
Integrated CUDA-to-FPGA Synthesis with Network-on-Chip

Swathi T. Gurumani∗, Jacob Tolar†, Yao Chen†¶, Yun Liang‡, Kyle Rupnow§ and Deming Chen∗†
∗Advanced Digital Sciences Center, Singapore Email: swathi.g@adsc.com.sg

†University of Illinois at Urbana-Champaign, USA Email: {jstolar2,yaochen,dchen}@illinois.edu
‡School of EECS, Peking University, China Email: ericlyun@pku.edu.cn

§Nanyang Technological University, Singapore Email: k.rupnow@ntu.edu.sg
¶College of Electronic Information and Optical Engineering, Nankai University, China

Abstract—Data parallel languages such as CUDA and
OpenCL efficiently describe many parallel threads of computa-
tion, and HLS tools can effectively translate these descriptions
into independent optimized cores. As the number of instan-
tiated cores grows, average external memory access latency
can be a significant factor in system performance. However,
although each core produces outputs independently, the cores
often heavily share input data. Exploiting on-chip data sharing
both reduces external bandwidth demand and improves the
average memory access latency, allowing the system to improve
performance at the same number of cores. In this paper, we
develop a network-on-chip coupled with computation cores
synthesized from CUDA for FPGAs that enables on-chip data
sharing. We demonstrate reduced external bandwidth demand
by up to 60% (average 56%) and total application latency in
cycles by up to 43% (average 27%).

I. INTRODUCTION

High level synthesis (HLS) has become a frequently

applied design technique for fast design time and reduced

design space exploration effort. HLS is heavily studied in

both academia and industry; a variety of language inputs

have been proposed as the input source for HLS tools, in-

cluding C/C++ [15], SystemC [7], CUDA [13], OpenCL [5].

Serial languages require significant user input or complex

automatic parallelization, while parallel languages enable us

to perform design exploration at multiple granularity levels

by grouping and reorganizing independent computations.

Each HLS generated core consumes area and external

memory bandwidth. State-of-the-art HLS tools based on

parallel languages tend to instantiate as many cores as

possible [9, 14]. However, this throughput oriented synthesis

has several problems. First, a high number of cores increase

the number of simultaneous external memory requests and

exacerbate the average memory access latency. Also, ne-

glecting data reuse and sharing among the cores may lead

to reduction in overall system performance.

Fundamentally, there are three classes of techniques to

improve off-chip bandwidth and average access latency:

caching, memory queue management, and contention man-

agement. In this work, we develop a network-on-chip (NoC)

model in order to allow HLS-generated cores to share

data (improve caching), use outstanding requests buffers

to group memory requests (memory queue management),

and generate a network between the cores to efficiently

scale to large numbers of cores (contention management).

Based on cores generated using FCUDA (CUDA-to-FPGA)

flow [13, 14], we customize the cores and implement a

network and sharing mechanism that interfaces with the

cores transparently. We demonstrate that this NoC alleviates

the external bandwidth problem, achieving 56% reduction

in memory requests and 27% reduction in total execution

latency on average.

This paper adds to the state-of-the-art of HLS through:

• A NoC model that transparently interfaces with

FCUDA cores, allowing scalable instantiation of cores.

• A set of features enabling efficient NoC implementa-

tion. We design a directory-based sharing mechanism

that allows cores to share on-chip data within the

limited coherency of the CUDA programming model,

and an outstanding request mechanism that groups

memory requests to minimize duplication of requests.

• An automated flow to generate configurable NoCs

integrated with FCUDA cores.

This paper is organized as follows: Section II discusses

related work. We present the NoC design integrated with

FCUDA flow in Section III. We present the experimental

results in Section IV and conclusion in Section V.

II. RELATED WORK

There is significant prior work in the design of network-

on-chip for both ASIC- and FPGA-based systems [2, 3,

6, 8, 10, 11, 12]. In these prior works, the network is

designed independently as a generic network that can be

used with a variety of computation cores [6, 8, 10, 11],

or as a network specifically optimized for a particular

application or domain [2, 3, 12]. In this work, we have

the particular challenge of developing a NoC description

that integrates transparently with HLS-generated computa-

tion cores. Furthermore, it is important to automate the

generation, integration and configuration of the network, as

it allows efficient design space exploration using HLS tools.

III. NOC FOR FCUDA FLOW

We leverage our existing FCUDA flow [13, 14] to gener-

ate hardware cores from CUDA kernels. The flow generates

2014 IEEE 22nd International Symposium on Field-Programmable Custom Computing Machines

978-1-4799-5111-6/14 $31.00 © 2014 IEEE

DOI 10.1109/.12

21

2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines

978-1-4799-5111-6/14 $31.00 © 2014 IEEE

DOI 10.1109/FCCM.2014.14

21

P2
P1

P3

P4

P5

��
��
��
��
��
��
��

P1
P2
P3

P4
P5

�
�
�
�
�
�
�
�
�

�����

����		���
��

LOGIC

DIRECTORY

T
A
G

D
A
T
A

V
A
L
I
D

��
����
������

�

Routing
data

M
U
X

Figure 1. Integration of Directory in Router

annotated C-code from CUDA kernels and then we use

Vivado HLS to generate RTL. The cores are generated

with a standard hand-shaking interface for core execution,

and state monitoring. This interface is simple, but it is

important that we retain the exact protocol when inserting

multiple cores into a NoC. In this section, We present

our NoC design, its integration with FCUDA cores, and

the techniques we developed to improve data sharing and

communication between cores.

A. Baseline Implementation

Our baseline NoC implementation is based on an open-

source packet switching NoC architecture [6]. We have

extended this open-source NoC to remove the limitation on

network size, improve configurability of design features, and

automate the process of NoC generation and computation

of static routing tables. In this work, we work with a 2D

mesh of compute cores. We now present our specific NoC

enhancements to improve on-chip data sharing.

B. Directory-based NoC

First, we enhance the baseline NoC with a directory that

keeps track of on-chip data to enable sharing and thus

improve average memory access time. Conceptually, this

directory system is similar to directory-based cache coher-

ence [1, 4], but has several key distinctions. Importantly,

although this directory does keep track of location of some

on-chip data, it does not precisely track all on-chip data or

maintain coherency between the computation cores. In the

CUDA programming model, cores may share input data, but

programmers cannot depend on coherency – data written by

one core cannot be assumed to be correctly read by other

cores. Since the FCUDA programming model is the same

as the underlying CUDA model, we do not need to keep

track of data updated by the cores and this simplifies our

directory protocol.

1) Directory Protocol: In our design, we statically assign

addresses to a home node (router) where the directory

information for that address is stored. The directory storage

is not sufficient to store entries for every address; therefore

accesses that do not find an associated entry assume that the

data is not available on-chip and produce off-chip accesses.

Thus, as we scale to larger directory sizes, it becomes more

likely that data is available on-chip, but the directory also

consumes resources.

Input addresses are split into tag, index and offset fields

similar to typical caching. Also, each directory entry con-

tains a tag field, location field and valid bit. As in caching,

the tag is used to distinguish between addresses that can

be stored to the same physical location. The location field

contains the network address of the core that contains the

requested piece of data in its memory, and the valid bit

specifies whether the mapping is currently valid.

On a memory read, the request is first routed to the home

node (router) for that address. That router checks its local

directory; if there is a tag match and valid location mapping,

the request is forwarded to the core that currently holds

the data. If there is a tag mismatch or invalid entry, the

request is forwarded to the memory controller. On return

from the memory controller, the directory entry at the home

router is updated with the tag and location of the newly

received data. Because the core that receives the data may be

different from the router node that tracks the directory entry,

the memory controller generates two network packets to

separately transmit the data update and the directory update.

On a memory write, the directory system is unused; as

per the CUDA programming model, it is not permitted for

other thread blocks (other cores) to view data updates. Thus,

memory writes do not update the directory, but may produce

invalidations if a memory location changes from a valid to

invalid mapping. This significantly simplifies the protocol so

that only the memory controller can update directory entries.

2) Merging Outstanding Requests: The directory system

is designed to enable sharing for data that is already on-

chip. However, if there are multiple simultaneous requests

for the same data that is not on-chip, there would be

multiple requests. These duplicate requests will increase

average memory access latency and use external bandwidth

inefficiently. Thus, we augment the directory system to

track outstanding memory requests. Memory requests that

are currently outstanding (currently being processed by the

memory controller) will be tracked by the corresponding

home node.

When a memory request arrives at an address’ home node,

we first determine if another request to the same address is

already being processed in the memory system. If there is

an outstanding request, the second request will wait until

the data returns rather than producing a duplicate memory

request. In the case that the data is expected to arrive at a

core other than the home node, the second memory request

is forwarded to the other core to await the data. Due to

this additional step, it is possible that the data is evicted

2222

before being found and forwarded. Thus, we add a timeout

feature that forwards the request to the memory controller

if the request is not serviced within the specified number of

cycles.

3) Directory Design: The directory is integrated into the

NoC router at its input ports. Figure 1 shows the integration

of directory into the NoC router. The latency of a NoC is

critical to overall performance and thus we make design

decisions to reduce latency. Only the address requests and

directory update packets access the directory, and only at the

home node of the memory address. Thus most packets will

not require access to the directory of a router it is passing

through. Thus, to minimize the average case latency, we add

paths to bypass the directory.

The directory is implemented in a single BRAM that is

shared among all input ports using a simple round-robin

policy. We use dual-port BRAMs and partition inputs into

two groups that each share one of the two ports. In the mesh,

there are four direction links (N,S,E,W) plus the core link;

as the core is more likely to generate addresses that map to

its own router, the core is placed in the partition with only

two sharing ports to ensure access to the directory.

C. Integrating NoC with FCUDA Flow

In order to connect the generated cores via NoC, we make

specialization to cores and we integrate our changes into

FCUDA flow.

1) Memory Ports Combination: Each core is required to

read and write to external memory. In the CUDA kernels, the

interfaces to external memory are implemented as pointers

in the device function. Vivado HLS converts these pointers

to bus communication protocol and we connect them to NoC

routers. However, each pointer is implemented as a separate

port. We solve this problem by combining all the memory

interfaces into one port. By using the same memory interface

but with different offsets, we can reconstruct the different

pointers used in the original kernel.

2) BRAMs Visibility: FCUDA translates CUDA shared

memory to BRAMs on the FPGA. The directory system is

built to take advantage of those BRAMs. However, the cores

generated are a black box and BRAMs are not visible outside

the core. We therefore transform these arrays into function

parameters and Vivado synthesizes a fast interface to these

BRAMs while also allowing external access.

3) Address Mapping: Vivado generated cores bring exter-

nal memory into local BRAM storage. Although the cores

generate valid external addresses, they do not maintain a

mapping between external addresses and the location of

data in the local BRAMs. We use a static mapping function

implemented using the number of thread blocks, and thread

block dimensions to ensure that we can determine if a data

item is already on-chip based on the external address.

4) Decentralized Control: Existing flow creates a single

top-level module that includes several core instantiations

with centralized control. However, in order to connect the

cores to the NoC, we make changes to the flow to indi-

vidually synthesize the cores, each with its own control to

operate completely independently of other cores.

D. Automated NoC Tool Flow

The NoC and its integration with FCUDA cores are fully

automated and integrated into a single cohesive tool chain.

Using the tool chain, we automatically generate configurable

NoCs integrated with the cores. The NoC design involves

computation cores wrapping, top-level network generation,

directory systems and integration of NoCs with cores.

IV. RESULTS

We use five CUDA kernels for our evaluation: matrix

multiplication (mm - multiplication of two arrays), 1D-

convolution (conv1d - signal processing function that com-

putes area overlap between two functions), coulombic po-

tential (cp - computation of electronic potential in a volume

containing charged particles), dct (dct - transformation from

spatial domain to frequency domain) and inverse-dct (idct
- reconstruction of sequence from dot coefficients). The

results of both dct and idct are similar and hence, we present

only the results of dct here. We use both the floating-point

and integer versions for matrix multiplication. We evaluate

our NoC design in terms of performance and external

memory accesses. We perform functional simulation of our

NoC using modelsim by connecting the NoC to a memory

controller and a DDR2 model. The memory controller is

generated using the Memory Interface Generator (MIG v3.6)

from the Xilinx IP generator tool.

For each benchmark, we use three different network sizes

(3 x 3, 6 x 6, and 8 x 8). We scale the data together with the

network size proportionally. The total data size is equal to

the product of the number of cores and the size of data that

one core processes. For example, each core of mm works on

256 entries of data and for 64 cores network (8 x 8 NoC),

the data size of each array is 16384. For our NoC design, we

fix the directory size to be 256 entries. We use the NoC with

directory but with disabled sharing as our baseline solution.

Figure 2 shows the comparison of latency in terms of

clock cycles when normalized to the baseline configuration.

We achieve an average of 16%, 23% and 43% clock cycle

reduction for a 3 x 3, 6 x 6 and 8 x 8 NoC, respectively. All

benchmarks except conv1d show improved performance as

we scale the network. The performance of conv1d degrades

as we increase the size of the network. This is attributed

to the sharing overhead and we study the external memory

reads to understand possible data sharing in benchmarks.

Figure 3 shows the number of external memory reads

comparison. For the baseline, where the data sharing is

disabled, the number of external memory reads is equal

to the sum of all memory reads by the cores as all the

requests have to go to external memory. The data sharing

2323

��

����

����

����

����

��

����

����

��
��

���
���

�

��
��

���
��

	

��
��

�
	�
�

�	
��

�

�
��
��

�

�
��
�!�

��
��

	
��
�"
	�
�#

�

���	��� �#�

$%$�

�%��

�%��

Figure 2. Performance Comparison (clock cycles)

enabled by our NoC has reduced the total memory reads by

53%, 56% and 60% for a 3 x 3, 6 x 6 and 8 x 8 NoC,

respectively. For conv1d, the number of memory reads is

only reduced by 14% and 8% for 6 x 6 and 8 x 8 network.

The performance loss of conv1d in Figure 2 is partly due to

the smaller memory reads reduction.

��
����
����
��$�
����
����
����
��&�
��'�
��(�

��

��
��

���
���

�

��
��

���
��

	

��
��

�
	�
�

�	
��

�

�
��
��

�

�
��
�!�

��
�
��

"�
��

��
#�

���	��� �#�

$%$�

�%��

'%'�

Figure 3. Comparison of External Memory Reads

Finally, we study the impact of the number of cycles

that an outstanding merged request waits for the data to

be available on-chip before accessing external memory.

Figure 4 compares the latency and memory reads between

timeout values of 100 and 500 clock cycles for the mm
benchmark. The timeout value of 100 cycles is considered

a baseline and the normalized values are presented along

y-axis. We find that the configurable timeout value needs to

increase as we scale the size of the network for maximum

performance benefit. This is intuitive because with larger

networks, the overhead of the packet traversal across the

network is higher and outstanding requests have to wait for

longer cycles.

V. CONCLUSION

We developed a network-on-chip integrated with FCUDA

flow that enables on-chip data sharing. CUDA program-

ming model allowed us to customize the NoC design with

simplicity. On the other hand, we added features including

directory-based sharing and outstanding request to exploit

data sharing. Our NoC flow automatically generates config-

urable NoCs integrated with FCUDA cores. We demonstrate

reduced external bandwidth demand by 56% and total ap-

plication latency by 27% for a set of applications.

��

����

����

����

����

��

����

������������� 	�
�������
�� ������������� 	�
�������
��

��
�������
��
��������

�
��

��
���

�
��
��
��

���
��

��
��

��
�

$�$�

����

����

Figure 4. Varying Configurable Timer - Comparison of Clock Cycles and
Memory Reads

ACKNOWLEDGMENT

This work was supported by A*STAR under HSSP grant and
in part by the CFAR Center, one of six centers of STARnet,
a Semiconductor Research Corporation program sponsored by
MARCO and DARPA.

REFERENCES

[1] K. Alnaes, E. Kristiansen, D. Gustavson, and D. James. Scalable
Coherent Interface. In CompEuro ’90. Proceedings of the 1990
IEEE International Conference on Computer Systems and Software
Engineering, pages 446–453, 1990.

[2] L. Benini. Application Specific NoC Design. In DATE ’06. Proceed-
ings, volume 1, pages 1–5, 2006.

[3] D. Bertozzi and L. Benini. Xpipes: a network-on-chip architecture
for gigascale systems-on-chip. Circuits and Systems Magazine, IEEE,
4(2):18–31, 2004.

[4] L. Censier and P. Feautrier. A new solution to coherence prob-
lems in multicache systems. Computers, IEEE Transactions on, C-
27(12):1112–1118, 1978.

[5] T. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner,
D. Neto, J. Wong, P. Yiannacouras, and D. Singh. From OpenCL
to high-performance hardware on FPGAs. In FPL, pages 531–534,
2012.

[6] A. Ehliar and D. Liu. An FPGA Based Open Source Network-on-
Chip Architecture. In Field Programmable Logic and Applications,
2007. FPL 2007. International Conference on, pages 800–803, 2007.

[7] Forte Design Systems. Cynthesizer, 2012. http://www.forteds.com/
products/cynthesizer.asp.

[8] K. Goossens, J. Dielissen, and A. Radulescu. Aethereal network on
chip: concepts, architectures, and implementations. Design Test of
Computers, IEEE, 22(5):414–421, 2005.

[9] S. T. Gurumani, H. Cholakkal, Y. Liang, K. Rupnow, and D. Chen.
High-level synthesis of multiple dependent CUDA kernels on FPGA.
In ASP-DAC, pages 305–312, 2013.

[10] C. Hilton and B. Nelson. PNoC: a flexible circuit-switched NoC
for FPGA-based systems. Computers and Digital Techniques, IEE
Proceedings -, 153(3):181–188, 2006.

[11] S. Kwon, S. Pasricha, and J. Cho. POSEIDON: A framework
for application-specific Network-on-Chip synthesis for heterogeneous
chip multiprocessors. In Quality Electronic Design (ISQED), 2011
12th International Symposium on, pages 1–7, 2011.

[12] S. Murali and G. De Micheli. SUNMAP: a tool for automatic topology
selection and generation for NoCs. In Design Automation Conference,
2004. Proceedings. 41st, pages 914–919, 2004.

[13] A. Papakonstantinou, K. Gururaj, J. A. Stratton, D. Chen, J. Cong,
and W. mei W. Hwu. FCUDA: Enabling efficient compilation of
CUDA kernels onto FPGAs. In Symposium on Application Specific
Processors, pages 35–42, 2009.

[14] A. Papakonstantinou, Y. Liang, J. A. Stratton, K. Gururaj, D. Chen,
W. mei W. Hwu, and J. Cong. Multilevel Granularity Parallelism
Synthesis on FPGAs. In Field-Programmable Custom Computing
Machines, pages 178–185, 2011.

[15] H. Zheng, S. Gurumani, L. Yang, D. Chen, and K. Rupnow. High-
level Synthesis with Behavioral level Multi-Cycle Path Analysis. In
FPL, 2013.

2424

