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Accurate WiFi Based Localization for
Smartphones Using Peer Assistance
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Abstract—Highly accurate indoor localization of smartphones is critical to enable novel location based features for users and
businesses. In this paper, we first conduct an empirical investigation of the suitability of WiFi localization for this purpose. We find that
although reasonable accuracy can be achieved, significant errors (e.g., 6 ∼ 8m) always exist. The root cause is the existence of
distinct locations with similar signatures, which is a fundamental limit of pure WiFi-based methods. Inspired by high densities of
smartphones in public spaces, we propose a peer assisted localization approach to eliminate such large errors. It obtains accurate
acoustic ranging estimates among peer phones, then maps their locations jointly against WiFi signature map subjecting to ranging
constraints. We devise techniques for fast acoustic ranging among multiple phones and build a prototype. Experiments show that it
can reduce the maximum and 80-percentile errors to as small as 2m and 1m, in time no longer than the original WiFi scanning, with
negligible impact on battery lifetime.

Index Terms—Smartphone, peer assisted localization, WiFi fingerprint localization

1 INTRODUCTION

INDOOR localization is a critical enabler for location based
smartphone applications. In many environments (e.g.,

airport terminals, railway stations and shopping malls), the
location helps users access navigation, merchandise and
promotion information; businesses need it to understand
the patterns of customer visit and stay, such as the popu-
larity of different sections in a store, or the spatial-temporal
distribution of passenger flows.

Accurate indoor localization on smartphones, how-
ever, remains elusive. Although there have been some
recent commercial offerings such as Google Maps 6.0 and
Shopkick [1], they either have errors up to 10 meters [11],
or only locate at the granularity of stores. There has been
a plethora of academic work on indoor localization. Those
achieving high accuracy usually require special hardware
not readily available on smartphones [30], [31], [35], or
infrastructure expensive to deploy [7], [21]. WiFi-based
localization leverages prevalent wireless access points, thus
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avoiding such drawbacks. However, most WiFi-based local-
ization [3], [13], [14], [16], [38] have been largely based on
laptops with quite different antenna forms (e.g., antenna
polarization) and possibly radio characteristics (e.g., mul-
tiple channels and power levels), whereas recent work
on smartphone indoor localization [2], [9], [19] achieves
room or floor level accuracies and Liu et al. [26] also pro-
poses a MCMC based approach with mean error around
4 meters using a pocket-placed smartphone. The feasibil-
ity of leveraging the most prevalent WiFi infrastructure for
high accuracy localization on smartphones is still an open
question.

In this paper, we first conduct a set of experiments in two
different environments (i.e., office and gym) to empirically
study the impact of various factors on the accuracy of WiFi
localization on smartphones. We find that although reason-
able accuracy (e.g., 3 ∼ 4m) can be achieved, there always
exist large errors (e.g., 6 ∼ 8m) unacceptable for many sce-
narios in both environments. Similar or much larger errors
(e.g., >15m) have been reported in previous studies [3],
[38]. One work [8] found that high accuracy (e.g., sub-meter
median and 2m maximum) is possible but only under hun-
dreds of APs, infeasible in practical settings. Such errors
may cause a passenger to make a wrong turn leading to a
different train platform, or a store to erroneously stock up
for a section with much less real customer interests. Our
investigation on these large errors reveals the insight that
they are caused by possibly faraway locations with simi-
lar WiFi signatures, an intrinsic phenomenon of the radio
signal propagation and fundamental limit of WiFi methods.

On the other hand, we observe that smartphones are
gradually woven into our social life and usually a high den-
sity of them exist in public spaces. The relative positions of
nearby peer devices could be used as physical constraints
on the possible location of a smartphone. Inspired by
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Fig. 1. Each dot in the floor map represents a location where the WiFi signal strength fingerprint is measured. (a) Office environment. (b) Gym
environment.

this observation, we set out to study how to exploit the
unique physical constraints among smartphones to reduce
large errors and push the limit of WiFi based approaches.
We propose a peer-phone assisted localization approach
that leverages the acoustic ranging between peers, without
requiring special hardware yet producing highly accurate
location estimates.

In particular, the peer-phone assisted localization can be
carried out concurrently with WiFi localization or when
a smartphone has obtained a rough location from WiFi
but needs further improvements. The targeting smart-
phone exchanges sound signals with nearby peer devices.
A virtual synchronization scheme is proposed to avoid
the interference of sound signals among multiple smart-
phones. A server collects acoustic ranging estimates and
constructs a graph of the relative positions among peers.
It applies a localization algorithm that maps the vertices
of the graph against the WiFi signature database to locate
all peers jointly. Experiments using data from various envi-
ronments, including the airport, train station, and shopping
mall, have shown that our approach can reduce 80 per-
centile error to about 1m, and limit the maximum error to
about 2m, demonstrating the feasibility of WiFi for high
accuracy localization.

Specifically, we make the following contributions:

• We discover the root cause of large errors as the
existence of faraway locations sharing similar radio
signatures, which is due to the intrinsic dynamic
propagation of the radio signal, thus presenting a
fundamental limit of WiFi methods.

• We propose a peer-phone assisted localization
approach utilizing minimum auxiliary COTS sound
hardware for reducing large errors and push the
limit of WiFi approaches. We devise a peer-assisted
localization algorithm that leverages acoustic rang-
ing and locates peer phones jointly for greatly
improved accuracy. We identify the frequencies,
sound signal design, detection and emission schedul-
ing methods appropriate for fast ranging among
multiple peers that are unobtrusive, robust to

noise and have minimum impact on users’ regular
activities.

• We prototype our system and carry out real world
experiments. The results demonstrate that our
approach greatly reduces the maximum error from
6–8m to 2m, and limit 80 percentile error to 1m,
which were shown empirically possible but only
under hundreds of APs [8]. The assistance finishes
in time no longer than a few seconds of WiFi
scanning, and poses negligible impact on battery
lifetime.

The rest of this paper is organized as follows. In
Section 2, we perform a systematic evaluation on WiFi local-
ization on smartphones and report our findings. Section 3
introduces our system design and present the detailed
peer assisted localization algorithm. We study the frequen-
cies, sound detection methods for fast concurrent ranging
among multiple peer phones in Section 4. We describe
the system implementation and report evaluation results
in Section 5. We discuss related issues and survey related
work in Sections 6 and 7. Finally, Section 8 concludes the
paper.

2 PERFORMANCE OF USING WIFI ALONE FOR
SMARTPHONE LOCALIZATION

To understand the practical performance of smartphone
localization using WiFi, we first conduct a systematic study
on the impact of various factors (e.g., orientation, holding
position, time of the day and number of samples) in two
different environments, an office environment with furni-
ture and wall dividers and a gym area with open space, as
shown in Fig. 1. In both environments, we find that reason-
able accuracy can be achieved in many cases (e.g., ∼4m).
However, large errors (e.g., beyond 6 ∼ 8m) always exist.
Further investigation reveals two root causes: static envi-
ronmental effects, and dynamic obstacles or interferences,
both of which pose fundamental limits on WiFi localization
accuracy.



LIU ET AL.: ACCURATE WIFI BASED LOCALIZATION FOR SMARTPHONES USING PEER ASSISTANCE 2201

Fig. 2. WiFi localization error in office vs. gym under orientation, holding style, time of day and number of samples. (a) Orientation, office. (b) Holding
style, office. (c) Time of day, office. (d) Number of samples, office. (e) Orientation, gym. (f) Holding style, gym. (g) Time of day, gym. (h) Number of
samples, gym.

2.1 Methodology
Fingerprint Based Localization. Fingerprint based method
was pioneered by Bahl et al. [4] and is the most popular
WiFi localization approach. It first measures the “finger-
print", the WiFi signal strengths from various access points
(APs) at a number of known locations and stores them
as training data. A device samples the signal strengths
from various APs to obtain testing data. Then an algo-
rithm finds the “closest fingerprints” in the training data
to the sample, using Euclidean distance in the signal space
where each dimension is for a different AP. A location
estimation is given based on the locations of the closest
fingerprints (e.g., the centroid of a few “closest" finger-
print locations). Recent work [9], [10] showed that the
training data could be constructed without extensive site
survey, making this approach even more attractive. In the
test, we build a fine-grained signature map as training
data, using interpolation between locations with actual
measurements.

Experimental Setup. Fig. 1 depicts the floor plan of
our experimental sites, where the office is located at the
second floor of Burchard building at Stevens Institute of
Technology with the floor size of 12m × 11m and the gym
is an indoor basketball court with the size of 18m × 16m
located at the top floor of Walker gym at Stevens. The office
is a typical indoor environment with hallways, office wall
dividers and furniture, such as desks, shelves and chairs,
whereas the gym is an open area with only two basket
pole on the floor. We collect the WiFi signal strengths at
71 and 132 positions in office and gym, respectively. These
locations are shown as small dots in Fig. 1 and the dis-
tance between two adjacent locations is around 1.5 m in
both environments. In both environments, we choose 14
APs with large coverage in our localization process. At
each location, the phone can observe the signals from 8-9
APs on average and we collect 60 Receive Signal Strength
(RSS) readings for each observed AP. We repeat the above
process by varying 4 different factors, orientation, holding
position, time of the day and number of samples (shown in

Table 1), to understand how they impact the localization
performance. For each test, the default parameters are
south for orientation, normal style for holding position, 60
samples and morning time.

2.2 Impact of Various Factors
Fig. 2 presents the cumulative distribution function (CDF)
of the localization error under various factors in both the
office and gym environments.

We first examine how the orientation affects the RSS
readings due to the blocking and reflection of radio signals
by the human body. In outdoor cases, 10dB RSS difference
for certain APs was observed on smartphones [40]. In our
indoor environment, we recorded an average of 4dB differ-
ence. We believe this reduced variation is due to stronger
multipath effects of indoor environments, thus the lack of
direct line of sight does not attenuate the signal as much. In
particular, as shown in Fig. 2(a) and (e), when a mismatched
training data set is used (e.g., south-facing training set for
north-facing user), long tails of CDF curves exhibit large
errors ranging from 6m to 8m in the office and 8m to 10m
in the gym. Even when the matching training set is applied,
errors beyond 5m in the office and 8m in the gym still exist.

Due to the small size, how the user’s hand holds the
phone can affect the received radio signal as well. We tried
two holding positions: bottom and middle. Fig. 2(b) and
(f) show that using mismatched training and testing data
(e.g., bottom-holding as training to localize middle-holding
phones) can lead to large error beyond 6m in the office

TABLE 1
Factors Under Study
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and 8m in the gym. In addition, the localization results are
evaluated under three different times of the day represent-
ing morning, noon and evening in Fig. 2(c) and (g). We
again observe long tails beyond 5 meters in the office and
8 meters in the gym when mismatched training and testing
data are used.

Finally, more samples lead to more reliable measure-
ments as the input for localization, but at the cost of higher
energy and latency overhead. To understand the accuracy-
overhead tradeoff, we depict the localization error when
varying the number of samples from 3 to 60 in Fig. 2(d)
and (h) under a training set of 60 samples per location. We
find that using more than 5 samples does not significantly
improve 90-percentile accuracy. We thus choose 5 samples
in our WiFi localization study throughout the paper.

We find that large errors in both environments are
always over 6 meters. Results in the gym environment are
about 2 meters worse than those in the office environment
for both maximum and median errors. This is because there
are few obstacles in an empty indoor environment (i.e.,
gym), and thus the wireless signals in the gym experience
less attenuation than those in the office environment. In
particular, we find that the average distance between the
signatures of two nearby locations in the signal space is
approximately 1.4dB \ AP in the gym, whereas it is around
2.1dB \ AP in the office. Consequently, it is hard to discrim-
inate the signatures between nearby points in gym when
performing fingerprint localization.

2.3 Root Cause of Large Errors
We make one critical observation from the above investi-
gation: although reasonable accuracy can be achieved in
many cases, large errors 6m or more always exist in both
environments. In many applications these large errors can
cause problems, such as giving the user incorrect navi-
gation instructions, or wrong statistics about the visits of
customers to different sections inside a store.

After a close examination of those large errors, we find
the root cause. In essence, two physically distant locations
happen to share similar WiFi signal strength measurements,
thus a testing sample is erroneously localized to a phys-
ically faraway location with short Euclidean distance in
the signal space. This can be classified into two cases: (1)
permanent environmental settings such as walls, furniture
placement, which affect radio signal propagation and create
persistent similar signal reception; and (2) transient factors
or measurement mismatch between training and testing
data. Such transient variation in RSS reception is due to
dynamic changes in the environment, such as a nearby
moving object or wireless interference from other electronic
devices, while the mismatch can be in orientation, holding
style, time of the day or number of samples.

We illustrate case 1 by three locations in Fig. 1: 18 and
13 are close to each other whereas 4 is farther at the other
side of the room (marked as red stars). However, during
testing we find that locations 18 and 4 share similar WiFi
fingerprints. The distance between their fingerprints in the
signal space is only 1.98 dB/AP, whereas the fingerprint at
closeby location 13 has a distance of 2.44 dB/AP to that of
location 18. In this case, the office wall dividers cause the
large localization error beyond 6m at location 18.

The example for case 2 are location 32, 34 and 48 (marked
as blue squares in Fig. 1). Locations 32 and 34 are close to
each other. However, we find that the WiFi fingerprint at
location 32 becomes similar to that at location 48 at night
when less people are around. Thus when testing at loca-
tion 32 using the training data collected at night, location
32 will be matched to 48, instead of 34, resulting in large
errors of over 6m. Through our study, we find that the per-
centage of large errors resulted from Case 1 is 60% to 70%
in both environments while that from Case 2 accounts for
the rest. Both cases are caused by irregular multipath reflec-
tions, an intrinsic character of radio signals. They present
fundamental limits for WiFi localization to achieve high
accuracy.

3 PEER ASSISTED LOCALIZATION

From the previous investigation, WiFi as-is is not a suit-
able candidate for high accuracy localization due to large
errors. However, is it possible to address this fundamental
limit without the need for additional hardware or infras-
tructure? Our answer is yes: by exploiting acoustic ranging,
a phone can use nearby peer phones as reference points
and obtain its relative positions to them. This imposes
unique physical constraints on the possible location of the
phone, thus reducing the uncertainty and improving the
accuracy.

Such an idea is motivated by two observations. First,
in many public indoor environments (e.g., airport termi-
nals, railway stations, shopping malls and museums), there
are usually a high density of users, thus smartphones.
Each neighboring peer has a unique physical location
for restraining the location uncertainty of a smartphone.
Second, a number of research work [29], [37] has shown that
highly accurate relative ranging can be achieved within a
car (passenger vs. driver side) or between a pair of mobile
devices (at centimeter accuracy) by using sound signals.

3.1 Design Goals and Challenges
The above concept may sound quite simple. However,
building such a peer-assisted localization system involves
a number of great challenges in both the design and
implementation:

• Peer assisted localization algorithm. How to utilize
the physical constrains imposed by the neighbor-
hood peers to reduce the large errors incurred from
WiFi localization? Given only the relative distances
among peers and their location estimates are avail-
able in real scenarios, exactly what is the algorithm?

• Concurrent acoustic ranging of multiple phones.
Previous work on acoustic position estimation was
for one or two devices only. When there are multiple
devices and they all do acoustic ranging, how can we
tell which distance measure is for which pair? How
to design and detect the sound signal, so that the
system is robust to noises in different environments?

• Ease of use. The peer assistance process should com-
plete in short time; otherwise users may have moved
to different locations. The sound emitted should not
annoy or distract users from their regular activities.
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Fig. 3. Workflow of our system.

In the rest of this section, we will present an overview of the
system, then present the details of the peer assisted localiza-
tion algorithm. Section 4 addresses challenges in concurrent
acoustic ranging and ease of use.

3.2 System and Algorithm Overview
Our system works as follows (shown in Fig. 3): when a
target phone needs to further improve accuracy or desires
high accuracy upfront, it broadcasts a special audio signal
to “recruit" nearby peers. Those receiving the recruiting sig-
nal send their identifiers to a server. The server comes up
with a schedule about which phone should emit a beep sig-
nal at which time slot. The phones involved, both the target
and peers, emit the beeps accordingly. They also record the
beeps from others and send the files back to the server. All
peers also conduct WiFi sampling and send the measure-
ments to the server. The server determines the locations of
peers from WiFi samples, and distances among them from
acoustic ranging based on the recorded sound files. Finally
the server computes the new location estimate of the target
using our peer assisted localization algorithm, and sends
back the result to the target.

The intuition underlying the peer assisted localization
algorithm is to construct a graph based on the relative dis-
tances among devices, then “superimpose” the graph onto
the signature map based on the initial WiFi location esti-
mates. The algorithm “rotates" and translationally1 “moves"
the graph against the signature map, such that the vertices
are placed “closest" to the true locations, as measured by
certain metric, where the vertices are placed become the
new location estimates.

In the algorithm, we use as the metric the sum of RSS
Euclidean distances between the WiFi samples of each
device and the WiFi signature of where its graph vertex
is placed. Such a metric quantifies the aggregate “close-
ness" between WiFi samples and new estimated locations
of all devices. We use the example in Fig. 4 to illustrate
the intuition. Initially, each phone has a location estimate

1. “Translationally" means moving the graph without rotation.

Fig. 4. Illustration of using physical constraints to perform peer assisted
localization.

(vertices in the dashed-line graph), e.g., from WiFi local-
ization. Because the acoustic ranging is highly accurate to
identify the relative distances between peers (in terms of
centimeters), the shape of the solid-line graph is quite close
to that of the ground truth (the dotted-line graph). Such
additional relative distance constraints “force" the new loca-
tion estimate of the target to move closer to its real location,
thus reducing large localization errors and achieving higher
accuracy.

3.3 Peer Assisted Localization Algorithm
Our peer assisted algorithm comprises of two main
parts: (a) graph orientation estimation: estimating the
range of graph orientation angle φ2 by combining the
acoustic ranging information and initial WiFi localiza-
tion results. This is important because we find that its
performance is sensitive to the orientation (shown in
Section 5.5). (b) new location estimation: search for the
optimal combination of graph orientation angle and trans-
lational position, such that the RSS distance summation is
minimized.

The algorithm takes two inputs: 1) {pi}, i = 0, . . . , M:
initial WiFi location estimations of the target phone (p0)
and its peers (p1, . . . , pM); 2) {li,j}, i, j = 0, . . . , M: pairwise
acoustic ranging measurements between device i and j. The
algorithm produces {qi}, the new location estimate of each
involved device i. In the following, the first 3 steps esti-
mate the orientation range, and the last two find the new
locations.

Step 1: Compute edge directions from acoustic ranging.
The server constructs a graph G′ with the pairwise ranging
measurements, li,j, i, j ∈ {0, . . . , M}. It rotates G′ such that
the direction of its longest edge is parallel to the X axis.

Then it calculates the direction vector v′
l = p′

i−p′
j

|p′
i−p′

j|
, (i < j) for

the L (e.g., 3)3 longest edges, where p′
i, p′

j are the locations
of the two vertices of an edge.

Step 2: Compute edge directions from initial WiFi
localization. The server also computes the direction vectors
for the same L edges using initial WiFi locations: vl = pi−pj

|pi−pj| ,
(i < j).

2. We define φ as the angle between the X axis and the direction
of the graph’s longest edge, from the vertex of the smaller ID to the
other.

3. When choosing L longest edges, we experimented various values
(e.g., 2, 3 and 4) and found different values of L have little impact on
the final localization results. We used the value of 3 as an example in
our evaluation.
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Fig. 5. Translational movements or rotation of a graph preserve the
distance constraints between vertices. (a) Rotation. (b) Translational
movements.

Step 3: Graph orientation estimation. The server rotates
G′ to find the optimal graph orientation � that maximizes
the inner product summation between {vl} and {v′

l}:

� = argmax
L∑

l=1

v′
lv

T
l . (1)

The inner product is a monotonically decreasing func-
tion of the angle difference between two vectors. Thus
Equation 1 minimizes the angle differences of L edges
obtained from acoustic ranging and initial WiFi localization.

Due to ranging errors, the real orientation may differ
from �. To ensure that the true orientation is covered, the
search of {qi} is conducted in an orientation range of [� −
��,� + ��], where �� = 20◦ from our empirical study
in Section 5.5. We choose the L longest edges because the
longer an edge, the less the impact on its direction caused
by the same ranging error.

Step 4: Set the search scopes. Based on the initial WiFi
position estimation pi, the server tries to superimpose G′
onto the WiFi signature map, such that each vertex i except
the target is restricted inside a small circle Ai centered at
pi with radius ri during the searching process in follow-
ing step. We set ri at 2m based on empirical study (see
Section 5.1).

Step 5: Joint location estimation. Finally, with a small
movement step of α meters and rotation step of β degrees
(set to 0.1m and 2◦ based on empirical study), the server
searches for the optimal location and orientation combina-
tion to superimpose the graph against the fingerprint map
using the following objective function, where the moving
and rotating operations are illustrated in Fig. 5(a) and (b)
respectively:

arg min{
qi

}
, qi ∈ S

M∑

i=0

[
f (qi) − f (pi)

] [
f (qi) − f (pi)

]T
, (2)

where f (x) = [RSS1
x RSS2

x · · · RSSk
x] is the WiFi fingerprint

or measurement at location x ( i.e., the RSS measurements
of k detected access points).

Equation 2 produces the final results by finding a set
of locations {qi}, i = 0, 1, . . . , M from the WiFi finger-
print database S, so as to minimize the summation of RSS

distances, each of which is between device i’s WiFi mea-
surement f (pi) and the signature f (qi) at its new location
estimation qi.

One comment we want to make is that the distances
between some pairs of vertices may not determine the
shape of a graph uniquely. For example, a square is flex-
ible since its vertices can rotate against each other and
form a family of rhombi while preserving the edge lengths,
whereas the shape of a triangle is “rigid" (i.e., uniquely
determined) given the lengths of the three edges. The rigid
graph theory [18] describes under what conditions a graph
is rigid: A complete graph with a known distance between
any two vertices is rigid. The concurrent ranging among
multiple devices and the resulting pairwise distances give
a complete, thus rigid graph.4

Extensive evaluation shows that our algorithm greatly
improves the localization accuracy of the target phone
(details in Section 5). The improvement is limited only
under some rare cases (e.g., when peers are aligned almost
on a straight line, or clustered together and located far away
from the target), which we discuss in Section 5.4.1.

4 ACOUSTIC RELATIVE RANGING

Our peer-assisted approach requires acoustic ranging
among multiple phones. This raises two new issues: First,
how to ensure that the signals from different peer phones
do not interfere. Sound signals do not carry a MAC address
so there is no way to tell which phone emitted which
sound. Second, the whole process has to complete in short
time. Otherwise users may have moved, causing inaccu-
rate ranging results. In this section, we describe our signal
design, detection, and scheduling techniques that satisfy the
requirements of concurrent multi-peer ranging.

4.1 Beep Signal Design and Detection
4.1.1 Acoustic Ranging Principle
In principle, ranging can be done by Time-of-Arrival (TOA)
method that estimates the sound travel time from one
device to another. The difficulty is in uncertainties: both
the emitting and detecting have variable delays difficult to
measure. The lack of clock synchronization between devices
further adds to the problem. To address these issues, we
have each involved peer device emit signals and the uncer-
tainties will cancel out each other in calculation, similar to
Beepbeep [29]. By doing so, only delay measurements from
the same device are needed, thus circumventing the above
issues.

4.1.2 Beep Design
We need to design the acoustic ranging signal carefully. The
signal should be robust to various background noise (e.g.,
human conversations, PA announcements and music) that
make it hard to detect. It should have minimal disturbance
to people’s normal activities. Based on several considera-
tions, we choose the frequency band between 16kHz and
20kHz for the signal.

4. Due to outliers in acoustic ranging, we may miss some pairwise
distances with a small probability. The small search scopes set in step
4 of the algorithm help ensure the rigidity.
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Fig. 6. Beep design: results obtained from HTC EVO. (a) BL and BI design, 100cm. (b) BL and BI design, 200cm. (c) BL and BI design, 300cm.
(d) Frequency design, 300cm. (e) Number of beeps design, 300cm.

The majority of the background noise are located at the
lower frequency band (e.g., conversation between 300Hz to
3400Hz, music from 50Hz to 15kHz, which covers almost
all naturally occurring sounds). 16-20kHz is still audible
to human ears [15], but much less noticeable and thus
present less disturbances. We also found that the current
cell phone microphones are more sensitive to high fre-
quency sounds than human ears [37]. A high frequency
beep at the edge of the microphone’s frequency response
curve make it both easier to filter out noise and renders the
signal un-noticeable to most people.

Our sound signal consists of several evenly paced beeps
of equal lengths. We study how to set the number, length
and frequency of the beeps, and the length of the intervals
in Section 4.2.1. They all impact ranging accuracy and time.
For example, too short a beep may not be picked up by the
microphone, while too long a beep will add more delay to
the ranging.

4.1.3 Beep Detection
Beep detection determines exactly when the beep sig-
nal arrives and it is critical to the accuracy of relative
ranging. We investigate the behaviors of two most com-
mon signal detection methods, change-point detection and
correlation-based under high frequency band.

Change-Point Detection Method. This method requires
the beep have distinct energy uniformly distributed over
a short frequency band (e.g., 16-18kHz). Given that band,
this method first filters out the background noise using a
Short Time Fourier Transform (SIFT). It then identifies the
first strong signal that deviates from the noise in the tar-
geted frequency band. The observed energy distributions of
the recorded signal differ significantly before and after the
arrival of the beep signal. Sequential change-point detection
technique is adopted to identify the arrival of the signal, i.e.,
the exact time point of changed distribution [37].

Correlation-based Method. This method uses a chirp
signal of a much shorter length. It correlates the emitted
chirp sound with the recorded signal using L2-norm cross-
correlation, and picks as the signal detection time when
the correlation value reaches the maximum. To be robust to
multipath, the earliest sharp peak in the correlation values
is used as the signal detection time [29].

4.2 Detailed Design
Through extensive experiments we find that change point
has much higher accuracy than correlation. We will present
the signal design for change point first, then compare the
two methods under different environments.

4.2.1 Sound Signal Parameters
Experimental Setup. We used HTC EVO and Android
Developer Phone 2 (ADP2) phones and 44.1 kHz sampling
rate in recording. During each test, two smartphones of the
same model are used. One phone emits the sound first.
Upon receiving the signal, the other phone emits the sound
and both phones record. The relative ranging is computed
by obtaining the time difference based on the signal detec-
tion in the recorded sounds by the two phones as described
in Section 4.1.1. We spaced the two phones apart at 100cm,
200cm, and 300cm respectively. Each curve in our results is
obtained with 30 runs.

Beep Length (BL) and Beep Interval (BI) analysis.
Fig. 6(a)–(c) presents the cumulative distribution function
(CDF) of the ranging error when the beep length is set to
200, 400 and 1000 samples and the beep interval is set to
3000 and 5000 samples, respectively. The frequency band is
18kHz to 19kHz. It is clear that beep length of 400 sam-
ples achieves the best performance: the ranging error is
around 10cm even when the two phones are placed 300cm
away, and the error is similar with beep interval of 3000
and 5000 samples. We thus choose beep length of 400
samples and beep interval of 3000 samples in our system
implementation.

Beep Frequency Band. With the above settings, we
examine the performance of different frequency bands
beyond 15kHz. Fig. 6(d) shows the results when vary-
ing the frequency band from 16kHz to 20kHz with two
HTC EVO phones 300cm apart (better results are obtained
in 100cm and 200cm cases). The ranging errors are less
than 10cm when the beep frequency is below 19kHz.
Similar experiments are conducted for ADP2 and we
find that the highest frequency band producing compa-
rable ranging results is 16–17kHz. We choose 16–17kHz
range for ADP2 and 18-19kHz for HTC EVO in our
system.

Number of Beeps (NB). Outliers can occur in rang-
ing results due to dynamic factors in the environment.
The sound signal should contain multiple beeps, so as
to obtain multiple ranging estimates and filter out out-
liers. However, too many beep in the sound signal
may make it more susceptible to multi-path distortions.
Fig. 6(e) shows the ranging error when different num-
bers of beeps are employed under frequency band 18-
19kHz with BL = 400 samples and BI = 3000 samples.
Basically, comparable performance (less than 10cm) is
observed across three to five beeps. In our implementa-
tion, we used three beeps, which is robust up to two
outliers on opposite side of the true distance. We observe
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Fig. 7. Ranging errors under different environments. (a) 100cm. (b) 200cm. (c) 300cm.

that the probability of getting reliable results is more
than 95%.

4.2.2 Robustness to Various Noises
To evaluate the robustness of the design, we conduct a
comprehensive study under various environments includ-
ing lab, shopping mall, train station, and airport. There are
all kinds of noises during our test such as human talking,
radio broadcasting, dog barking, and trolley rolling. In each
scenario, two phones are placed 100cm, 200cm, and 300cm
apart.

Fig. 7 shows the median and 90th percentile ranging
error using change-point detection method and correlation-
based method respectively under high frequency band. For
change-point, we use 16-17kHz for ADP2 and 18-19kHz
for HTC EVO. The sound signal follows the previous
parameters in Section 4.2.1. For correlation method, we use
16kHz-20kHz for both phone types and the chirp signal
length is 50ms [29]. We find that change-point detection
significantly outperforms correlation in all cases: it has
consistent low median errors around 10cm, while that of
correlation ranges over 20cm to 40cm; its 90th percentile
error is always below 20cm, while that of correlation can go
up to 65cm. We thus choose change-point detection method
for acoustic ranging in our system.

4.3 Server Based Emission Schedule
Identify Nearby Peers. A target phone needs to find which
peers are nearby to get their help. Since large errors may
exist in the WiFi location estimates for the target and peers,
using WiFi localization alone is not reliable. We let the tar-
get phone emit a customized sound signal containing a
single beep to identify truly nearby peers. Only phones
really close enough can detect the signal. Those willing
to help can send their IDs to the server. The server will
then instruct these peers when they should emit the ranging
signal.

Beep Emission Strategy. To speed up the ranging pro-
cess, multiple phones need to emit sounds in a short time.
Due to the lack of synchronized clocks, this may lead to
interference among beeps from different phones, thus pro-
hibiting accurate signal detection. There are two options
to avoid such interference: time-division multiplexing or
frequency-division multiplexing. We have tested concurrent
emission of signals of different frequency bands, but find
that interference still exists due to energy leakage among
nearby frequency bands.

We employ time-division multiplexing based on server
scheduling.5 We divide the time into slots of length ts long
enough for the beep emission of one phone (e.g., 14000 sam-
ples or about 0.3s, for the previous signal parameters and
a beginning padding of 3000 samples). After receiving the
IDs of all phones, the server comes up with a back-to-back
schedule for them. It sends the schedule to them, with the
ith phone starting beeping after a delay of Tp + i × ts. Tp is
some extra buffer to accommodate small variations in the
reception of the schedule at different phones.

Each phone records beeps from others when its time slot
has not come and plays the sound during its time slot. After
finishing the whole schedule, all phones send their IDs and
recorded files to the server, which performs signal detection
and estimates distances.

4.4 Virtual Synchronization
The beep emission strategy requires peer phones synchro-
nize their clocks due to the employment of time-division
multiplexing. One natural choice is to have the server send
an synchronization message to all the smartphones. We
find, however, the round trip time (RTT) delay between
smartphones and the server varies significantly, ranging
from 2ms to 149ms, when the server is connected with AP
via Ethernet. The large variation of the RTT delay makes
this method unreliable; different phones are not able to
align their time slots well and collisions are inevitable.

To solve this problem, we leverage the recruiting sig-
nal, which is originally used to discover nearby phones for
virtual synchronization among the involved smartphones.
That is, each smartphone uses the arrival time of the recruit-
ing signal as the common reference time point for beep
emission schedules. The synchronization error thus comes
from the different beep propagation latencies from the tar-
get phone to different peer phones (which is usually in
a few milliseconds), and the difference in detecting the
recruiting signal in peers phones (which is also a few mil-
liseconds [29]. When extra buffer time Tp much larger than
the errors is “padded" to beeping time slots, such small
synchronization errors will not cause collisions of acoustic
signals.

Fig. 8 illustrates the process of virtual synchronization
using the recruiting signal. The target phone first emits
recruiting signal to recruit nearby peers. These recruited

5. We investigate an alternative where each phone randomly choose
a timeslot to emit sound, but find that much more time slots are needed
and it is difficult to distinguish the signals from different phones.
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Fig. 8. Illustration of synchronization using recruiting signal.

peers will use the detected arrival time of the recruiting sig-
nal as a common reference time point. Each of the phones
will wait for the same amount of fixed delay before exe-
cuting the beep emission schedule. This ensures that the
starting times of the schedule at different phones have the
same synchronization error as the detections of the recruit-
ing signal. The waiting time is long enough to ensure that
during this period each of the phones has sent its ID to the
server, the server has come up with the schedule and sent
the schedule to each of the phones.

In our prototype, the recruiting signal is designed at the
frequency band between 16kHz and 17kHz, where both
ADP2 and HTC EVO phones can reliably detect it. Different
from the signal used for acoustic ranging, the recruiting
signal is a single beep with the length of 800 samples. The
enlarged duration of recruiting signal enables the phones
to identify the presence of recruiting signal more reliably.
In our prototype we find such a virtual synchronization
method avoids collisions of beeping signals.

5 IMPLEMENTATION AND EVALUATION

In this section, we first describe how to detect the pres-
ence of large errors in the initial WiFi localization results
in Section 5.1. We present the experimental methodology,
testing scenarios and evaluation metrics in Section 5.2. We
implement a prototype of our proposed system and report
its performance in Section 5.3, including the accuracy, local-
ization latency, and incurred energy consumption using
Android phones. To capture the statistical performance of
our scheme, we apply a trace-driven approach to conduct
an extensive study of the impact of the quality and quan-
tity of peers in Section 5.4. Finally, we study the sensitivity
of our algorithm to orientation estimation in Section 5.5
and show the algorithm’s performance under different real-
world environments, such as train station, shopping mall
and airport, in Section 5.6.

5.1 Detecting the Presence of Large Errors
The system needs to detect the presence of large errors in
the initial WiFi position estimation for two purposes. First,
target devices need this to help decide whether they should
trigger peer assistance. Second, when selecting peers, we
find that only those with small initial errors can serve as
reliable reference points. However, the system does not

TABLE 2
Detection Results of Large Errors

know the true location, how can it tell whether large errors
exist in a position estimation? Based on the insights on large
errors described in Section 2, we use 3 simple rules for
reliable detection.

Rule I. Examine the probability of large errors at the
initial estimated location.6 If a location has a large prob-
ability (e.g. > 0.8) for an error beyond a threshold (e.g.,
4.5m), declare the presence. This rule deals with consis-
tent large errors at specific locations caused by permanent
environmental settings (i.e., Case 1 in Section 2.3). For each
location in the training data, we randomly pick 5 from the
60 samples to compute a location estimate, and repeat 400
times to compute the probability of large error occurrence.

Rule II. Examine the two sets of APs detected in the
samples and in the training data at the estimated location.
If the ratio of the number of common APs to the number
of all detected APs is below a certain threshold, declare the
presence.

Rule III. Compare the standard deviations of the RSS
measurements on each AP in the samples and the training
data at the initial estimated position. Among all com-
mon APs, if the fraction of APs having larger standard
deviations in the samples exceeds a threshold, declare the
presence.

Rules II and III deal with dynamic changes caused by
transient factors (i.e., Case 2 in Section 2.3). They mea-
sure the statistical difference between the samples and the
training data at the estimated location.

Intuitively, the system should be aggressive in declaring
the presence for large errors, i.e., upon the detection from
any of the 3 rules. Thus most targets having large errors are
detected, and a peer with slight suspicion of having large
errors is excluded. The cost is a few targets with smaller
errors unnecessarily triggering peer assistance (but further
improving accuracy), or peers with small errors excluded
from assistance.

The threshold values for the three rules are derived
based on the statistical hypothesis test and set such that
they minimize false classification on the training data. The
detection results are shown in Table 2. For example, in the
office environment, we can use 4.5m, 82%, 62% for detect-
ing bad targets; 1.5m, 42% and 90% for excluding bad peers.
We find that collectively, 87% of bad targets are correctly
identified, and among peers selected, 90% indeed have
errors less than 1.5m. Similarly, in the gym environment,
we observe that 89% of bad targets are correctly identified
with error larger than 4.5m, and 88% of the peers selected
have errors less than 1.5m.

6. The nearest location in the interpolated training data set is
actually used. Similar for the other two rules.
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5.2 Evaluation Methodology
We conduct experiments using Android Developer Phone
2 and HTC EVO. Both phones support 44.1kHz audio sam-
pling. HTC EVO uses 512 MB RAM and 1 GHz Qualcomm
QSD8650 processor, while ADP2 192 MB RAM and slower
528MHz MSM7200A processor.7

We generate the sound file based on the design in
Section 4.1.2, which consists of three beeps, each created
by uniformly distributing white noise and then bandpass
filtered to 16-17kHz for ADP2 and 18-19kHz for HTC EVO.

We implement a system prototype including an Android
smartphone app and a backend server, both written in
Java. The server runs on Lenovo Thinkpad X201 with Intel
Core i5 2.53GHz processor and 4GB DDR3 RAM. The app
does WiFi RSS sampling, acoustic emitting and recording.
The measurements are sent to the server for processing. The
app has been tested for both ADP2 and HTC EVO. Both the
server and app are multi-threaded so that they can perform
multiple tasks in parallel to speed up the whole process.

Experimental Scenarios. We use the prototype to val-
idate our algorithm design and measure practical perfor-
mance. In particular, we select 10 target phone locations
with large errors, each with different combinations of peer
locations from the office setup in Fig. 1. Then we repeat
the peer assisted localization for each target/peer location
combination 10 times to measure the localization accuracy,
total latency and energy consumption. In total we have
100 combinations of target/peer locations for the prototype
experiments.

Trace-driven Statistical Performance. To capture the
overall statistical performance under factors that we do
not have enough manpower/device (e.g., more numbers
of peers) or control (e.g., noise in different environments),
we conduct trace-driven experiments. We use 200 combina-
tions of target/peer locations in our office setup, feed the
training data as WiFi samples, and distances perturbed with
errors following the same distribution as results obtained
in real environments (e.g., train station, shopping mall, and
airport), as input to the peer-assisted algorithm. We study
its the effectiveness of peer selection rules (Section 5.1), and
the impact of various factors such as the number of peers,
quality vs. quantity of peers, orientation estimations.

Metrics. We use the localization error to quantify
the accuracy. We measure the total time needed to com-
plete the peer assistance process, and decompose the total
time to understand the dominant factors. We also measure
the energy consumption using tools in [39] that is shown
to achieve accuracy within 5%.

5.3 Prototype Performance
Localization Accuracy. We evaluate the accuracy in office
environment for 3 and 4 phones (2 and 3 peers) due to
limited manpower and device availability. Peers have WiFi
localization errors under 1.5m, and error of the target is
over 3m. As shown in Table 3, we observe that the peer
assisted method can reduce the maximum error from 6.8m
to 4.5m and 3.1 m with 2 peers and 3 peers respectively. For
median error, there is at least 1.5m accuracy improvement.

7. We encountered some problem doing concurrent sound playing
and recording on iPhone and are still investigating the issue.

TABLE 3
Localization Accuracy of the Prototype: 2 and 3 Peers for a

Target Phone with Large Initial Errors (> 3 m)

Furthermore, more peers benefit the localization perfor-
mance: the maximum error for 3 peers further reduces 1.4m
compared with 2 peers. We also test our system when there
are different smartphone models involved in localization
process. We find our system achieves comparable localiza-
tion performance with a small variation on maximum and
median error (∼ 0.3m).

Overall Latency and Decomposition. We report the
latency measurements of major components in the peer
assistance process. The recruiting takes about 0.5s, which
is independent of the number of peers involved. Then the
scanning of 5 WiFi samples takes about 4.8s on phones
(HTC EVO), while in parallel the beep emitting takes 1.5s
(4 phones, 0.3s time slot, 1 extra buffer slot), the file upload-
ing 1s, the TOA on server 1.2s. After WiFi and TOA results,
the algorithm takes another 0.7s on server. In total that is
6.0s (i.e., 0.5 + max(4.8, 3.7)+ 0.7). Since most other compo-
nents can finish in parallel and faster than WiFi scan, our
system does not pose much more latency than required in
the original WiFi localization.

The algorithm execution time in peer assisted localiza-
tion is dominated by the computation of rigid graph map-
ping, which involves a number of matrix operations. The
JAVA language itself however does not provide any opti-
mization for linear algebra. Fortunately, there are some on-
going projects on building libraries for high-performance
linear algebra related computation in Java, e.g., JAMA [22],
Parallel Colt (PColt) [34], and JBLAS [6]. JAMA is a basic
linear algebra library for Java providing standard matrix
class. PColt is a multithreaded version of Colt [23] library
that can provide high performance scientific computing in
Java. JBLAS is a fast linear algebra library implementation
rooted in native BLAS [24] library.

We have implemented rigid graph mapping in Java with
the above three libraries. We observe that the implementa-
tion with JBLAS has the shortest algorithm execution time,
thanks to its multithreaded implementation. We thus final-
ize our implementation with JBLAS. In addition, we assign
independent threads for every translational movement in
the rigid graph mapping to further shorten the algorithm
execution time. Essentially, our Java implementation of the
rigid graph mapping finishes in 2.53s on average, which
is less than the algorithm execution time optimized with
Matlab implementation. When powerful hardware is avail-
able (e.g., a Mac with a 16-core i7 CPU running at 2.9GHz
and 16GB RAM), the algorithm execution time can be as
low as 0.72s at half resource utilization.

Energy Consumption. We also estimate the energy over-
head using tools and methodology in [39]. The WiFi scan,
sound emitting/recording and file uploading are the three
major components. WiFi scan of 4.8s takes about 0.12 Joule.
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Fig. 9. Localization performance for peer assisted method with and with-
out peer selection rule in both lab and gym environments. (a) 5 Peers
HTC results (Office). (b) 5 peers ADP2 results (Office). (c) 5 Peers HTC
results (Gym). (d) 5 peers ADP2 results (Gym).

The beeps occupy about 0.18s in the 0.3s timeslot while the
recording during the 1.5s schedule (4 phones) results in
a file of 100KB. These audio parts take about 0.35 Joule.
File uploading is about 2.1 Joules. In total it is 2.57 Joules,
with file uploading dominating at 80%. All these happen in
about 8s, translating into about 320mW additional power
consumption. This is smaller than the average power of a
phone (e.g., HTC Evo lasts 12.7 hours with average power
of 450mW). We believe such overhead does not pose a
burden for the battery life. Furthermore, the peer assisted
localization is triggered only when the user requests to
improve the localization accuracy or the user is willing
to help upon the request from others. Thus the increased
power consumption occurs only during the short periods
of peer assistance; it does not pose a continuous burden for
phones.

5.4 Overall Statistical Performance
We next use trace-driven experiments by feeding the results
of initial WiFi estimates and error-perturbed acoustic rang-
ing results as inputs to capture the statistical behavior of
our peer-assisted method.

Effect of Peer Selection. We first analyze the effect of
the 3 peer selection rules (Section 5.1) on localization accu-
racy. Fig. 9(a) and (b) shows the localization error CDFs
of those testing points with initial WiFi localization errors
exceeding 1.5m for both HTC EVO and ADP2 in the office
environment. We observe great performance improvements
with and without peer selection with CDF curves shifting
to the left significantly for both phones. In particular, the
median error exhibits a 75% improvement under peer assis-
tance with and without peer selection. We find that peer
selection is essential for improving localization accuracy of
points with large errors: the long CDF tail has been reduced
60% from 5.5m to 2.2m. This shows that peers filtered by
the rules are more reliable reference points and constitute
more accurate constraints on the target location.

Impact of Environment. The localization results in the
gym environment are shown in Fig. 9(c) and (d). We find

Fig. 10. Peer-assisted localization performance for target phone under
different number of peers for HTC EVO in office environment. The first
colomn is results when the target WiFi error is greater than 1.5m and
the second column with target WiFi error greater than 3m. (a) 3 peers
(target WiFi error > 1.5m). (b) 4 peers (target WiFi error > 1.5m). (c) 5
peers (target WiFi error > 1.5m). (d) 3 peers (target WiFi error > 3m).
(e) 4 peers (target WiFi error > 3m). (f) 5 peers (target WiFi error > 3m).

that the peer-assisted approach can help to reduce the large
error from 8.8 meters to 4.2 meters. Such an improvement
(∼ 52%) is comparable to that of (∼ 60%) in the office envi-
ronment. Moreover, under peer selection, the maximum
error is further reduced by around 1 meter and 0.5 meters
for HTC and ADP2 phones respectively comparing to the
case without peer selection in the gym environment. The
results show that our peer assisted approach can signifi-
cantly improve the localization performance and the peer
selection method can help to further reduce large errors.
For the rest of the paper, we only present results with peer
selection.

Impact of the Number of Peers. Fig. 10 shows the local-
ization accuracy for the target phone when varying the
number of peers at 3, 4 and 5. In our experiments, the
median error of initial WiFi localization is 1.5m, which indi-
cates that about 50% of the testing target points have small
errors below 1.5m which are acceptable in most applica-
tions, while the other 50% of the target phones experiences
errors beyond 1.5m. Based on this observation, we per-
form two sets of tests to evaluate the effectiveness of our
peer-assisted approach: the first test applies to the 50% of
the target phones with errors beyond 1.5m as shown in the
first column of Fig. 10, and the second test applies to those
suffering from large errors exceeding 3m (about 30% of
target phones) as shown in the second column of Fig. 10.
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Fig. 11. Impact of peer quality vs. peer quantity in both lab and gym
environment. (a) Target WiFi error > 1.5m (Lab). (b) Target WiFi error
> 3m (Lab). (c) Target WiFi error > 1.5m (Gym). (d) Target WiFi error
> 3m (Gym).

The most encouraging result is that our approach show
consistently great performance improvement for both test
cases, suggesting that our algorithm is highly effective to
reduce large errors. In general, more peers lead to more
improvements in accuracy: When the number increases
from 3 to 5 in Fig. 10, the maximum error in the peer-
assisted curve reduces from about 3.8m to 2.4m for both
test cases, while the median error stays more or less
the same around 0.7m. This is because more peers pose
more constraints and less uncertainty on the location of the
target.

We also show the ideal performance where the true
graph orientation and distances between phones are known
for the algorithm. The maximum and median error are
1.5m and 0.5m. For about 80% of the case, the accuracy
is very close (within 0.4m) to the ideal performance. This
indicates that our orientation angle estimation is quite
accurate.

Quality vs. Quantity of Peers. One interesting question
is how important is the quality versus the quantity of peers.
Fig. 11(a) and (b) presents the localization error CDF when
using peer assisted localization with 10 peers without selec-
tion and 5 peers with selection (based on the rules designed
in Section 5.1) respectively. We find that the performance of
using 5 peers with selection is comparable to that of using
10 peers without selection when applying to scenarios of
target phones with WiFi error greater than 1.5m, and only
slightly worse (only for the bottom 40% cases and differ
by about 0.2m) when the target WiFi error is greater than
3m. We have similar observation in the gym environment
as shown in Fig. 11(c) and (d). The performance of using
5 peers with peer selection is similar to that of using 10
peers without peer selection. Thus, by utilizing peer selec-
tion only half of the peers is needed to achieve a similar
performance as when adopting peers blindly. This observa-
tion strongly suggests that peer quality is more important
than peer quantity and peer selection is critical.

Fig. 12. Illustration of larger errors for peer assisted localization method.
(a) Mirroring outliers. (b) Rotation outliers.

5.4.1 Insights on Remaining Errors
During our initial experiments we analyzed what happened
for the points towards the tail of the CDF curve under
peer assistance. We found two reasons limiting the accu-
racy improvement. The first is called “mirroring" (shown in
Fig. 12(a)). When the peers are almost aligned on a straight
line, the constructed rigid graph could be a flipped “mir-
ror" of the ground truth. If the mirrored graph happens to
have a smaller RSS distance summation, the target would
be located to the opposite side of the line. By comparing
the ranging measurements, we can tell whether such align-
ment happens and avoid using such peer combinations. We
have addressed this problem in all previous results.

The second is due to errors in orientation when the tar-
get is relatively faraway from peers (shown in Fig. 12(b)).
When the peers are close to each other, a small orientation
deviation can move the target far away from its true loca-
tion while the peers are still estimated close to their true
locations. To reduce such error caused by the clustering
effect of faraway peers, we identify the formed cluster by
examining the angles formed by the estimated positions of
target phone and any of two peers as shown in Fig. 12(b).
We first draw lines from the estimated target to each esti-
mated peer. We then obtain the maximum angle θmax among
all the formed angles by any two of those lines. If the angle
θmax is larger than a pre-defined threshold θ , which serves
to determine whether the estimated peers are close to each
other, we will drop current peer selection and choose other
peers around the estimated target. We have used θ = 60◦
in our implementation and applied such angle examination
process when presenting the results in this section.

5.5 Orientation Estimation and Sensitivity
The peer-assisted localization accuracy is affected by the
orientation estimation. we take a rigid graph of 4 phones
constructed using their true distances to showcase the
sensitivity of localization results to orientation errors. We
rotate the graph so it deviates from its true orientation
at a fixed degree, then we move the graph translation-
ally to find the optimal locations. The results are shown
in Fig. 13(a). We find that when the orientation deviation
is larger than 24◦, the average localization error becomes
larger than that of initial WiFi localizations (1.3m in this
case); it increases sharply to 8 meters when the orientation
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Fig. 13. (a) Average localization error under different orientation devi-
ations. (b) Orientation estimation performance with different number of
peers.

deviation approaches 180◦. We examine cases with other
numbers of peers, and find that generally the orientation
deviation shall not exceed 20◦, otherwise the improvement
will be very limited. Fig. 13(b) shows the accuracy of ori-
entation estimation under different number of peers. We
find that our orientation estimation method is indeed very
effective, which can restrict the error within ±20◦ and ±10◦
around the true angle for over 98% and 90% of the testing
scenarios.

5.6 Impact of Various Environments
We further study the peer-assisted localization performance
for the bottom 50% target points (i.e., those with > 1.5m ini-
tial errors) with 5 peers, using ranging results perturbed
with errors under various environments. In Fig. 14, we
find that our localization performance only varies slightly
when comparing real-world environmens (e.g., train sta-
tion, shopping mall and airport) to the lab environment.
The median errors are all around 0.7m whereas the 90%
errors are about 1.4m; even without peer selection, the
median and 90% errors are around 0.8m and 1.7m respec-
tively. Compared to the target’s WiFi results of median error
2.5m and 90% error 4.5m, our proposed method is quite
robust to noises in different environments.

6 DISCUSSION

Peer Involvement. Since peers need to spend energy
and bandwidth for helping the target, we envision that
whichever application that leverages our localization solu-
tion may have certain rewards (e.g., points, virtual cur-
rency) exchanged to compensate peers that help out. Such
incentives are already present in many mobile applications.
In our system, peers need to run a recruiting signal detec-
tion thread to know whether they are needed. To avoid
running this thread continuously, the server may send push
notifications to peers in a large area around a target upon
its request for help. The notification triggers the thread; if
no recruiting signal is detected after a timeout threshold, a
peer will stop the thread. We note that the improvement in
accuracy depends on the number and quality of peers. In
general, more high quality peers lead to greater improve-
ments. But even with just a few (e.g., 3) quality peers, there
is still significant reduction in error.

Movements of Users. Peers might be moving during
the acoustic ranging. Movements affect the accuracy only
when they occur during the sound-emitting period, which
happens concurrently with and takes less time than WiFi

Fig. 14. Localization performance under different environments with 5
peers. (a) Median Error. (b) 90-Percentile Error.

scanning (1.5s vs 4.8s in our prototype). Thus we do not
pose more constraints on movements than existing WiFi
methods. If the peers are static or do not move too much in
this 4.8s interval, both the ranging and WiFi measurements
are still accurate. In many public spaces it is common for
many users to remain still for a short while (e.g., resting in
airports, window-shopping in stores). Movements before
and after the WiFi scanning (and beeping) do not affect
the accuracy. We recognize that less peers may be suitable
due to movements and plan to examine additional input
such as acceleration to filter out those that have moved
too much. The main latency bottleneck is the WiFi scan-
ning time, which depends on both hardware and OS that
we do not have control. Our experiments show that the
acoustic ranging design is robust to noises under different
environments. One issue we plan to further investigate is
the effects of clothes and human body. When phones are
placed in pockets, the clothes or human body may attenuate
the sound signal.

Triggering Peer Assistance. Our work provides the tech-
nology for peer assistance. However, it is eventually up to
the users to decide when they desire such help. The rules
provide some hints to users about the likelihood of large
errors to help them make the decision. Users may also set
up certain policies about under what kinds of conditions
assistance is needed. One that always requires help gets
high accuracy, at the cost of paying more points or virtual
currency to others. In our system, more than one target
phone may request assistance at the same time and the
acoustic signals may collide if these targets are close to each
other. Since users do not need assistance continuously, they
request help only once in a while, e.g., when wondering
which hallway to take to a train platform. So the likeli-
hood of two nearby users requesting help simultaneously is
small. When this happens, the server can distinguish them
and provide assistance one at a time. This may delay the
localization to some targets, but it still provides accurate
results.

Practical Usage. The above 3 items are all practical fac-
tors that are taken into consideration during real system
deployment. In addition, both our trace-driven and small-
scale prototype tests in gym and office environments show
the feasibility of the peer assisted localization system. And
the acoustic ranging techniques have also been validated
in various scenarios including shopping mall, airport and
train station. We are under the process of validating our
system in various environments and will provide a prac-
tical end-to-end system in the future. Meanwhile, we are
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also studying the security and privacy issues involved in
our system by identifying the unique security problems and
comparing with existing techniques addressing security
concerns in Wi-Fi localization.

7 RELATED WORK

Smartphone indoor localization has attracted tremendous
interests recently. Methods in prior work mainly focus
on employing more sensing modalities, less infrastruc-
ture support, and reducing the efforts of building signal
maps [2], [9], [10], [19]. SurroundSense [2] utilizes mul-
tiple sensing modalities (e.g., cameras, microphones and
accelerometers) available on smartphones to perform log-
ical localization (e.g., different stores) via ambiance fin-
gerprinting by combining optical, acoustic, and motion
attributes. WiGEM [17] proposes a learning based approach
that uses the Gaussian Mixture Model (GMM) and employs
Expectation Maximization (EM) to estimate the model
parameters without relying on labor-intensive “training.”
It is robust to multiple factors (including device and
power level variability, mobility, and changes of indoor
spaces) that many training-based systems are susceptible
to. WILL [9] aims to perform indoor logical localization
without the need of building radio signature maps ahead
of time. It exploits abrupt signal changes through walls
and accelerometers to infer user movements and achieve
room level accuracy. EZ [10] is another work that targets
configuration-free indoor localization by utilizing genetic-
based algorithms. Large errors still exist with 50 and 80
percentile errors at 7m and 10m, respectively. WiGEM,
WILL and EZ are complementary to our system for reduc-
ing the efforts of building the radio signal map during
training.

Few studies have leveraged the unique peer constraints
to assist smartphone localization. Virtual Compass [5] uti-
lizes both WiFi and Bluetooth and results in a median error
of 3-4m. Other studies require special hardware or infras-
tructure not readily available on smartphones [21], [27].
Centaur [28] combines the radio frequency and acoustic
ranging measurements to improve the localization accu-
racy in an office environment. This work is primarily
limited in an office environments due to the requirement of
pre-deployment of several fixed anchor points. Our work
leverages abundant peers in public spaces to reduce large
errors. It aims at the most prevalent WiFi infrastructure and
do not require any special hardware, which is essential for
easy deployment.

There have been quite some work for acoustic posi-
tioning techniques such as Cricket [30], Bat system [20],
ENSBox [16], and WALRUS [7]. Recently, several propos-
als have studied ranging between cell phones using low
frequency bands (e.g., 2-6kHz). Beepbeep [29] proposes a
ToA based acoustic-ranging method between two phones.
It can achieve 1 or 2cm accuracy in a range of 10m.
Whistle [36] leverages multiple receivers with well-known
locations to receive two sounds signals from the target. It
avoids tight synchronization required in Time Difference of
Arrival (TDoA) methods. Qiu et al. [32] utilizes the acoustic
signal to estimate the relative position between two phones
to support phone-to-phone games and apps.

Compared to the above work, we face a different chal-
lenge of fast and accurate ranging among multiple peer
phones. We use server scheduling to coordinate multi-
ple peer phones to avoid signal interference and collision
for almost concurrent pairwise ranging. We propose sig-
nal design and detection methods that are light-weight
in computation, robust to noisy environments, and much
less perceptible to the human ear due to the adoption of
high frequency band (e.g., 16-19kHz). Our system utilizes
minimum auxiliary COTS sound hardware to reduce large
errors incurred from general WiFi-based approaches.

For smartphone based localization using acoustic sig-
nals, Tarzia et al. [33] introduces a technique based on
ambient sound fingerprint called Acoustic Background
Spectrum. They exploit acoustic signals as fingerprints
instead of measuring the ranging information between
phones, and their localization granularity is at room level.
Constandache et al. [12] deploys inaudible sound beacons
randomly placed in the building, as a reference frame
for correcting users’ movement traces captured by the
accelerometer and compass. However, this system requires
an extra acoustic infrastructure and has localization errors
around 8m on average. In this paper, we exploit the con-
straints from nearby peer phones to achieve much higher
localization accuracy, without the need for extra acoustic
infrastructure.

8 CONCLUSION

Indoor localization on smartphones is critical to enable
novel features for location based applications. However,
existing approaches have yet to prove that they can sat-
isfy what is desired in many business scenarios. Due to the
prevalence of WiFi infrastructure, we set out to study the
accuracy that WiFi localization can practically achieve on
smartphones. We find that despite reasonable accuracies in
many cases, the dynamic radio propagation poses funda-
mental limits and causes large errors. Inspired by the idea
of relative positions of nearby peer devices as unique physi-
cal constraints on the possible location of a smartphone, we
propose a peer assisted localization approach that leverages
much more accurate distance estimate through acoustic
ranging. A virtual synchronization strategy is proposed
to avoid the possible sound signal collision among peer
phones. Extensive experiments in both office and gym envi-
ronments have demonstrated our approach successfully
pushes further the limit of WiFi localization accuracy to
what is empirically possible only under hundreds of APs,
making WiFi a candidate for high accuracy localization. Our
system does not pose much more latency than required in
the original WiFi localization and has negligible impact on
the battery lifetime.
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