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ABSTRACT
The recent adoption of OpenCL programming model by
FPGA vendors has realized the function portability of OpenCL
workloads on FPGA. However, the poor performance porta-
bility prevents its wide adoption. To harness the power of
FPGAs using OpenCL programming model, it is advan-
tageous to design an analytical performance model to es-
timate the performance of OpenCL workloads on FPGAs
and provide insights into the performance bottlenecks of
OpenCL model on FPGA architecture. To this end, this
paper presents FlexCL, an analytical performance model
for OpenCL workloads on flexible FPGAs. FlexCL esti-
mates the overall performance by tightly coupling the off-
chip global memory and on-chip computation models based
on the communication mode. Experiments demonstrate that
with respect to RTL-based implementation, the average of
absolute error of FlexCL is 9.5% and 8.7% for the Rodinia
and PolyBench suite, respectively. Moreover, FlexCL en-
ables rapid exploration of the design space within seconds
instead of hours or days.

1. INTRODUCTION
Driven by the threat of dark silicon, energy-efficient ac-

celerators such as FPGAs, GPUs, ASICs have emerged as
mainstream ingredients of computer systems [1]. Among the
accelerators, FPGAs can be reprogrammed to create cus-
tomized pipelines with high parallelism for dedicated appli-
cations, providing orders of magnitude performance and en-
ergy benefits compared to general purpose processors. Con-
sequently, FPGAs have become an increasingly popular ve-
hicle for accelerating many workloads. For example, Mi-
crosoft and Baidu use FPGAs to accelerate the Bing search [2]
and deep learning models [3], respectively.

While the benefits are clear, unfortunately, traditional
FPGA development requires hardware design expertise in
register transfer level (RTL) implementation, which is very
tedious and time-consuming [4, 5]. High-level synthesis (HLS)
lowers the FPGA programming barrier by using high level
languages such as C/C++ [4, 5]. But, in reality, even with
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the HLS tools, programmers still need to spend enormous ef-
fort to optimize their applications for better performance [6].
In addition, FPGA architecture inherently prefers parallel
codes, which can be replicated on FPGAs easily by creating
multiple instances. However, using C/C++ programming
model increases the difficulty in detecting the parallelism
for HLS tools. In general, the programmers have to identify
the parallelization opportunities manually and use directives
to force the HLS tools to perform the parallelization.

More recently, FPGA vendors such as Xilinx and Altera
propose to use parallel programming model OpenCL for
FPGAs to improve the programmability and productivity.
OpenCL, which is designed for heterogeneous computing,
is applicable to a wide range of platforms. Using OpenCL
for FPGAs has another important attribute that is it allows
easy extraction of parallelism as different levels of paral-
lelism are represented explicitly using work-item and work-
group, etc.

Programming FPGAs using OpenCL model seems promis-
ing, but it brings new challenges. First, mapping OpenCL
workloads onto FPGA architecture is so esoteric that it is
very challenging for engineers to reason about the perfor-
mance bottlenecks and fully harness the FPGA comput-
ing power. There are many optimization parameters at
the application and architectural levels, forming a large de-
sign space with non-trivial performance trade-offs to explore.
Second, the OpenCL-to-FPGA flow can be extremely slow
for synthesizing a single solution, ranging from hours to
days, making manual design space exploration infeasible.

In this paper, we propose FlexCL, an analytical perfor-
mance model for OpenCL workloads on FPGAs. FlexCL
takes the OpenCL kernel as input and outputs its perfor-
mance on FPGAs. The key idea here is an accurate and
rapid evaluation of OpenCL designs onto FPGA architec-
ture through an analytical model. FlexCL achieves this
by systematically modeling the effects of OpenCL-to-FPGA
optimizations including pipeline, parallelization, and global
memory access patterns. For computation model, it takes a
bottom-up approach, by building the models for processing
elements first, followed by models for compute units, and
kernels. For global memory access, FlexCL models different
access patterns. Finally, FlexCL seamlessly integrates the
memory and computation models based on the communica-
tion mode.

FlexCL mainly uses static analysis, which is orders of
faster than the lengthy RTL-based synthesis flow. More
importantly, FlexCL is a highly trustworthy model as it
yields accurate performance prediction. FlexCL will facil-
itate early design space exploration when mapping OpenCL
workloads onto FPGAs and help the designers to quickly
identify the solutions subject to a user defined performance



Figure 1: OpenCL mapping to FPGA. WG is work-group
and WI is work-item.

constraint. FlexCL can also help to identify the performance
bottlenecks on FPGAs, give code restructuring hints and
make performance comparison across heterogenous architec-
ture (GPUs v.s. FGPAs).

Experiments demonstrate that with respect to RTL-based
implementation, the average of absolute error of FlexCL
is 9.5% and 8.7% for Rodinia and PolyBench, respectively.
FlexCL enables rapid exploration of optimization design space
within seconds and identifies the solutions within 2.1% of the
optimal solution.

2. BACKGROUND AND RELATED WORK

2.1 OpenCL Model to FPGA
An OpenCL program consists of a host program, which

is in charge of one or more OpenCL devices, and a kernel
program as shown in Figure 1. Host program dynamically
invokes the OpenCL kernel executed on the accelerators (e.g.
GPUs or FPGAs). In OpenCL, the basic unit of execution is
a work-item and a group of work-items is bundled together
to form a work-group. Multiple work-groups are combined to
form a unit of execution called NDRange. For execution, the
OpenCL program assumes that the underlying devices con-
sisting of a number of compute units (CUs), which are fur-
ther split into processing elements (PEs). When executing
a kernel, work-groups are assigned to CUs, and work-items
are assigned to PEs as shown in Figure 1. The number of
work-groups in NDRange and the number of work-items in
a work-group are specified by the programmer.

In this work, we use SDAccel flow to map OpenCL ker-
nels onto Xilinx FPGA chips. SDAccel inherits almost the
same OpenCL model from OpenCL standards. Figure 1 il-
lustrates the mapping using add.cl kernel as an example.
The PE corresponds to a pipeline of add operation which
processes one work-item each time. A CU could replicate
multiple PE instances in parallel, and the local memory indi-
cated by the local directive is shared among the PEs within
the CU where it resides. The hardware kernel on FPGA
is a complete implementation of software OpenCL kernel.
The kernel could be configured using multiple CUs allowing
multiple work-groups to be processed simultaneously. The
global memory is a DRAM memory used to transfer data
between host and FPGA device via PCI-e.

A rich set of OpenCL optimization options is exposed
in SDAccel, which can be easily enabled by simply adding
directives to the OpenCL source code. For example, the
programmer can use work item pipeline directive to enable
work-item pipelining. Although some directives used in SDAc-

Figure 2: High-level Overview of FlexCL.

cel are specifically designed for Xilinx FPGA, the same opti-
mization methodology is also applied to other FPGA-based
OpenCL toolchain, such as Altera’s OpenCL SDK.

2.2 Related Work
Performance models and optimization strategies have been

developed for ASIC or FPGA-based accelerators [6, 7, 8,
9, 10, 11, 12, 13]. Shao et al. [6] propose a pre-RTL per-
formance modeling framework for ASICs. Their technique
accepts trace generated from C program, not OpenCL pro-
gram. Zhong et al. [14] propose an accurate performance
estimation framework for HLS-based FPGA which enables
faster design space exploration for accelerators compared to
Xilinx HLS. But they use C program as input, not OpenCL
and ignore the data communication between global mem-
ory and FPGA. Therefore, theses works cannot be directly
applied to OpenCL-to-FGPA mapping due to the distinct
OpenCL programming and optimization features.

Recently, OpenCL-based designs have been explored in [2,
15, 16]. [2] and [15] employ the OpenCL-based flow for the
datacenter and CNN workloads using FPGAs respectively.
However, their works focus on a specific workload and lack of
a general performance model for accelerator design. Wang
et al. [16] present an optimization framework for OpenCL
programs for Altera FPGAs by employing a coarse-grained
performance model. The optimization capability is funda-
mentally constrained by the model inaccuracy as it ignores
important OpenCL-to-FPGA optimizations such as global
memory access patterns, pipeline, parallelism, etc. More-
over, their step by step optimization approach examines a
limited set of design space by assuming independence of dif-
ferent optimizations. Hence, such solution can easily lead
to a solution stuck at local optima. The proposed FlexCL
framework is accurate and can be also used to guide perfor-
mance optimization for complex applications, such as itera-
tive stencil algorithms [17].

3. PERFORMANCE MODEL
In this section, we start by introducing a high-level overview

of FlexCL, followed by the details of each component.

3.1 High-Level Overview
Figure 2 presents the high-level flow of FlexCL. It takes

the original kernel written in OpenCL as input and outputs
its performance on FPGAs. FlexCL first employs Clang as
the compilation frontend that transforms the OpenCL code
to LLVM IR. After that, FlexCL performs kernel analysis,
which analyzes the code structure, collect the operation la-
tency, and retain other information about the program exe-
cution. Kernel analysis is essential as the subsequent com-
putation and memory models of FlexCL are driven by de-
tailed modeling of operation scheduling and data transfer.
After that, FlexCL performs systematic computation model.



More clearly, it builds models for PEs, CUs and kernel. For
the global memory model, it models eight global memory
access patterns. Finally, FlexCL estimates the performance
of OpenCL kernel on FPGAs by integrating the computa-
tion and memory models based on the way that computation
communicates with global memory.

3.2 Kernel Analysis
The LLVM IR obtained using Clang frontend is first trans-

formed into control data flow graph (CDFG), which serves
as an abstract representation of the original OpenCL ker-
nel. In CDFG, each node represents an IR operation and
nodes are connected by data and control dependency edges.
On FPGAs, each IR corresponds to an IP core [12, 13].
We obtain its operation latency through micro-benchmark
profiling and associate each node with its latency. To facili-
tate the subsequent analysis, we simplify CDFG by merging
nodes that belong to the same basic block and merging ba-
sic blocks with complex control dependencies such as loops.
Figure 3(c) shows an example of simplified CDFG derived
from OpenCL kernel, where the lines with arrows represent
the data dependencies between basic blocks. Each basic
block is implemented as a specific circuit on FPGA. This
allows the basic blocks without data dependencies among
each other to be executed in parallel.

The trip counts of loops and the global memory access
trace are two important parameters for the subsequent com-
putation and global memory model respectively. We use dy-
namic profiling to collect them for the cases where the static
analysis fails. The global memory access trace, which is a
sequence of indexes of accessed data array in global memory,
is then transformed into realistic global memory accesses to
different global memory banks based on the data mapping
scheme. Then, the global memory accesses are categorized
into different patterns to calculate the global memory access
latency. It is needed to note that the profiling overhead is
very small and takes at most a few seconds because only a
few work-groups are profiled in practice.

3.3 Computation Model
Based on the OpenCL-to-FPGA mapping in Figure 1, we

take a bottom-up approach to build the computation model.
More concretely, we build the models for PE first, followed
by models for CUs, and the entire kernel. During this pro-
cess, different types of resources including local memory,
and DSPs are modeled under their constraints. The current
OpenCL-to-FPGA synthesis flow from Xilinx and Altera ex-
poses a rich set of optimizations for users to customize the
computation. Broadly speaking, we classify the optimiza-
tions into three categories, pipeline optimization (work-item
and work-group pipeline), parallelism optimization (PE and
CU parallelism), and on-chip memory optimization. In the
computation model, we model all these optimizations.

3.3.1 Processing Element Model
Work-items are assigned to PEs for execution. We model

the execution of a work-item using its CDFG. For each ba-
sic block, the execution latency is determined by two fac-
tors, data dependency between operations and resource con-
straints. In this work, we employ a resource-aware priority-
ordered list scheduling algorithm [18, 19, 20, 21] to quickly
estimate the execution latency of each basic block. The
input of the algorithm is a CDFG of a basic block. The re-

Figure 3: CDFG and work-item pipelining example.

source constraints considered include the number of memory
access ports and DSPs. This algorithm schedules the oper-
ations using as soon as possible (ASAP) policy. The output
of the algorithm is the execution latency of the basic block.

Work-item pipeline aims to overlap the execution of multi-
ple work-items in the same work-group in a pipeline manner
for high throughput. The execution latency of work-items
on a PE is determined by two factors: work-item initiation
interval IIwi

comp, which is defined as the latency between the
initiation of successive work-items, and the pipeline depth of
the processing element DPE

comp. We define Nwg
wi as the num-

ber of work-items in one work-group. Then, the execution
latency of one work-group on a PE is computed as follows,

LPE
comp = IIwi

comp · (Nwg
wi − 1) + DPE

comp (1)

We derive IIwi
comp and DPE

comp in two steps. In the first step,
we compute the minimum initiation interval (MII). MII
is defined as the lower bound of IIwi

comp, which depends on
two factors, inter work-item data dependency and resource
constraint [22, 23].

MII = max (RecMII,ResMII) (2)

where RecMII is the recurrence constrained MII, and ResMII
is the resource constrained MII. RecMII is introduced by
inter work-item dependency. We derive RecMII using the
static data dependency method described in [22, 23]. As
for ResMII, it is mainly limited by the on-chip local mem-
ory bandwidth and DSPs on FPGAs. Thus, we estimate
ResMII as follows,

ResMII = max (ResMIImem, ResMIIdsp) (3)

where ResMIImem and ResMIIdsp are the ResMII con-
strained by the local memory bandwidth and DSPs, respec-
tively. We compute ResMIImem as follows,

ResMIImem = max (d Nread

Portread
e, d Nwrite

Portwrite
e) (4)

where Nread and Nwrite are the maximum number of read
and write accesses to the local memory in the work-item
pipeline. Portread and Portwrite are the number of available
read and write ports of local memory in the PE, which can
be computed by multiplying the number of banks of local
memory and the number of ports per bank. Similarly, we can
compute ResMIIdsp, which is the DSP-constrained MII.

For the second step, we employ the Swing Modulo Schedul-
ing (SMS) algorithm [24] to estimate the IIwi

comp and DPE
comp.

The MII calculated from the previous step is used as the
starting IIwi

comp value for SMS algorithm, and then SMS

keeps refining the IIwi
comp until it satisfies all the resource

constraints. SMS derives DPE
comp by adding up all the laten-

cies of the basic blocks along the critical path of the cor-



responding CDFG. The output of SMS algorithm is IIwi
comp

and DPE
comp.

Figure 3 (b) illustrates the work-item pipelining of the
OpenCL code in Figure 3 (a). For this case, there is in-
ter work-item data dependency, IIwi

comp = MII = 2 and

DPE
comp = 6.

3.3.2 Compute Unit Model
One CU can initiate multiple PEs to expose more paral-

lelism by enabling loop unrolling pragma1. Similar to Equa-
tion 1, we compute the latency of CU as follows,

LCU
comp = IIwi

comp · d
Nwg

wi −NPE

NPE
e+ DPE

comp (5)

where NPE is the effective PE parallelism, which is con-
strained by the number of PEs P , and the local memory
and DSP resources. The local memory and DSPs within a
CU are shared by all its PEs, thus

NPE = min (P, d Portread
Nread · P

e, d Portwrite

Nwrite · P
e, dNumdsp

Ndsp · P
e) (6)

3.3.3 Kernel Computation Model
For a kernel with multiple CUs, the work-items are as-

signed to CUs at the granularity of work-group. Since there
is no data dependency between work-groups in the OpenCL
model, multiple work-groups can be processed on multiple
CUs concurrently. Therefore, the computation latency of a
kernel calculated as follows,

Lkernel
comp = LCU

comp · d
Nkernel

wi

Nwg
wi ·NCU

e+ C ·∆Lschedule
comp (7)

where Nkernel
wi is the number of work-items contained in the

kernel and NCU is the effective CU parallelism, which is con-
strained by the number of CUs C, and work-group schedul-
ing overhead ∆Lschedule

comp .

NCU = min (C, d
Lkernel

comp

∆Lschedule
comp

e) (8)

For an OpenCL kernel with multiple CUs, the work-groups
are queued to be scheduled onto the idle CUs in a round-
robin fashion as shown in Figure 1. Therefore, when the
work-group scheduling overhead is considered, the ratio of
LCU

comp to ∆Lschedule
comp represents the maximum number of

concurrent work-groups which is an upper bound for the
effective CU parallelism.

3.4 Global Memory Model
In OpenCL model, global memory is the DRAM that re-

sides off-chip. We estimate its access latency by modeling
both DRAM architecture and access patterns [25].

Global memory has multiple banks and each bank is con-
figured with a row buffer as cache in the bank. To reduce the
bank conflicts, the data stored in the DRAM are arranged in
byte-interleaved manner across all the banks. For each bank,
the number of DRAM commands needed to handle a mem-
ory request varies for row-buffer hit or miss. If the memory
request hits the row-buffer, only one read or write command

1Kernel vectorization enabled by using OpenCL vector types
is also modeled based on PE parallelism, e.g. using 16 scalar
PEs of int type to model one vectorized PE of int16 vector
type.

Table 1: Global Memory Access Patterns And Parameters.
Global Memory Access Patterns Access Latency # Access

read(hit) access after read ∆Thit
RAR Nhit

RAR

read(hit) access after write ∆Thit
RAW Nhit

RAW

write(hit) access after read ∆Thit
WAR Nhit

WAR

write(hit) access after write ∆Thit
WAW Nhit

WAW

read(miss) access after read ∆Tmiss
RAR Nmiss

RAR

read(miss) access after write ∆Tmiss
RAW Nmiss

RAW

write(miss) access after read ∆Tmiss
WAR Nmiss

WAR

write(miss) access after write ∆Tmiss
WAW Nmiss

WAW

is issued; otherwise, three DRAM commands are issued to
that bank. Moreover, the memory access sequence also af-
fects the latency of memory access latency. For example,
the latency of a read request after a write is different from
the read request after a read. To model the global memory
access latency accurately, we model eight different global
memory access patterns as shown in Table 1. The access
sequence of data arrays within one work-item is profiled by
executing a few work-groups of the kernel on CPU/GPU as
discussed in Section 3.2. According to the byte-interleaved
data mapping policy, we can get the global memory access
patterns for each bank. The access latency of each global
memory access pattern is profiled using micro-benchmarks.

To fully utilize the global memory bandwidth, SDAccel
will automatically coalesce the global memory accesses which
are consecutive reads or writes. In this manner, the num-
ber of memory accesses is divided by a factor of coalescing
degree f = MemoryAccessUnitSize

DataTypeBitWidth
. For example, if there are

1024 consecutive global memory reads, the global memory
access unit size is 512-bit and the accessed data type is int
which is 32-bit, the number of memory accesses after mem-
ory coalescing should be 1024

512/32
= 64. The number of global

memory accesses shown in the third column of Table 1 is the
number after coalescing consecutive read or write accesses.

The global memory access latency of one work-item Lwi
mem

is computed by summing the latency of different patterns
within one work-item as follows,

Lwi
mem = ∆Thit

RAR ·Nhit
RAR + ∆Thit

RAW ·Nhit
RAW

+ ∆Thit
WAR ·Nhit

WAR + ∆Thit
WAW ·Nhit

WAW

+ ∆Tmiss
RAR ·Nmiss

RAR + ∆Tmiss
RAW ·Nmiss

RAW

+ ∆Tmiss
WAR ·Nmiss

WAR + ∆Tmiss
WAW ·Nmiss

WAW

(9)

3.5 Putting It All Together
Finally, we estimate the overall OpenCL kernel perfor-

mance on FPGAs by integrating the computation and global
memory model together based on the way that computa-
tion communicates with the global memory. The current
OpenCL-to-FPGA synthesis flow allows the barrier and pipeline
communication modes. We identify the communication mode
by analyzing the OpenCL intrinsics.

Barrier Mode. In this mode, global memory access and
computation operations are separated by barriers. In other
words, there is no overlap between the computation and the
global memory access. Thus, Tkernel is estimated by sum-
ming up the computation and memory latency as follows,

Tkernel = Lwi
mem ·Nkernel

wi + Lkernel
comp . (10)

Pipeline Mode. In this mode, the global memory trans-
fer is operated along with the computation in a pipeline
manner. This could potentially overlap the computation



and memory operations leading to performance improve-
ment. The work-items within the same work-group can be
overlapped through pipelining, and thus the overall execu-
tion latency is calculated as,

Tkernel = (IIwi · d
Nwg

wi −NPE

NPE
e+ DPE

comp) · d Nkernel
wi

Nwg
wi ·NCU

e (11)

where IIwi is work-item initiation interval after integrating
global memory access and computation models, which is cal-
culated as

IIwi = max (Lwi
mem, IIwi

comp). (12)

4. EXPERIMENT EVALUATION

4.1 Experiment Setup
All the experiments are conducted on Alpha Data’s ADM-

PCIE-7V3 board with a Xilinx Virtex-7 (XC7VX690T) FPGA
and 16GB DDR3 memory with 8 banks and 1KB row-buffer
size. The FPGA board is connected to the host via PCI-e 3.0
X8 interface. Xilinx SDAccel 2016.1 is used as the OpenCL
SDK to synthesize the OpenCL kernel onto FPGAs. FlexCL
is developed based on LLVM infrastructure, and Clang 3.4
is used as the OpenCL frontend. FlexCL is running on a
server with Intel Core i7-4790 CPU.

We evaluate FlexCL using the entire benchmark suites
Rodinia [26] and Polybench [27]. For each OpenCL kernel,
we form a design space consisting of hundreds of design so-
lutions by varying the parameters of optimizations, includ-
ing work-group size, work-item and work-group pipeline, PE
and CU parallelism, and data communication mode. For
each solution, we evaluate the accuracy of FlexCL by com-
paring to two other techniques: System Run and SDAccel.

• System Run. Each kernel is synthesized to bitstream and
implemented on FPGA using SDAccel. The performance
obtained is the ground-true execution time, which is mea-
sured on the FPGA using the SDAccel runtime profiler.

• SDAccel. SDAccel also provides an HLS functionality,
which synthesizes the OpenCL kernel to RTL design and
gives a performance estimation in terms of cycles.

Finally, SDAccel and FlexCL estimate the performance
in cycles. To obtain the performance in seconds, we have
to multiply with the frequency. In this experiment, the fre-
quency is set at 200MHz and all the benchmarks could be
successfully synthesized.

4.2 Accuracy Results
We first present the accuracy of FlexCL on Virtex-7, and

then verify the robustness of FlexCL on a different platform.
Rodinia. Table 2 presents the performance estimation er-

ror and total estimation time for all the 45 kernels in Rodinia
benchmark suite. The performance error in Table 2 is com-
puted by comparing the estimation with the System Run.
For each kernel, more than one hundred design solutions are
tested. For each kernel, the performance error is the average
error across all the design solutions. The estimation time is
the total time for all the design solutions. Overall, FlexCL
gives highly accurate prediction. It performs consistently
well for all the kernels. The average performance estimation
error of FlexCL is 9.5% for Rodinia suite.

Table 2: Performance Estimation Results of Rodinia.

Benchmark Kernel Name #Designs
Performance Total Design

Estimation Error (%) Exploration Time
SDAccel FlexCL System Run SDAccel FlexCL

backprop
layer 132 38.9 10.2 164 hrs. 80 mins. 19 secs.

adjust 148 58.0 6.4 145 hrs. 65 mins. 35 secs.

bfs
bfs 1 128 71.2 8.2 59 hrs. 40 mins. 7 secs.
bfs 2 164 84.9 6.7 83 hrs. 79 mins. 6 secs.

b+tree
findK 180 54.0 10.8 55 hrs. 67 mins. 12 secs.

rangeK 128 34.2 9.2 47 hrs. 51 mins. 8 secs.

cfd

memset 132 68.4 10.3 98 hrs. 55 mins. 12 secs.
initialize 132 71.3 12.2 84 hrs. 101 mins. 11 secs.
compute 136 58.7 6.7 93 hrs. 76 mins. 15 secs.
time step 120 39.5 7.1 77 hrs. 69 mins. 7 secs.
compute 132 77.9 9.2 175 hrs. 126 mins. 16 secs.

dwt2d
components 128 54.3 10.6 86 hrs. 80 mins. 10 secs.
component 128 55.3 10.3 69 hrs. 74 mins. 15 secs.

fdwt 128 59.5 14.2 180 hrs. 139 mins. 7 secs.

gaussian
fan1 128 64.0 12.4 146 hrs. 95 mins. 6 secs.
fan2 128 46.1 16.1 135 hrs. 76 mins. 4 secs.

hotspot hotspot 164 45.9 8.9 135 hrs. 108 mins. 19 secs.
hotspot3D hotspot3D 128 58.2 7.8 65 hrs. 46 mins. 30 secs.

hybridsort
count 144 50.9 9.8 50 hrs. 119 mins. 12 secs.
prefix 144 61.5 8.0 100 hrs. 106 mins. 12 secs.
sort 144 58.9 8.6 70 hrs. 91 mins. 13 secs.

kmeans
center 132 52.6 13.4 171 hrs. 112 mins. 16 secs.
swap 162 56.1 6.9 99 hrs. 108 mins. 14 secs.

lavaMD lavaMD 128 56.4 11.4 140 hrs. 115 mins. 18 secs.

leukocyte
gicov 144 54.1 8.9 132 hrs. 145 mins. 8 secs.
dilate 144 54.4 8.2 128 hrs. 137 mins. 5 secs.
imgvf 144 58.5 7.5 123 hrs. 103 mins. 2 secs.

lud
diagonal 164 61.1 6.3 90 hrs. 95 mins. 10 secs.
perimeter 164 50.0 10.8 103 hrs. 162 mins. 13 secs.

nn nn 168 47.9 12.1 71 hrs. 34 mins. 8 secs.

nw
nw1 148 43.2 10.4 55 hrs. 56 mins. 19 secs.
nw2 148 50.4 12.2 49 hrs. 37 mins. 13 secs.

particlefilter

find index 128 52.5 6.0 96 hrs. 78 mins. 9 secs.
normalize 128 54.8 11.4 125 hrs. 62 mins. 17 secs.

sum 128 60.2 12.2 182 hrs. 49 mins. 12 secs.
likelihood 128 44.7 8.6 109 hrs. 70 mins. 9 secs.

pathfinder dynproc 148 76.3 13.2 109 hrs. 88 mins. 10 secs.

srad

extract 162 67.7 10.6 96 hrs. 151 mins. 13 secs.
prepare 162 49.6 5.3 93 hrs. 113 mins. 15 secs.
reduce 162 54.1 4.0 98 hrs. 91 mins. 11 secs.
srad 162 82.5 10.6 104 hrs. 85 mins. 15 secs.
srad2 162 61.1 7.6 109 hrs. 66 mins. 11 secs.

compress 162 44.4 9.2 121 hrs. 78 mins. 12 secs.

streamcluster
memset 180 30.4 9.5 65 hrs. 81 mins. 7 secs.
pgain 160 79.8 9.4 137 hrs. 103 mins. 9 secs.

(a) hotspot3D (b) nn

Figure 4: Performance estimation errors illustration.

SDAccel method fails to give estimation for some cases.
In our experiments, for about 42% design solutions, SDAccel
fails to return the results. It is due to several reasons. First,
it lacks support for complex parallelism and memory access
patterns. Second, it may take extremely long for certain
cases. In our experiments, we stop the SDAccel process if the
synthesis does not make any process after one hour. Hence,
the average estimation error in Table 2 are computed for the
surviving solutions only. However, the error of SDAccel is
still high (30.4% - 84.9%) even we ruled out the failed cases.
This high error is caused by a mixed effects including 1)
underestimation of memory access latency, 2) conservative
estimation of designs with relatively complex control depen-
dency, and 3) ignorance of work-group scheduling overhead
of multiple CUs.

Polybench. Compared with Rodinia benchmark suite,
kernels in Polybench have simpler structures and are easy
to analyze. Similarly, for each kernel in Polybench, we sweep
different parameters, forming a design space with hundreds
of design solutions. Then, we compare FlexCL with System
Run results. The average absolute performance estimation
error of FlexCL is 8.7%.

Estimation Error Analysis. Figure 4 plots the esti-
mated performance by FlexCL and the actual performance
for each design solution for hotspot3D and nn benchmarks.



We notice that FlexCL not only achieves low estimation er-
ror on average but also gives low estimation error for each
design point. The inaccuracy of FlexCL are mainly from two
sources, 1) estimation of IR operation latency and 2) esti-
mation of memory access latency of each pattern. For the
same IR operation, SDAccel may have multiple hardware
implementation choices with different execution latencies.
In the current toolchain, the hardware implementation can
not be controlled by the programmer. In FlexCL, we ad-
dress this problem by computing the average latency of an
operation using micro-benchmarks. However, this might be
different from the actual latency synthesized for real bench-
mark. As for memory access latency of each pattern in
Table 1, similarly, is the average latency obtained through
micro-benchmark profiling, which might be different from
the actual latency.

Robustness Analysis. We also evaluate FlexCL on a
different platform, NAS-120A development board with Xil-
inx KU060 FPGA, which uses the state-of-art UltraScale ar-
chitecture. We use HotSpot and pathfinder from Rodinia as
benchmarks, and the same design points explored previously
are tested. The results show that the average performance
estimation errors for HotSpot and pathfinder are only 9.7%
and 13.6% respectively. This demonstrates that FlexCL is
robust for different FPGAs platforms.

4.3 Design Space Exploration
We can use System Run and FlexCL to exhaustively ex-

plore the design space. Table 2 compares the exploration
time of the two approaches. Compared to System Run,
FlexCL accelerates the exploration process by more than
10,000X. System Run is slow because it has to go through
the length synthesis process including logic synthesis, P&R,
and bitstream generation. FlexCL enables rapid evaluation
of design solutions using an analytical approach. It only
involves lightweight static and dynamic analysis to analyze
the OpenCL kernel. Overall, FlexCL explores the optimiza-
tion design space within seconds and identifies the solu-
tions within 2.1% of the optimal solution. Compared to
the baseline unoptimized design, the best solution identified
by FlexCL accelerates the performance by 273X on average.

Comparison. We can not directly compare with [16]
as it fails to return absolute performance numbers and ig-
nore important optimization features. Here, we compare
FlexCL with exhaustive search and FlexCL using the heuris-
tic search proposed in [16] for Polybench. The experimen-
tal results show that 96% design configurations found by
FlexCL with exhaustive search are optimal while only 12%
by [16] are optimal. Hence, an accurate performance model
and systematic exploration are necessary for complex design
space exploration.

5. CONCLUSION
OpenCL-based FPGA application design is still an emerg-

ing technology, and understanding the performance of OpenCL
programming model on FPGA is difficult. To address this
problem, this paper presents FlexCL, an analytical perfor-
mance model for OpenCL workloads on flexible FPGAs.
FlexCL leverages static and dynamic analysis to analyze the
OpenCL kernels. It first develops systematic computation
models. Then, it models different global memory access pat-
terns. Finally, FlexCL estimates the overall performance by
tightly coupling the memory and computation models based

on the communication mode. Experiments demonstrate that
with respect to RTL-based implementation, the average of
absolute error of FlexCL is 9.5% and 8.7% for Rodinia and
PolyBench suite, respectively.
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