SPMS: Strand based Persistent Memory System

Shuo Li*, Peng Wang!, Nong Xiao?, Guangyu Sun' and Fang Liu*

*State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Chi

fCenter for Energy-efficient Computing and Applications, Peking University, China
School of Data and Computer Science, Sun Yat-sen University, China
lishuol2@nudt.edu.cn wang_peng @pku.edu.cn xiaon6@sysu.edu.cn gsun@pku.edu.cn liufang@nudt.edu.cn

Abstract—Emerging non-volatile memories enable persistent
memory, which offers the opportunity to directly access persistent
data structures residing in main memory. In order to keep
persistent data consistent in case of system failures, most prior
work relies on persist ordering constraints which incurs signif-
icant overheads. Strand persistency minimizes persist ordering
constraints. However, there is still no proposed persistent memory
design based on strand persistency due to its implementation
complexity. In this work, we propose a novel persistent memory
system based on strand persistency, called SPMS. SPMS consists
of cacheline-based strand group tracking components, a volatile
strand buffer and ultra-capacitors incorporated in persistent
memory modules. SPMS can track each strand and guarantee
its atomicity. In case of system failures, committed strands
buffered in the strand buffer can be flushed back to persistent
memory within the residual energy window provided by the
ultra-capacitors. Our evaluations show that SPMS outperforms
the state-of-the-art persistent memory system by 6.6% and
has slightly better performance than the baseline without any
consistency guarantee. What’s more, SPMS reduces the persistent
memory write traffic by 30%, with the help of the strand buffer.

I. INTRODUCTION

Emerging non-volatile memory (NVM) technologies, such
as phase-change memory (PCM), spin-transfer torque RAM
(STT-MRAM) and resistive memory (ReRAM), offer both
the durability of disks/SSDs and the byte-addressability of
DRAM. NVM-based persistent memory systems give applica-
tions the opportunity to directly access persistent data in main
memory through load/store instructions. However, similar to
disks/SSDs, persistent memory systems should ensure crash
consistency [1], [2], that is the persistent data structures remain
in consistent states after systems restart in the event of system
failures (e.g., power losses and system crashes).

Crash consistency has been well investigated in database
systems and file systems. Write-ahead logging (WAL) and
copy-on-write (CoW) are two main mechanisms for ensuring
crash consistency. NV-heaps [3] and Mnemosyne [4] enforce
atomic transactional updates by maintaining a redo log. BPFS
[5] adopts short-circuit shadow paging mechanism, a variant
of CoW, to perform consistent updates. Unfortunately, both
mechanisms incur significant overheads. In WAL, logs consist-
ing of both data and corresponding metadata like the address
of the data, introduce a large amount of extra memory write
traffic. Unavoidably, CoW need to copy unmodified data and
thus incurs unnecessary write traffic and consumes extra intra
bandwidth, especially when updates are sparse.

Prior work reaches a consensus constraining persist ordering
is the main mechanism to ensure consistency [5], [6], [7],

978-3-9815370-8-6/17/$31.00 ©2017 IEEE

[8]. However, persist ordering constraints induce significant
overheads. In order to enforce persist ordering, applications
usually need to explicitly execute costly cache flush (e.g.,
clflush, clflushopt and clwb, memory fence (e.g., mfence and
sfence) and pcommit [9] instructions [8]. What’s more, persist
ordering constraints eliminate the opportunity to reorder or
coalesce memory references to improve system performance.

Motivated by memory consistency, Pelly et al. [6] intro-
duced memory persistency to describe persist ordering con-
straints and proposed three persistency models: strict persis-
tency, epoch persistency and strand persistency. Specifically,
strand persistency eliminates all unnecessary ordering con-
straints and exposes the maximum persist concurrency. From
programs’ point of view, a strand is a standalone logic task,
such as inserting an entry into a queue [6], inserting/deleting
a key-value pair into/from a hash table [7] and so on. Strands
are independent of each other from perspective of persistency
and can be written back to persistent memory concurrently.
The only remaining persist ordering constraints specified by
persist barriers lie in individual strands. Similar to a memory
barrier, any persists after a persist barrier cannot proceed ahead
of any persists before the persist barrier. Although strand
persistency minimizes persist ordering constraints, however,
due to its implementation complexity, there is still no proposed
persistent memory system based on strand persistency.

In this work, we propose a novel strand based persistent
memory system, called SPMS, which aims to maximize per-
formance of persistent memory systems with crash consistency
guarantees. SPMS can keep the persistent memory system in
consistent states in the event of system failures and eliminate
the recovery phase when the system restarts after crashes. Our
evaluations show that SPMS outperforms the state-of-the-art
persistent memory design by 6.6% and has slightly higher per-
formance than the baseline system without crash consistency
guarantees. What’s more, the write traffic to persistent memory
is also reduced by 30% compared to the baseline. The major
contributions of this paper are as follows:

o We propose a novel persistent memory design based on
strand persistency.

o« We introduce a cacheline-based strand group tracking
technique, which can track strands without sacrificing
cache efficiency.

o By guaranteeing the atomicity of strands, we eliminate
persist barriers within strands and maximize the perfor-
mance of persistent memory systems.

622

CPU
Load, Store | NewStrand

Cache Cache
Hierarchy Controller
I]

Strand | Persist
Buffer

PM (with ultra-capacitors)

Strand Group
Tracking

DRAM

Fig. 1. Overview of SPMS
II. BACKGROUND AND MOTIVATION

A. Persistent memory transactions and wraps

Persistent memory transactions, which are groups of per-
sistent memory accesses are proposed in Kiln[7], a persis-
tent memory design characterized by a non-volatile LLC.
A persistent memory transaction is committed in the non-
volatile LLC first and then flushed back to persistent memory.
Kiln can track each persistent memory transaction and guar-
antee its atomicity. While the ordering between transactions
is preserved by clean-on-commit, out-of-order writebacks of
stores within a transaction from volatile caches to non-volatile
LLC are allowed. Similar to persistent memory transactions,
Doshi et al.[10] propose wraps which are failure atomic code
regions with all-or-nothing semantics. Updates in a wrap are
stored in persistent log first and then written back to home
locations in persistent memory atomically. Since this design
is similar to software-based write-ahead logging except that it
is implemented in hardware, we refer to it as hardware log.

Both persistent memory transactions and wraps are atomic
with respect of system failures without persist ordering con-
straints within transactions/wraps. Inspired by this, our design
ensures the atomicity of strands to eliminate the persistent
barriers within strands and corresponding cache flush and
memory fence instructions.

B. Device Support for Crash Consistency

Enforcing atomicity needs the support of persistent memory
devices. BPFS [5] proposes to extend DIMMs with extra
capacitors to provide enough energy to finish in-flight writes
in the event of power losses. Prior researches almost all
assume persists are performed atomically at 8-byte granularity.
Actually, if needed, the persistent memory can easily provide
larger granularity of atomicity with bigger capacitors [5].
In this work, we propose to incorporate persistent memory
modules with ultra-capacitors that can provide energy for
flushing tens of megabytes data back to persistent memory, like
the commodity NVDIMMSs[11], which have dedicated power
sources to allow DIMMs to dump volatile memory data into
non-volatile flash in case of power failures. NVDIMMSs have
evolved from using backup battery to using ultra-capacitors as
backup power sources.

ITI. STRAND PERSISTENCY BASED PERSISTENT MEMORY

SPMS consists of strand tracking components, a volatile
strand buffer and ultra-capacitors equipped with persistent
memory modules as shown in Figure 1. Each strand is as-
signed a strand ID and tracked by the strand tracking logic.
Cachelines evicted from the LLC are buffered in the strand
buffer. When all updates of a strand are evicted from caches

2017 Design, Automation and Test in Europe (DATE)

and buffered in the strand buffer, the strand is committed. A
committed strand can be flushed out of the strand buffer and
update persistent memory in-place. In case of system failures
the ultra-capacitors can provide sufficient energy to flush all
committed strands to persistent memory. SPMS simplifies
persistent memory writes by performing in-place updates and
eliminates cache flushes and memory fences.

A. Cacheline-based Strand Group Tracking

Prior work [7], [12], [10] has proposed various updates
tracking schemes. Kiln [7] proposes to track persistent memory
transaction writes with a FIFO. LOC [12] extends tags of
cachelines to track transactions. Reference [10] implements
hardware redo logs to record wrap updates. Similar to Kiln and
LOC, we adopt a cacheline-based tracking mechanism to track
updates in strands. Cacheline-based tracking is compatible
with the native cache organization and is easily implemented.
However, one challenge is strand conflicts, where one cache-
line is updated by two or more strands. LOC proposes to
maintain multiple versions of the cacheline when a conflict
occurs, which decreases the effective capacity of the valuable
cache. We propose strand group tracking scheme whose de-
tailed implementation is introduced in IV-B. When two strands
conflict, we combine them into a strand group treated as a
strand. The cacheline-based strand tracking scheme is easily
implemented and can preserve the efficiency of caches.

B. Strand Buffer

The strand buffer stores temporally cachelines evicted from
the LLC. After a strand commits, the buffered cachelines
belonging to this strand will be flushed back to persistent
memory. For read requests to persistent memory, the strand
buffer acts as a victim cache. Read requests hitting in the
strand buffer are responded by the strand buffer directly
without accessing persistent memory, because the new data
located in the strand buffer. What’s more, access latency of
the strand buffer is much lower than the backend persistent
memory.

C. In-place Updates

Different from SRAM and DRAM, most non-volatile mem-
ories have limited endurance, including PCM, STT-MRAM
and ReRAM. In persistent memory designs, however, many
consistency mechanisms induce a large amount of extra
write traffic, which in turn aggravates the limited endurance
problem, such as WAL and CoW. Kiln adopts STT-MRAM
based LLC, which suffers from much more write traffic than
main memory. What’s more, cache flushes used to control
persist ordering will increase persistent memory write traffic.
However, SPMS can reduce persistent memory write traffic
and extend persistent memory lifetime in two aspects: (1)
different from WAL and CoW, updates are written back to their
home locations in persistent memory directly, which reduces
write traffic significantly; (2) the strand buffer can coalesce
writebacks and then reduce write traffic further. What more,
different from Kiln’s STT-MRAM based LLC, the strand
buffer is implemented by high-endurance and low-latency
SRAM.

623

L1/2 Cache
TID SID__ Tag Data

folE:
Slz
o

Strand group | Cache TID
tracking Controller SID

Strand Group State Table
State CID TID_ SID_ Cnt_Next Prev Next

2

L3 Cache
CIDTID SID__Tag Data

12
12 [46

oo

Total | 9

cpu (b) Storage Overhead of Hardware
Cache Extensions in Cache Hirarchy

Strand Buffer

jState ID__Addr__Data Strand buffer
| 1 controlling

Extensions
for SPMS

Persistent
Memory

Bit | State Bit | State
0 [invalid

1 valid

e 2 | committed
,,,,,,,,,,,,, 3 | reserved 3
(c) SGST State (d) Strand Buffer State

reserved

(a) Hardware Extensions

Fig. 2. SPMS Hardware Extensions and Storage Overhead

SPMS can keep the persistent memory in consistent states
all the time even in case of system failures. Therefore, the
traditional time-consuming recovery process can be skipped
when the system reboots after system failures.

IV. IMPLEMENTATION AND OVERHEAD

A. Software Interface and ISA Extension

We assume programs are annotated by proper strand bar-
riers. With a simple modification to the complier, a strand
barrier can be translated to a NewStrand, a new instruction of
the ISA. A NewStrand instruction indicates both the end of the
former strand and the start of the later. The stores targeting the
persistent memory address space within strands are recognized
as strand updates. The study of how to separate a program into
independent strands is beyond of the scope of this paper.

B. Strand group tracking components

In order to record each cacheline’s strand information, we
add extra fields to the tag of each cacheline. As shown in
Figure 2(a), each tag in all cache levels is extended with the
thread ID (TID) and the strand ID (SID). What’s more, each
tag in the LLC is extended with the CPU ID (CID) filed
additionally. The storage overheads are illustrated in Figure
2(b). Only 9 bits (or 12 bits) are needed for each 64 B block
in the L1/L2 cache (or the LLC).

Strand Group State Table (SGST) tracks the status of
individual strands. Each SGST entry consists of seven fields:
State, CID, TID, SID, Cnt, Next and Prev. State fields record
the strand state shown in Figure 2(c). A NewStrand instruction
changes the current strand from active state to committing state
and starts a new strand with the transition of a SGST entry
from invalid state to active state. CID, TID and SID record the
core ID, thread ID and strand ID of the corresponding strand
respectively. Cnt field records the number of cacheline updated
by the strand and residing in caches. When a new cacheline is
updated by a strand, the Cnt of the strand increases by 1. When
one cacheline is evicted from the LLC, the Cnt of the corre-
sponding SGST entry decreases by 1. The strand information
including CID, TID and SID will be transferred to persistent
memory together with the cacheline. When the Cnt field of a
committing strand becomes 0, the strand is committed. The IDs
of committed strands are transferred to persistent memory with
a memory request and then the corresponding SGST entries
are recycled and marked as invalid.

As we introduced, related strands that update the same
cacheline are treated as a strand group. For instance, when

624

strand B updates one cache block which is already updated by
strand A, we store the index of strand B entry in the Next field
of strand A. In this way all related strands belonging to a strand
group are organized into a list. In order to improve operation
efficiency, we add a Prev field and then one strand group can
be represented and manipulated as a doubly linked list. A
strand group is committed only when all strands belonging
to this group are committed.

The storage overhead of SGST is shown in Figure 2(b).
For a system supporting 4096 strands, the total size of SGST
is only 184 KB, smaller than a typical L2 cache, 256 KB.
This cacheline-based strand group tracking mechanism can be
integrated with most classic cache replacement policies, such
as LRU and pseudo-LRU.

C. Strand Buffer

Cachelines evicted from the LLC are buffered in the strand
buffer, a volatile buffer located on the persistent memory
module. Each entry in the strand buffer has four fields: State,
ID, Addr and Data. Data fields store evicted cachelines, while
Addr fileds store physical addresses. The ID field is the combi-
nation of CID, TID and SID fields in SGST. State fileds record
state transitions of the corresponding cacheline. Initially, the
state of each entry is invalid. When an evicted cacheline
occupies one strand buffer entry, its state changes from invalid
to valid. After the strand buffer receives the committed signal
of a strand, all entries belonging to this strand are changed
from valid to committed. Those committed entries can be
written back to their home locations in persistent memory
when there is no outstanding writeback or read request to
serve. In case of system failures, the strand buffer will flush
committed entries back to persistent memory within the energy
window provided by the ultra-capacitors. Uncommitted entries
and all data in caches will be discarded. In this way, the
atomicity of strands can be guaranteed.

The strand buffer can be implemented as a full-associative
cache based on SRAM. To avoid performance degradation, the
operations to the strand buffer are performed off the critical
path of memory accesses. The strand buffer flushes committed
entries to persistent memory when there is no LLC miss and
writeback to serve. Since there is no chip area limitation,
the strand buffer can be significantly larger than the LLC.
However, larger strand buffer needs larger capacitor to provide
sufficient energy to finish outstanding committed strands in
case of power failures. In the evaluation, we set the strand
buffer capacity 8 times the capacity of the LLC.

When there’s no free SGST entry, we stall memory requests
and evict cachelines belonging to a committing strand to spare
free entries for new strands. As for strand buffer overflow, we
fall back on logging mechanism by writing the newly evicted
cachelines into a log area in persistent memory.

V. EVALUATION

A. Experimental Methodology

Our experiments are conducted using the full-system simu-
lator GEMS [13]. We adopt the timing simple CPU model and
the classic memory system. We extend the cache hierarchy

2017 Design, Automation and Test in Europe (DATE)

WAL ® Hiog m SPMS

INENENN

Hash B+Tree RBTree SPS SDG SSCA2

Throughput

Normalized
o 9o
N

Gmean

Fig. 3. Performance comparison of different persistent memory systems

and simple memory model to implement the strand group
tracking components and the strand buffer described in IV.
The parameters of the evaluated system are listed in Table I.

TABLE 1
PARAMETERS OF THE EVALUATED SYSTEM

Processor 2.5 GHz, Timing Simple CPU

L1 I/D Private 32KB, 8-way, 64B block , 2 cycles
L2 Cache Private 256KB, 8-way, 64B block, 10 cycles
L3 Cache 2MB, 16-way, 64B block, 25 cycles

Strand buffer 16MB, 64B block, 30 ns access latency
PM 4GB, 120 ns access latency

Table II lists the benchmarks to evaluate our design. Most
benchmarks perform insert/delete or swap operations to com-
mon data structures, including a hash table, search tree, graph,
and array. A strand is a insert/delete of the corresponding data
elements (e.g., key-value pairs, tree nodes, etc).

TABLE II
SIX DIFFERENT BENCHMARKS

Hash [7] Insert/delete entries in a hash table
B+Tree [12] Insert/delete nodes in a B+ tree
RBTree [7] Insert/delete nodes in a red-back tree

SPS [7] Random swap entries in an array

SDG [14] Insert/delete edges in a graph
SSCA2 [15] A directed graph analysis benchmark

B. SPMS performance

We compare SPMS with two other persistent memory
systems with crash consistency guarantees: write-ahead log-
ging (WAL) and hardware log (Hlog) [10]. WAL can be
implemented as redo or undo log. Since redo log is usually
more efficient than undo log, we choose to implement redo
log. Different from software-based logging, through non-
temporal instructions (e.g., MOVNT in x86 architecture), Hlog
transfers log records of updates to a specific backend SCM
controller which stores log records into persistent memory
before performing in-place updates.

Figure 3 shows the throughputs of the three designs. The
throughputs are normalized to the baseline system, which does
not ensure crash consistency. Compared to WAL, both SPMS
and Hlog have much higher throughputs. The main reason
is that different from WAL, SPMS and Hlog avoid a large
amount of extra persistent memory write traffic. We also find
that the throughputs of SPMS are higher than Hlog’s in all six
benchmarks and SPMS outperforms Hlog by 6.6% on average.
What’s more, in most benchmarks, SPMS’s throughput is
higher than the baseline slightly. This is contributed to the
very little overhead of SPMS. What’'more, read hits in the
strand buffer can improve the throughput of SPMS.

C. PM Write Traffic

Figure 4 shows the SPMS write traffic normalized to the
baseline. SPMS reduces persistent memory write traffic by
30% on average. SPMS dose not incur any cache flushes for

2017 Design, Automation and Test in Europe (DATE)

Normalized
Write Traffic
o
-
T

=}

o
> o

Hash B+Tree RBTree SPS SDG SSCA2 Gmean

Fig. 4. Write traffic of SPMS (normalized to the baseline)

crash consistency guarantees. What’s more, the strand buffer
provides more opportunity to coalesce updates.
VI. SUMMARY

In this paper, we propose a novel persistent memory system
based on strand persistency which minimizes persist ordering
constraints with crash consistency guarantees. SPMS tracks
each strands and guarantees its atomicity, eliminating persist
ordering constraints within strands, allowing persistent mem-
ory to perform in-place updates and eliminating the time-
consuming recover phase when systems restart after failures.
SPMS outperforms the baseline system slightly and reduces
the persistent memory write traffic by 30%. Our proposed per-
sistent memory system introduces some minor modifications
to the memory hierarchy. Although hardware modifications are
discouraging propositions, we believe that these modifications
are essential for extensive uses of persistent memory.

VII. ACKNOWLEDGMENTS

This work is supported by National High-tech R&D Pro-
gram of China (N0.2015AA015305), National Natural Science
Foundation of China (No0.61433019, U1435217, 61572045,
61332003, 61402503).

REFERENCES

[1] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau et al., “Optimistic
crash consistency,” in SOSP, 2013, pp. 228-243.

[2] J. Ren, J. Zhao, S. Khan er al., “ThyNVM: Enabling Software-
Transparent Crash Consistency in Persistent Memory Systems,” in
MICRO, 2015, pp. 672-685.

[3] J. Coburn, A. M. Caulfield, A. Akel et al, “NV-Heaps: Making
Persistent Objects Fast and Safe with Next-Generation, Non-Volatile
Memories,” in ASPLOS, 2011.

[4] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
Persistent Memory,” in ASPLOS, 2011.

[5] J. Condit, E. B. Nightingale, C. Frost et al., “Better I/O through byte-
addressable persistent memory,” in SOSP, 2009.

[6] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,” in
ISCA, 2014, pp. 265-276.

[7] J. Zhao, S. Li, D. H. Yoon et al., “Kiln: Closing the Performance Gap
Between Systems With and Without Persistence Support Jishen,” in
MICRO, 2013, pp. 421-432.

[8] A. Kolli, J. Rosen, S. Diestelhorst et al., “Delegated Persist Ordering,”
in MICRO, 2016.

[9] Intel, “Intel Architecture Instruction Set Extensions Programming Ref-

erence,” February 2016.

K. Doshi, E. Giles, and P. Varman, “Atomic persistence for SCM with

a non-intrusive backend controller,” in HPCA, 2016, pp. 77-89.

“Micron Technology, Inc. NVDIMM DRAM Modules.” [Online].

Available: https://www.micron.com/products/dram-modules/nvdimm#/

Y. Lu, J. Shu, L. Sun et al., “Loose-Ordering Consistency for persistent

memory,” in /CCD, 2014, pp. 216-223.

N. Binkert, S. Sardashti, R. Sen et al., “The gem5 simulator,” ACM

SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1-7, aug

2011.

J. Siek, L.-Q. Lee, and A. Lumsdaine, “Boost Graph Library: Adjacency

List - 1.59.0.” [Online]. Available: http://www.boost.org/doc/libs/

D. a. Bader and K. Madduri, “Design and Implementation of the HPCS

Graph Analysis Benchmark on Symmetric Multiprocessors,” in HiPC,

2005, pp. 465-476.

[10]
(1]
[12]

[13]

[14]

[15]

625

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

