectrum, we have cache locking [8, 9, 19]
that offers completely predictable cache behavior and avoids the
complexity of cache modeling altogether. The cache is locked with
selected memory blocks from a task before execution. The memory
blocks locked in the cache are guaranteed to be cache hits, while the
remaining blocks are guaranteed to be cache misses, obviating the
need for cache modeling in WCET analysis.

In multi-tasking systems, there exist two different locking ap-
proaches. Puaut and Decotigny [23] propose space sharing of the
entire cache by locking a portion of the cache per task. We call
it PD-Locking approach following the last names of the authors.
The advantage of this approach is that the cache content remains
unchanged throughout the execution of the tasks. The downside is
that each task has access to only a fraction of the cache. Aparicio
et al. [4] observe this limitation and introduces a time-multiplexed
sharing of the cache through locking, called ASRV-Locking approach
in the rest of the paper. In this approach, a task has exclusive access
to the entire cache during execution and locks the cache with its
own memory blocks leading to improved WCET per task compared
to PD-Locking approach. However, when a task resumes execution
after preemption, it has to reload the locked cache blocks leading
to significantly higher (but fixed) preemption cost. Note that both
approaches can bypass CRPD analysis as PD-Locking does not re-
quire cache reloading at preemption, while ASRV-Locking has fixed
cache re-loading/locking cost at preemption.

We propose a non-traditional approach that judiciously combines
cache locking with cache modeling in preemptive multi-tasking
real-time systems and overcomes the space limitation of PD-Locking
and cache reloading cost at preemption for ASRV-Locking. Similar
to PD-Locking, we adopt space sharing by statically locking a por-
tion of the cache per task but with a crucial difference. We leave
a portion of the cache unlocked and let the tasks take advantage
of this unlocked portion during execution through normal cache
replacement policy. That is, the locked portion of the cache is stati-
cally shared, while the unlocked portion is time-multiplexed among
the tasks. This relaxes the space constraint for each task and elimi-

C1 = 6 miss = 12
Static Analysis (No Locking)

PD-Locking (Static Locking)

Cache Hit 1
Cache Miss 2

Latency
P1 24
P2 36

Task Period
T1 (m1m2m3)2

T2 m44m54m64

WCET Path

C2 = 3 miss + 9 hit = 15

m4 m5
C1 = 6 miss = 12 C2 = 4 miss + 8 hit = 16

ASRV-Locking (Dynamic Locking)
m1 m2

C1 = 2 miss + 4 hit = 8 C2 = 4 miss + 8 hit = 16
Locking + Analysis (Partial Locking) m1

C1 = 4 miss + 2 hit = 10 C2 = 3 miss + 9 hit = 15

Locking of T1

m4 m5

Locking of T2

T1,1 ,T2,1 ,T2,2

T1,1 ,T2,1 T1,2 T1,3,T2,2

12 24 36 48 60 72

T1,2 T1,3

CRPD = 1

T1 deadline T1 deadlineT2 deadline

T2 meets
deadline

T1,1 ,T2,1 T1,2 ,T2,2 T1,3PD-Locking

ASRV-Locking

(b) Scheduling of tasks with RMS

Preemption Load cache = 2

Static analysis T1,1 ,T2,1 T1,2 ,T2,2 T1,3

(a) WCET of various locking schemes

Locking +
Analysis

T2 misses
deadline

T2,2

T2,2

T2,2

T2,2

T2,1

Figure 1: Motivating example.

nates cache re-loading at preemption. However, WCET and CRPD
analysis are required for the unlocked portion of the cache.

Why do we want to give up the predictability offered through full
cache locking, but not embrace static cache analysis all the way?
We believe cache locking comes to rescue when cache analysis is
unable to conclusively classify a memory access as hit or miss. At
the same time, advancement in both WCET and CRPD analysis
ensures that we can analyze the cache behavior quite precisely for
most of the memory blocks. These memory blocks with predictable
access patterns can reside in the unlocked portion of the cache pro-
viding improved performance. Indeed recent work [8] shows that,
for a single task, a partially locked cache provides optimal WCET
compared to both static analysis and full cache locking.

While Ding et al. [8] develops partial cache locking solution for
a single task, it is challenging to make a locking decision for multi-
tasking systems. First, the change in execution time of a task im-
pacts the schedulability of the other tasks. Thus, we need to adopt a
global optimization approach rather than a local per task approach.
Second, the unlocked portion of the cache requires CRPD analysis.
We propose an algorithm that employs accurate cost-benefit analy-
sis to capture the impact of locking a memory block on the WCET,
CRPD, and schedulability of all the tasks and thereby makes an in-
formed decision to choose the appropriate memory blocks for lock-
ing. We perform detailed experimental evaluation to validate the
improved schedulability results of our approach.

Motivating Example. We illustrate the benefit of our integrated
cache analysis and locking using the example in Figure 1.

WCET comparison of various locking schemes. Figure 1(a) com-
pares the WCET under various locking schemes. We assume two
tasks T1 and T2 with periods 24 and 36. Cache hit latency is 1 cycle
and miss latency is 2 cycles. The WCET paths of T1 and T2 are
(m1m2m3)

2 and (m4
4m4

5,m
4
6) where mi represent a memory block.

We assume all the memory blocks are mapped to the same cache
set in a 2-way set associative cache. To simplify discussion, we
also assume that timing is solely determined by instruction cache
effects and the WCET paths do not change after locking.

Static Analysis estimates the WCET via cache modeling with no
locking [24]. For T1, all the accesses are miss because 3 memory
blocks compete for 2 cache blocks resulting in 6 cache miss and
WCET C1 = 12. For T2, it has 3 cold miss while remaining accesses
are hit resulting in C2 = 15. PD-Locking statically locks the entire
cache with memory blocks from T2 by selecting memory blocks
with highest access f requency/period [23]. Thus, accesses of T1

miss, while for T2 it depends on which blocks are locked. ASRV-
Locking employs dynamic locking where each task has exclusive

access to the entire cache. WCET of T1 is reduced; but not the
WCET of T2. Finally, our Locking + Analysis judiciously chooses
to lock only one block of T1 and leaves the other cache block un-
locked so that T2’s accesses are still hits after the cold misses.

Scheduling results of RMS. Let us assume that the reloading over-
head for ASRV-Locking is 2 and the CPRD for our Locking + Analy-
sis is 1. The execution of the tasks over the hyper-period is shown in
Figure 1(b). The tasks are scheduled with Rate Monotonic Schedul-
ing (RMS) policy where the task with the shortest period (T1) has
the highest priority. TX ,Y represents the Y th instance of task TX .
For Static Analysis and PD-Locking, they fail to meet the deadline
due to high WCET. The CRPD for Static Analysis is not shown as
the task already misses the deadline. For ASRV-Locking, each task
locks the entire cache and thus have lower WCET. However, every
time a new task instance starts execution or a preempted task re-
sumes execution, we need to reload and lock the cache with 2 cycle
penalty. The additional cache reloading overhead makes T2 miss
its first deadline. Due to time-multiplexing of the unlocked cache
space among all the tasks and lower preemption cost, our Locking
+ Analysis solution has lower WCET compared to Static Analysis
and ASRV-Locking. This enables both T1 and T2 to meet their dead-
lines. A comparison with real task sets will be presented later in
the experimental evaluation section.

2. RELATED WORK
Caches are problematic for WCET estimation due to their tim-

ing unpredictability. Static analysis has been widely used to bound
the WCET [15, 24] of a single task. In multi-tasking preemptive
real-time systems, a number of techniques have been proposed to
accurately model the CRPD [13, 25, 21, 12].

Modern architectures often feature cache locking for better tim-
ing predictability. By carefully selecting the memory blocks for
locking, WCET can be improved. There exist two locking mecha-
nisms, static cache locking [9, 19, 22, 16] and dynamic cache lock-
ing [5, 26]. However, all of the above techniques lock the entire
cache. Recently, Ding et al. [8] demonstrated that by partially lock-
ing the cache, WCET can be improved significantly.

In the context of multi-tasking real-time systems, Puaut and De-
cotigny [23] propose two static low complexity locking algorithms.
Aparicio et al. [4] propose a dynamic locking solution based on In-
teger Linear Programming. Campoy et al. [7] develop static locking
solutions using generic algorithms. Liu et al. [20] also propose dy-
namic locking solution within a task. We do not consider dynamic
locking within a task as it requires code modification by inserting
cache reloading instructions as shown in [20]. Again, these tech-
niques lock the entire cache. Verma et al. [27] propose a hybrid ap-

proach for scratchpad memory allocation in multiprocess systems.
Each process is allocated a disjoint region while the rest portion
is shared by all processes. Their approach aims to minimize the
energy consumption. Scratchpad memory does not have any ad-
dress mapping constraint as in cache. Moreover, there is no timing
unpredictability issue in scratchpad memory, making the problem
somewhat simpler. Meanwhile, real-time scheduling is not consid-
ered in their work.

3. SYSTEM MODEL
In this section, we present the basic models of caches and tasks.

Cache Model. Cache design involves a few parameters: line (block)
size L, which defines the unit of data or instruction transfer between
the cache and main memory; number of cache sets K that the cache
is divided into; associativity A, which determines the number of
cache lines in a set. Then, the capacity of the cache is L×K ×A.
We assume LRU (Least Recently Used) cache replacement policy.

Given a memory block m, it can be mapped to only one cache
set (m modulo K). To simplify the following discussion, we as-
sume there is only one cache set as the different cache sets do not
interfere with each other. However, our locking algorithm works
with multiple cache sets. We use M to represent the set of mem-
ory blocks mapped to a cache set. We also use ⊥ to indicate the
absence of any memory block in a cache line.

DEFINITION 1 (Concrete Cache State). A concrete cache
state c is a vector 〈c[0], ...,c[A− 1]〉 of length A where c[j] ∈ M ∪
{⊥}. If c[j] = m, then m is the jth most recently used memory
block in the cache set. We also define a special concrete cache
state c⊥ = 〈⊥, ...,⊥〉 called the empty concrete cache state.

DEFINITION 2 (Abstract Cache State). An abstract cache
state a is a vector 〈a[0], ...,a[A−1]〉 of length A where a[j] ∈ 2M.

An abstract cache state maps a cache block to a set of mem-
ory blocks. At a program point, the abstract cache state is a safe
approximation of the concrete cache states along all the incoming
program paths, and hence is a more compact representation. Both
concrete and abstract cache states have been widely used in real-
time systems for timing analysis [17, 24].

Task Model. We assume a preemptive multi-tasking real-time sys-
tem running on uni-processor with a set of N independent periodic
tasks T = {T1, ...,TN}. For each task Ti, we use Pi to represent
its period and Ci to represent its WCET. We assume the deadline
Di = Pi. The Ci value is obtained by performing intra-task WCET
analysis for Ti. In other words, the WCET analysis is performed
in isolation per task. In processors with caches, we also need to
account for the delay due to preemption: the CRPD and the context
switching cost. For each task Ti, we use Δi to denote the delay due
to preemption. Let U be the total processor utilization for the task
set. A necessary condition for feasible scheduling of the task set is

U =
N

∑
i=1

Ci +Δi

Pi
≤ 1 (1)

The delay due to preemption for task Ti is defined as follows.

Δi = ∑
Tj∈pt(Ti)

(CRPD(Ti,Tj)+CSC)×n(Ti,Tj) (2)

where pt(Ti) is the set of tasks that may preempt Ti, CRPD(Ti,Tj)
is the CRPD of Ti imposed by Tj in one preemption, n(Ti,Tj) is the
bound for the number of preemption of Ti imposed by Tj , and CSC
represents the context switching cost.

EDF Scheduling. Earliest Deadline First (EDF) is a dynamic pri-
ority based scheduling policy. The priority of a task is determined
by its deadline. At any time instance, EDF chooses the ready task
with the closest deadline for execution. For EDF, Equation 1 (U ≤
1) is both sufficient and necessary condition for feasible schedule.
The task set that may preempt T consists of all the tasks that may
have earlier deadline than T [11].

RMS Scheduling. Rate Monotonic Scheduler (RMS) is a static
priority based scheduling policy. The priority of a task is deter-
mined statically by its period. Task Ti has higher priority than task
Tj if Pi < Pj . Therefore, the set of tasks that may preempt T is the
set of tasks with higher priority. Unlike EDF, U ≤ 1 is not a suf-
ficient condition for feasible schedule with RMS. There exists no
polynomial time schedulability test for RMS. An iterative method
is employed to estimate the response time of each task and compare
it against the deadline.

Sn+1
i =Ci + ∑

Tj∈hp(Ti)

	Sn
i

Pj

(Cj +CRPD(Ti,Tj)+CSC) (3)

where Sn
i is the response time of Ti in the nth iteration, and hp(Ti)

represents the set of tasks that have higher priority than Ti.

4. FRAMEWORK OVERVIEW
We first provide an overview of our integrated analysis and lock-

ing approach. We propose to statically lock a part of the cache per
task, while a part is left unlocked to be used by all the tasks. The
locked cache space is spatially shared among the tasks, while the
unlocked cache space is temporally shared by all the tasks.

According to Equation 1, the execution time of a task depends on
both intra-task WCET and inter-task CRPD. For the locked mem-
ory blocks, they do not incur any CRPD as they can not be evicted
from the cache and their impact on the WCET can be easily deter-
mined. However, for the unlocked memory blocks, we still need
to perform static analysis for both intra-task WCET and inter-task
CRPD analysis as they use the remaining unlocked cache space.

Is�there�Is�there�
improvement

?
Yes

End
NoWCET�&�

CRPD�
analysis

Select�a�
memory�

block�to�lock

Cost�
benefit�
analysis

Light�WCET�
&�CRPD�
analysis�

Figure 2: Framework for Locking + Analysis approach.

Figure 2 illustrates the flow of our Locking + Analysis approach.
We first perform intra-task WCET analysis with abstract interpre-
tation [24]. Meanwhile, we also perform inter-task CRPD analysis
[12]. Then, for each memory block in the task set, a cost-benefit
analysis on WCET and CRPD is carried out for cache locking.
This cost-benefit analysis captures the impact of locking a mem-
ory block on the WCET, CRPD, and schedulability of all the tasks.
Based on this cost-benefit analysis, we choose the most profitable
memory block to lock. We perform intra-task WCET analysis and
inter-task analysis again after locking this memory block. We call
it light WCET & CRPD analysis, because it avoids some unneces-
sary cache analysis compared to the full-fledged WCET & CRPD
analysis. If either the schedulability or the utilization improves,
we continue to lock other memory blocks. Otherwise, the iterative
process stops and we obtain the final solution.

5. WCET AND CRPD ANALYSIS
In the following, we present a brief description of the static anal-

ysis techniques for intra-task WCET and inter-task CRPD estima-
tion (see Figure 3). This analysis ignores cache locking. But this

Ci CRPD+

Intra-task WCET

Must and May
Analysis

Cache Access
Classification

WCET
Computation

Inter-task CRPD

RCS and LCS
Computation

UCB and ECB
Computation

Cache Resilience
Computation

CRPD Computation

Figure 3: WCET and CRPD Analysis.

background material is required to appreciate the WCET and CRPD
estimation in the presence of cache locking for our cost-benefit
analysis presented in the next section.

5.1 Intra-Task WCET
As shown in Figure 3, intra-task WCET analysis involves three

steps. First, it performs abstract interpretation — must and may
analysis — based on abstract cache states [24]. Must analysis de-
termines the set of memory blocks that are guaranteed to be present
in the cache at a program point. May analysis captures the set of
memory blocks that may be present in the cache at a program point.
Next, the memory blocks are classified based on the must and may
analysis. The memory blocks present in the abstract cache states
of must analysis are classified as always hits; the memory blocks
not present in the abstract cache states of may analysis are clas-
sified as always misses; the remaining memory blocks belong to
non-classified category, i.e., they are assumed to be cache misses
during WCET estimation. Finally, the WCET is derived based on
the memory accesses classification.

5.2 Inter-Task CRPD
A preempted task T incurs CRPD as some of its useful memory

blocks are evicted from the cache by the preempting task T ′. The
“useful" memory blocks are those memory blocks that have been
loaded into the cache before preemption and may be accessed again
after preemption. Thus, the key to CRPD analysis is to determine
the useful cache blocks of the preempted task and verify whether
they could survive after the preemption.

Recently, Kleinsorge et al. [12] proposed a CRPD estimation
approach for set associative caches that combines techniques for
direct mapped caches [21] with resilience analysis for set associa-
tive caches [3]. Concrete cache states are fundamental to inter-task
CRPD analysis [12, 21]. Given a program point, it may be reached
via multiple program paths, which leads to multiple concrete cache
states. Thus, in general, it is infeasible to maintain all the possi-
ble concrete cache states for large programs with complex control
flow. Inter-task CRPD analysis aims to identify the cache states
with the largest number of useful memory blocks and thus higher
preemption delay. The subsumed cache states (with lower number
of useful memory blocks) can be safely removed. Hence, it is fea-
sible to use concrete cache states for inter-task CRPD analysis as
shown in [12, 21]. We adopt the technique in [12] to estimate the
CRPD for a single preemption. The approach in [12] depends on
the computation of UCB (useful cache blocks) and ECB (evicting
cache blocks). The resilience of a UCB defines the maximum num-
ber of allowed memory accesses from the preempting task before
it can be evicted. Figure 3 shows the four steps of CRPD analysis
in [12] that are detailed in Appendix A.

During the execution of task T , it is possible that higher pri-
ority task T ′ preempts lower priority task T multiple times. The

preemption bound imposed by T ′ on T is denoted as n(T,T ′) in
Equation 2. n(T,T ′) depends on the scheduling policy. For EDF
scheduling policy, we use the approach in [11] to bound n(T,T ′);
for RMS scheduling, n(T,T ′) is a by-product of the response time
computation as shown in [18] and Equation 3.

6. LOCKING ALGORITHM
As we have mentioned, existing locking techniques for multi-

tasking systems allocate the entire cache for locking [4, 23]. Such
locking techniques eliminate the CRPD analysis at the expense of
poor performance. Thus, it is relatively easy to compute the mem-
ory blocks to be locked. While in our approach, there is a complex
interplay between cache locking and its impact on schedulability
analysis. When a memory block of task T is locked in the cache,
T generally benefits from the locking. However, it also takes away
valuable cache space from the remaining tasks and also changes
their CRPD. Any exact locking algorithm for our approach will
have exponential complexity. Thus we design an efficient heuristic
to decide on the memory blocks to be locked.

As noted earlier, we first perform intra-task WCET analysis and
inter-task CRPD for each task in the task set (see Figure 2) when no
memory block is locked. Then we compute the processor utiliza-
tion and response time for each task. As a by-product of intra-task
WCET analysis, we have the abstract cache states (must and may)
at each program point. We also collect the memory blocks along
the WCET path and their execution frequencies for each task. Sim-
ilarly, we record the worst-case preemption point and the corre-
sponding UCB and ECB for each task during CRPD analysis. We
design an iterative solution to select the memory blocks for locking.
In each iteration, we choose the most beneficial memory block for
locking. The benefit of locking a memory block is defined differ-
ently for different scheduling policy (see section 6.3). We stop this
process when there is no benefit due to locking and the remaining
cache space is left unlocked.

The cost and benefit of locking is based on the following ob-
servations. Given a memory block m ∈ T , if m is locked, then all
the accesses to m are cache hits. But as cache size is reduced, it
might have negative impact on the other memory blocks mapped
to the same cache set for all the tasks including T . For task T , its
intra-task WCET might be improved if the benefit of locking m is
greater than the cost on other memory blocks. However, for other
tasks, there is no positive effect on their intra-task WCET. Finally,
the CRPDs for all the tasks are usually reduced as the effective
cache size is reduced after locking m. In the following, we show
how to estimate the cost and benefit of locking memory block m.
We assume m ∈ T and m is mapped to cache set s.

6.1 Cost-benefit analysis within a task
We only consider the memory blocks of task T along the WCET

path for locking as locking the other memory blocks has no benefit.
Let m be a memory block along the WCET path of T and fm be the
execution frequency of m along the WCET path of T . We use latm
to denote the access latency of memory block m. latm is determined
by the classification (cache hit or cache miss) of memory block m in
must/may analysis. We use lathit and latmiss to represent the cache
hit and miss latency, respecitively. Then, the benefit of locking m
on the WCET of T is

wcet_bene f itT
m = (latm − lathit)× fm

However, locking m may also have negative impact on the other
memory blocks of T mapped to the same cache set s as the number
of cache blocks in set s is now reduced by one. Let C be the abstract
cache state for must analysis of set s. If m ∈ C , m is classified as

cache hit before cache locking, thus locking m does not evict any
other memory block from the cache and wcet_costT

m = 0. However,
if m /∈C, locking m will evict out the memory block m′ with age A−
1 in C from the cache, which results in cache miss for the accesses
of m′. In this case, the cost of locking m is

wcet_costT
m = ∑

(m′ ∈ Ms)∧ (ageC
m′ = A−1)

(latmiss−lathit)× fm′

where Ms is the set of memory blocks mapped to set s in T , and fm′

indicates the execution frequency of m′ along the worst-case path.
Therefore the WCET gain of T by locking m is

wcet_gainT
m = wcet_bene f itT

m −wcet_costT
m

Apart from the influence on the intra-task WCET of T , locking
m may also affect the CRPD of T . We assume T is preempted by
another task T ′. Obviously, locking m will not generate any new
useful cache block because the cache size is reduced. As mentioned
before, we record the UCB, ECB and the preemption point that lead
to the worst-case CRPD for this preemption. Suppose Mu

s is the
set of useful cache blocks in T mapped to set s at this point and

Mu′
s (Mu′

s ⊂ Mu
s) is the set of blocks that contribute to the CRPD

before locking m. To model the effect of locking m, we update
ECB of set s and the resilience of any block in Mu

s . With the new

ECB and updated resilience, we can obtain Mu′′
s ⊂ Mu

s , the new
set of blocks that contribute to the CRPD after locking m. So the
CRPD gain by locking m due to one preemption by T ′ is

crpd_gainT T ′
m = (|Mu′

s |− |Mu′′
s |)× (latmiss − lathit)

Therefore, the total CRPD gain of T by locking m is

crpd_gainT
m = ∑

T ′∈pt(T)
crpd_gainT T ′

m ×n(T,T ′)

where pt(T) is the set of tasks that may preempt T and n(T,T ′)
is the bound on the number of preemptions of T imposed by T ′.
Finally the overall execution time gain of T by locking m is

time_gainT
m = wcet_gainT

m + crpd_gainT
m

6.2 Cost-benefit analysis of other tasks
Let T ′ = T and m′ ∈ T ′ be a memory block along the WCET path

of T ′. We assume m′ and m are mapped to the same cache set s and
m′ is in the abstract cache state of must analysis C. If the age of m′
is A− 1, then locking m will evict m′ out of cache. Thus, locking
m has negative impact on the WCET of other tasks. We define the
WCET cost on T ′ by locking m as follows

wcet_costT ′
m = ∑

(m′ ∈ M′
s)∧ (ageC

m′ = A−1)

(latmiss − lathit)× fm′

where M′
s is the set of memory blocks mapped to set s in T ′ and fm′

is the execution frequency of m′ along the WCET path.

The CRPD gain of T ′ by locking m, crpd_gainT ′
m , can be ob-

tained via the same approach as in section 6.1. Thus, the overall
execution time gain of task T ′ by locking m is

time_gainT ′
m = crpd_gainT ′

m −wcet_costT ′
m

6.3 Memory block selection strategy
We design different memory block selection strategies for EDF

and RMS scheduling policies.

EDF Scheduling. Equation 1 is a sufficient and necessary condi-
tion for feasible schedule. Thus we select the memory blocks based
on their impact on total processor utilization as follows

util_gainm =
time_gainT

m
P

+ ∑
T ′∈T \{T}

time_gainT ′
m

P′

where P is the period of task T , P′ is the period of task T ′ and T
is the task set. The utilization gain of locking a memory block is
used as a metric to select the memory blocks for locking. In each
iteration, we select the memory block with maximum utilization
gain over all memory blocks in the task set.

RMS Scheduling. Utilization (Equation 1) is not a sufficient con-
dition for feasible schedule in RMS. Thus, for RMS, we first need
to ensure the schedulability of the task set. For each task, its re-
sponse time can be computed using the iterative method provided
by Equation 3. We focus on the tasks with response time greater
than their deadline, and among them try to optimize the response
time of the task with highest priority first. Based on Equation 3,
in order to improve the response time of a task T , we can either
reduce the execution time of T , or improve the execution time of
the tasks with higher priority than T . So, when we try to lock a
memory block m ∈ T , the corresponding response time gain of T is

rsp_gainT
m =wcet_gainT

m

+ ∑
T ′∈hp(T)

(crpd_gainT T ′
m −wcet_costT ′

m)×n(T,T ′)

where hp(T) is the set of tasks with higher priority than T . When
we try to lock a memory block m′ ∈ T ′ with higher priority than T ,
the corresponding response time gain of T is

rsp_gainT
m′ =(crpd_gainT T ′

m′ +wcet_gainT ′
m′)×n(T,T ′)−wcet_costT

m′

+ ∑
T ′′∈hp(T)\{T ′}

(crpd_gainT T ′′
m′ −wcet_costT ′′

m′)×n(T,T ′′)

where T ′′ is a task with higher priority than T and T ′′ = T ′, and
n(T,T ′′) represents the number of preemption bound imposed on
T by T ′′. The WCET and CRPD gain are different for T ′ and
T ′′ through locking of m′. But both of them contribute to the re-
sponse time gain of T . Thus, rsp_gainT

m′ includes both of them.

Because m′ ∈ T ′, wcet_gainT ′
m′ is obtained via the approach in sec-

tion 6.1. Meanwhile, m′ /∈ T and m′ /∈ T ′′, thus, wcet_costT
m′ and

wcet_costT ′′
m′ are computed similarly via the approach in section 6.2.

crpd_gainT T ′
m′ and crpd_gainT T ′′

m′ can be obtained via the same ap-
proach as in section 6.1.

We select the memory block with the maximum response time
gain to lock, while at the same time we ensure the utilization gain
of this block to be non-negative. After all the tasks are schedula-
ble, we apply the same method used for EDF scheduling to further
minimize the utilization. For both scheduling policies, after each
iteration, we recompute the abstract cache states of set s where the
selected memory block m is mapped to, and then recompute the
WCET. Similarly, the cache states for CRPD computation at each
program point are also updated. We then recompute the UCB and
ECB for each task in task set and obtain the new CRPD. Based on
the new WCET and CRPD, we derive the metric value. If there
is improvement, we continue to lock. The iterative approach stops
only when all the memory blocks are locked or there is no im-
provement after locking any memory block. The pseudo-code of
the algorithms appear in Appendix C.

7. EXPERIMENTAL EVALUATION
In this section, we quantitatively compare our approach with

static analysis [24, 12], ASRV-Locking [4], and PD-Locking [23].

Experiments Setup. We use similar task sets used in [23, 4]. The
task sets are shown in Table 1. They contain one small and one
medium task set. All the tasks are from MRTC benchmark suite [10].

We assume the deadline of a task is equal to its period. Our frame-
work is built on top of the open-source WCET analysis tool Chronos
[14]. All the tasks are compiled with gcc cross-compiler for an
ARM-like instruction set [6].

We assume there is only one level of instruction cache. Instruc-
tion hit latency is 1 cycle, while the cache miss latency is 30 cycles.
The locking routine is stored in non-cacheable memory and it uses
five instructions to load and lock a memory block [2, 1]. Thus, the
cost of locking a memory block is 150 cycles. The cache is 4-way
set-associative with block size of 32 bytes. We also assume each
context switch takes 1,000 cycles per preemption for all the ap-
proaches. For a fair comparison, we assume there is no line buffer
for Aparicio et al.’s approach [4].

Table 1: Characteristics of task sets
Task set Task Code size (bytes) Period

small

jfdctint 5,512 1,500,000
crc 2,032 2,000,000
fir 1,144 4,200,000
matmult 1,632 3,900,000

medium

minver 6,256 720,000
qurt 2,048 44,000
jfdctint 5,512 680,000
fdct 5,176 370,000

(a) Utilization with EDF

(b) Utilization with RMS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

small-1KB small-2KB small-4KB medium-1KB medium-2KB medium-4KB

U
til

iz
at

io
n

of
 ta

sk
 se

t

Static analysis Ours ASRV-Locking PD-Locking

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

small-1KB small-2KB small-4KB medium-1KB medium-2KB medium-4KB

U
til

iz
at

io
n

of
 ta

sk
 se

t

Static analysis Ours ASRV-Locking PD-Locking

Figure 4: Utilization comparison of different approaches.

Utilization Comparison. Figure 4 (a) and (b) present the utiliza-
tion comparison of different approaches under EDF and RMS schedul-
ing. small-X KB (medium-X KB) denotes small (medium) task set
with cache size of X KB. As shown, our integrated cache analy-
sis and locking substantially improves the utilization irrespective
of task set size, scheduling policy, and cache size. PD-Locking has
high utilization when the cache size is small. For PD-Locking, the
locked memory blocks for each task are very limited and most of
the memory accesses are serviced from main memory instead of
cache. As a result, the WCET of the tasks and utilization of the
task set are high. In the medium task set, the utilization of ASRV-
Locking is also high. First, the code size for tasks in medium task
set is large. Thus, there are still many unlocked memory blocks.
Second, the period of task qurt is much smaller than the other tasks,
and these tasks suffer many preemptions from qurt. Thus, the re-
locking cost also contributes a lot to the utilization.

More results are detailed in Appendix B.

8. CONCLUSION
In this paper, we present an approach that integrate instruction

cache analysis and locking in multitasking preemptive real-time
systems. A portion of the cache is locked by the tasks in the task
set, while the remaining portion is used by all the tasks. We pro-
pose an algorithm based on accurate cost-benefit analysis to se-
lect the appropriate memory contents to lock. Experimental results
show that our approach outperforms previous techniques that either
time-multiplexes the cache among all the tasks or statically shares
and fully locks the cache.

9. ACKNOWLEDGMENTS
This work was partially supported by Singapore Ministry of Ed-

ucation Academic Research Fund Tier 2, MOE2009-T2-1-033.

10. REFERENCES
[1] ARM 940T (rev 2) technical reference manual.

[2] Intel XScale core developer manual.

[3] S. Altmeyer, C. Maiza, and J. Reineke. Resilience analysis: tightening the crpd
bound for set-associative caches. In LCTES, 2010.

[4] L. C. Aparicio et al. Improving the WCET computation in the presence of a
lockable instruction cache in multitasking real-time systems. J. Syst. Archit.,
57(7), 2011.

[5] A. Arnaud and I. Puaut. Dynamic instruction cache locking in hard real-time
systems. In RTNS, 2006.

[6] D. Burger and T. M. Austin. The simplescalar tool set, version 2.0. SIGARCH
Comput. Archit. News, 25(3), 1997.

[7] A. M. Campoy et al. Cache contents selection for statically-locked instruction
caches: An algorithm comparison. In ECRTS, 2005.

[8] H. Ding, Y. Liang, and T. Mitra. WCET-centric partial instruction cache
locking. In DAC, 2012.

[9] H. Falk, S. Plazar, and H. Theiling. Compile-time decided instruction cache
locking using worst-case execution paths. In CODES+ISSS, 2007.

[10] J. Gustafsson et al. The mälardalen WCET benchmarks - past, present and
future. In WCET, 2010.

[11] L. Ju, S. Chakraborty, and A. Roychoudhury. Accounting for cache-related
preemption delay in dynamic priority schedulability analysis. In DATE, 2007.

[12] J. C. Kleinsorge, H. Falk, and P. Marwedel. A synergetic approach to accurate
analysis of cache-related preemption delay. In EMSOFT, 2011.

[13] C.-G. Lee et al. Analysis of cache-related preemption delay in fixed-priority
preemptive scheduling. IEEE Trans. Comput., 47(6), 1998.

[14] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury. Chronos: A timing analyzer
for embedded software. Sci. Comput. Program., 69(1-3):56–67, 2007.

[15] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling for real-time software:
beyond direct mapped instruction caches. In RTSS, 1996.

[16] Y. Liang, H. Ding, T. Mitra, A. Roychoudhury, Y. Li, and V. Suhendra. Timing
analysis of concurrent programs running on shared cache multi-cores.
Real-Time Syst., 48(6):638–680, 2012.

[17] Y. Liang and T. Mitra. Cache modeling in probabilistic execution time analysis.
In DAC, 2008.

[18] C. L. Liu and J. Layland. Scheduling algorithms for multiprogramming in a
hard realtime enviroment. Journal of the ACM, 20(1), 1973.

[19] T. Liu, M. Li, and C. J. Xue. Minimizing wcet for real-time embedded systems
via static instruction cache locking. In RTAS, 2009.

[20] T. Liu, M. Li, and C. J. Xue. Instruction cache locking for multi-task real-time
embedded systems. Real-Time Syst., 48(2), 2012.

[21] H. S. Negi, T. Mitra, and A. Roychoudhury. Accurate estimation of
cache-related preemption delay. In CODES+ISSS, 2003.

[22] S. Plazar et al. WCET-aware static locking of instruction caches. In CGO, 2012.

[23] I. Puaut and D. Decotigny. Low-complexity algorithms for static cache locking
in multitasking hard real-time systems. In RTSS, 2002.

[24] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise WCET prediction
by separated cache andpath analyses. Real-Time Syst., 18(2/3), 2000.

[25] H. Tomiyama and N. D. Dutt. Program path analysis to bound cache-related
preemption delay in preemptive real-time systems. In CODES, 2000.

[26] X. Vera, B. Lisper, and J. Xue. Data cache locking for tight timing calculations.
ACM Trans. Embed. Comput. Syst., 7(1), 2007.

[27] M. Verma et al. Scratchpad sharing strategies for multiprocess embedded
systems: a first approach. In ESTIMedia, 2005.

[28] R. Wilhelm et al. The worst-case execution-time problem – overview of
methods and survey of tools. ACM Trans. Embed. Comput. Syst., 7(3), 2008.

APPENDIX
A. INTER-TASK CRPD ANALYSIS

In this section, we detail the steps to compute the CRPD by
Kleinsorge et al. [12].

RCS and LCS Computation. The useful memory blocks are com-
puted using two different types of cache states: the reaching cache
states (RCS) and live cache states (LCS). At a program point p,
RCSp is the set of possible cache states when p is reached via any
incoming program path. Conversely, at a program point p, LCSp
represents the set of possible cache states via any outgoing pro-
gram path from p. The cache states RCS and LCS can be computed
via forward/backward fix-point data flow analysis [12, 21].

UCB and ECB Computation. We use UCBp to denote the set of
useful memory blocks at program point p. UCBp is computed as

UCBp = {c∩ c′|c ∈ RCSp,c′ ∈ LCSp}
where c∩ c′ is defined as

c∩ c′ = {b|∃ 0 ≤ j < K s.t. c[j] = b,∃ 0 ≤ k < K s.t. c′[k] = b}
Evicting cache block (ECB) captures the memory blocks that may
be accessed during the execution of the preempting task. Thus

ECB = RCSexit

where exit is the exit point of the preempting task.

Cache Block Resilience. Given a useful memory block m at a pro-
gram point p, its survival upon preemption depends on its resilience
to the preempting task. We define its resilience resm

p as the max-
imum number of allowed memory accesses from the preempting
task before m can be evicted and is computed as follows. We define
the distance of useful memory block m at program point p

distancem
p =

{
A−1 i f age↓m +age↑m ≥ A
age↓m +age↑m otherwise.

where age↓m and age↑m denote the maximum age of m in RCSp and
LCSp, respectively. Then, the resilience is defined as

resm
p = (A−1)−distancem

p

CRPD Computation. We can now bound the CRPD based on the
UCB of preempted task T and ECB of preempting task T ′. Let
UCBp be the set of useful cache blocks at a program p of the pre-
empted task T and ECB be the set of evicting cache blocks of the
preempting task T ′. For any u ∈UCBp and e ∈ ECB

CRPDp
(u,e) = |u\{m|resm

p ≥ |e|}|×CRT

where CRT is the reloading overhead of one memory block. Then,
the CRPD at this program point p is the maximum among all the
possible combinations of UCB of T and ECB of T ′

CRPDp = max
u∈UCBp,e∈ECB

CRPDp
(u,e)

The CRPD for this preemption is the maximum CRPD over all the
program points. That is

CRPD(T,T ′) = max
p∈PP

CRPDp

where PP is the set of program points of the preempted task T .

B. EXTRA EXPERIMENTAL RESULTS
In this section, we show more experimental results with our ap-

proach, including response time speedup, utilization breakdown,
unlocked cache space, and runtime of our approach. The details
are shown in the following subsections.

B.1 Response Time Speed-up
We compare the different approaches using response-time speedup

metric proposed in [4] for RMS policy. It is defined as follows.

speedup =
period

reponse time

It is calculated for the lowest priority task and indicates the slack
available in the schedule. Thus, a speedup greater than or equal
to 1 implies that the task set is schedulable. Figure 5 shows the
response time speed-up for the task sets with varying cache size.
Clearly, with our approach, the tasks with lowest priority are always
schedulable. However, the lowest priority task in medium task set
with ASRV-Locking and PD-Locking are not schedulable in most of
the cases.

1
2
3
4
5
6
7
8
9

10

small-1KB small-2KB small-4KB medium-1KB medium-2KB medium-4KB

R
es

po
ns

e
tim

e
sp

ee
d-

up

Static analysis Ours ASRV-Locking PD-Locking

Figure 5: Response time speed-up.

B.2 Utilization Breakdown
Figure 6 details the contribution to the utilization by WCET,

CRPD and re-locking overhead, respectively for the medium task
set with 2KB cache size under RMS scheduling policy. Com-
pared to static analysis, our approach either significantly reduces
the WCET (qurt) or nearly eliminates the CRPD (minver, jfdctint
and fdct). While for ASRV-Locking, we observe a great contribu-
tion to utilization due to re-locking overhead (jfdctint and fdct).
Finally, the WCET using ASRV-Locking and PD-Locking are usu-
ally large, because the unlocked memory blocks are all serviced by
main memory instead of cache.

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

U
til

iz
at

io
n

WCET/period CRPD/period Re-Lock/period

qurt minver jfdctint fdct

Figure 6: Utilization breakdown for medium-2KB.

B.3 Unlocked Cache Space
Figure 7 (a) and (b) show the percentage of the unlocked cache

lines of our approach under EDF and RMS, respectively. The per-
centage of the unlocked cache space depends on the cache size and
the scheduling policy. As shown, with our approach, there is a por-
tion of cache space left unlocked for all the settings. The unlocked

cache space can be used by all the tasks in the task set. We also
notice that the percentage of unlocked cache lines of 2KB cache is
smaller than that of 1KB and 4KB cache. When the cache is small,
our approach decides to lock only a small portion of the cache. It
is because locking more memory blocks may have significant neg-
ative impact on the WCET of the tasks. On the other hand, when
the cache is big, more memory blocks can be classified as cache
hits and locking those memory has no benefit. Thus, our approach
decides to lock only a small portion of a big cache.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

Pe
rc

en
ta

ge
 o

f u
nl

oc
ke

d
ca

ch
e

lin
es

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%

Pe
rc

en
ta

ge
 o

f u
nl

oc
ke

d
ca

ch
e

lin
es

(a) Percentage of unlocked space with EDF

(b) Percentage of unlocked space with RMS

Figure 7: Percentage of unlocked cache lines with our ap-
proach.

B.4 Runtime of Our Approach
Table 2 presents the runtime of our approach under both EDF and

RMS scheduling policy with different cache sizes. We perform all
the experiments on 2.53GHz Intel Xeon CPU with 24GB memory.
Clearly, our locking algorithm runs efficiently. The overall runtime
depends on the number of locked memory blocks, WCET analysis
and CRPD analysis. We notice that for the small task set, the run-
time of 2KB cache is higher than that of 4KB cache. In small task
set, the code size of crc is about 2KB. When the cache size is set to
2KB, crc has complicated RCS and LCS analysis that leads to long
CRPD computation time.

Table 2: Runtime of our approach
Task set Cache size EDF (seconds) RMS (seconds)

small
1KB 4.65 4.68
2KB 22.72 22.82
4KB 4.32 4.29

medium
1KB 1.67 1.67
2KB 33.94 37.19
4KB 133.44 137.05

C. INTEGRATED LOCKING + ANALYSIS
ALGORITHMS

In this section, we present the detailed locking + analysis Al-
gorithms used in our approach, including cost-benefit analysis al-
gorithm, utilization optimization algorithm and schedulability im-
provement algorithm. The details are shown as follows.

C.1 Cost-benefit Analysis Algorithm
Algorithm 1 presents the detailed cost-benefit analysis by lock-

ing a memory block m. For each task Ti in the task set T , if m
belongs to Ti, then there may be WCET benefit for Ti by locking
m as all the accesses to m are cache hits after locking (line 5). On
the other hand, locking m also impacts the other memory blocks
mapped to the same cache set in Ti as the effective cache size is
reduced after locking m, which may leads to more cache misses.
Therefore we compute the cost by locking m for Ti (line 6). If m
does not belong to Ti, obviously, there is no benefit for Ti by lock-
ing m. Thus we only calculate the cost for Ti by locking m (line
8-9). The WCET gain for Ti should consider both WCET benefit
and WCET cost (line 10). Locking memory block m also impacts
the CRPD as the effective cache size is reduced after locking. Thus,
we also compute the corresponding cost and benefit of CRPD for
task Ti by locking m (line 11). Finally, The overall execution time
gain for task Ti includes both the WCET gain and CRPD gain (line
12).

Algorithm 1: Cost-benefit analysis on WCET and CRPD

Input: Task set T = {T1,T2...TN}, cache configuration
con f ig and candidate memory block m

Output: WCET gain wcet_gainTi
m and CRPD gain crpd_gainTi

m
by locking memory block m for each task Ti ∈ T

begin1
foreach Ti ∈ T do2

Suppose Mi is the set of memory blocks of Ti;3
if m ∈ Mi then4

wcet_bene f itTi
m = wcet_benefit_self();5

wcet_costTi
m = wcet_cost_self();6

else7

wcet_bene f itTi
m = 0;8

wcet_costTi
m = wcet_cost_others();9

wcet_gainTi
m = wcet_bene f itTi

m - wcet_costTi
m ;10

crpd_gainTi
m = crpd_cost_benefit_analysis();11

time_gainTi
m = wcet_gainTi

m + crpd_gainTi
m;12

13

end14

C.2 Utilization Optimization Algorithm
Algorithm 2 shows the details of utilization optimization. We

first perform one round of WCET and CRPD analysis for each task
Ti ∈T (line 3-9). For each task Ti, we perform abstract cache state
analysis and compute the WCET (line 4-5). We also perform RCS
and LCS analysis for each task Ti (line 6). Based on the RCS and
LCS analysis results, we calculate the UCB and ECB, as well as
the resilience for each useful cache block (line 7-8). Then we do
the CRPD analysis for the task set (line 9). With the CRPD and
WCET, the initial utilization of the task set is then carried out (line
10). Later, we iteratively select memory blocks with the maximum
utilization gain to lock. For each candidate memory block m, we
first check whether it is locked or not (line 16). Meanwhile, we
check whether the corresponding cache set is fully locked or not
(line 16). If m has been locked or there is no free space in the cor-

responding cache set that m mapped to, we skip m and try other
candidates. When we find a memory block m that can be locked,
we first perform the cost-benefit analysis on WCET and CRPD by
using Algorithm 1 (line 17). Then, we calculate the utilization gain
for each task in the task set (line 18). The total utilization gain for
the entire task set by locking m is the summation of utilization for
all the tasks in the task set (line 19). We compare m with the can-
didate memory block mblk that currently has the most utilization
gain (line 20). If m has more utilization gain than mblk, we update
mblk with m (line 21-22). We continue to do this until all candi-
date memory blocks are considered. If we find no memory block
with positive utilization gain, this algorithm will terminate (line 42-
43). Otherwise, we will end up with a memory block mblk that has
the maximum utilization gain. We lock mblk into the cache (line
27). For each task, we update the abstract cache states in the cache
set that mblk mapped to, and recompute the WCET (line 29-30).
We also update the RCS and LCS for this particular cache set, and
recompute the UCB, ECB and resilience (line 31-33). After the
resilience for each useful cache block is updated, we perform the
CRPD analysis again to get the new CRPD (line 34). Based on the
new WCET and CRPD, we obtain the new utilization of the task
set (line 35). If there is improvement on utilization of the task set,
we update the utilization and add mblk to the set of locked mem-
ory blocks, and continue to lock other memory blocks (line 37-18).
Otherwise we stop locking and obtain the final results (line 40).

C.3 Schedulability Improvement Algorithm
Algorithm 3 presents the detailed approach to improve schedu-

lability for RMS. For a task set T in RMS, since Equation 1 is
not a sufficient condition for feasible schedule in RMS, we should
first check the schedulability of T based on the response time of
each task. Therefore, We also need to perform one round of WCET
and CRPD analysis first for the task set as we did in Algorithm 2
(line 3-9). Then, apart from computing the utilization for the task
set (line 10), we also need to calculate the corresponding response
time for each task in the task set (line 11). We check the schedula-
bility by comparing response time of each task with its deadline. If
all tasks meet their deadline, we set the boolean variable is_sch to
true (line 13). In this case, we stop locking for improving schedu-
lability, and continue to optimize utilization with Algorithm 2 (line
14-15). Otherwise, we choose the highest priority task T among the
tasks that do not meet their deadline, and try to improve its response
time first (line 16). Based on Equation 3, the response time of T is
mainly determined by T and the tasks that can preempt T . Thus,
we only consider locking memory blocks belong to T or tasks that
can preempt T (line 19-20). For such a memory block m belongs
to T or tasks that can preempt T , if it is not locked and there is free
space in the corresponding cache set, we carry out its cost and ben-
efit analysis (line 23-24). After that, we perform utilization gain
analysis by locking m as we did in Algorithm 2 (line 25-26). Apart
from the utilization gain, we also compute the response time gain
by locking m (line 27). We compare the response time gain be-
tween m and mblk that currently has the most response time gain.
If m has higher response time gain than mblk and the utilization
gain of m is not negative, we update mblk with m (line 28-30). We
continue to do this until all candidate memory blocks are consid-
ered. If there is no suitable memory block to lock, we stop locking
(line 51). Otherwise, we select the memory block mblk with the
maximum response gain on T to lock (line 35). Then, we recom-
pute the new utilization as we do in Algorithm 2, as well as the new
response time (line 36-44). If utilization of the task set does not be-
come worse and there is response time improvement on T , we add
mblk to the set of locked memory blocks and continue to check the

schedulability for the task set (line 46) Otherwise, we stop locking
(line 51).

Algorithm 2: Utilization Optimization for EDF and RMS

Input: Task set T = {T1,T2...TN} and cache configuration
con f ig

Output: Set of locked memory blocks lock_set and utilization
after locking util

begin1
stop_locking := f alse; lock_set := null;2
foreach Ti ∈ T do3

abstract_cache_states_analysis(Ti, con f ig);4
wcet_analysis();5
rcs_lcs_analysis(Ti, con f ig);6
ucb_ecb_computation();7
resilience_computation();8

crpd_analysis(T);9
util = utilization_computation(T);10
while (!stop_locking) do11

mblk := null; util_gainmblk := 0;12
foreach Ti ∈ T do13

foreach m ∈ Mi do14
Suppose m is mapped to cache set s;15
if m /∈ lock_set∧!is_ f ully_locked(s) then16

cost_benefit_analysis(T , con f ig, m);17
foreach Ti ∈ T do

util_gainTi
m = time_gainTi

m/Pi;18

util_gainm = ∑Ti∈T util_gainTi
m;19

if util_gainm > util_gainmblk then20
util_gainmblk = util_gainm;21
mblk = m;22

23

24

25

if mblk = null then26
lock_to_cache(mblk);27
foreach Ti ∈ T do28

update_abstract_cache_state(Ti, mblk,29
con f ig);
wcet_analysis();30
update_rcs_lcs(Ti, mblk, con f ig);31
ucb_ecb_computation();32
resilience_computation();33

crpd_analysis(T);34
new_util = utilization_computation(T);35
if new_util < util then36

util = new_util;37
lock_set := lock_set ∪{mblk};38

else39
stop_locking := true;40

41

else42
stop_locking := true;43

44

45

end46

Algorithm 3: Schedulability Improvement for RMS

Input: Task set T = {T1,T2...TN} and cache configuration
con f ig

Output: Set of locked memory blocks lock_set and utilization
after locking util

begin1
stop_locking := f alse; lock_set := null;2
foreach Ti ∈ T do3

abstract_cache_states_analysis(Ti, con f ig);4
wcet_analysis();5
rcs_lcs_analysis(Ti, con f ig);6
ucb_ecb_computation();7
resilience_computation();8

crpd_analysis(T);9
util = utilization_computation(T);10
response_time_computation(T);11
while (!stop_locking) do12

is_sch = check_schedulability(T);13
if is_sch == true then14

break;15
Suppose T is the task with highest priority that cannot16
be scheduled;
rsp_gainT

mblk := 0;17
mblk := null;18
suppose hp(T) is the set of task with higher priority19
than T ;
foreach Ti ∈ T ∪hp(T) do20

foreach m ∈ Mi do21
Suppose m is mapped to cache set s;22
if m /∈ lock_set∧!is_ f ully_locked(s) then23

cost_benefit_analysis(T , con f ig, m);24
foreach Ti ∈ T do

util_gainTi
m = time_gainTi

m/Pi;25

util_gainm = ∑Ti∈T util_gainTi
m;26

rsp_gainT
m = response_time_gain();27

if rsp_gainT
m >28

rsp_gainT
mblk ∧util_gainm >= 0 then

rsp_gainT
mblk = rsp_gainT

m;29
mblk = m;30

31

32

33

if mblk = null then34
lock_to_cache(mblk);35
foreach Ti ∈ T do36

update_abstract_cache_state(Ti, mblk,37
con f ig);
wcet_analysis();38
update_rcs_lcs(Ti, mblk, con f ig);39
ucb_ecb_computation();40
resilience_computation();41

crpd_analysis(T);42
new_util = utilization_computation(T);43
response_time_computation(T);44
if new_rspT > rspT ∧new_util <= util then45

lock_set := lock_set ∪{mblk};46
else47

stop_locking := true;48
49

else50
stop_locking := true;51

52

53

end54

