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ABSTRACT
High-level synthesis (HLS) tools are now capable of generating high-
quality RTL codes for a number of programs. Nevertheless, for best

performance aggressive program transformations are still required to
exploit data reuse and enable communication/computation overlap. The
polyhedral compilation framework has shown great promise in this area
with the development of HLS-specific polyhedral transformation tech-

niques and tools.

However, all these techniques rely on polyhedral code generation to

translate a schedule for the program’s operations into an actual C code

that is input to the HLS tool. In this work we study the changes to the

state-of-the-art polyhedral code generator CLooG which are required

to tailor it for HLS purposes. In particular, we develop various tech-

niques to significantly improve resource utilization on the FPGA. We

also develop a complete technique geared towards effective code gen-

eration of rectangularly tiled code, leading to further improvements in

resource utilization. We demonstrate our techniques on a collection of

affine benchmarks, reducing by 2x on average (up to 10x) the area used

after high-level synthesis.

Categories and Subject Descriptors

B.5.2 [Hardware]: Design Aids — optimization; D.3.4 [Program-

ming languages]: Processor — Compilers; Optimization

Keywords

Polyhedral Compilation; High-Level Synthesis; Loop tiling

1. INTRODUCTION
High-level synthesis (HLS) software tools such as AutoESL and

its successor Xilinx Vivado-HLS [2] are capable of taking an in-
put C program and generating effective RTL with performance that
can rival manual design [14]. However, even for a sub-class of pro-
grams with regular loop bounds and array accesses (namely, affine

programs [18]), additional efforts are still required in complement
to Vivado-HLS capabilities to get the best performance – in par-
ticular to exploit data reuse opportunities in the program, generate
off-chip communications, and overlap communication and compu-
tations [13, 24, 28].
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Recent work focusing on the polyhedral compilation model has
shown great promise in automating those tasks. For instance, Alias
et al. have shown how loop tiling can be exploited effectively to de-
sign a multi-buffer execution of affine programs [7]. Pouchet et al.
recently presented an end-to-end system using the polyhedral model
which automatically transforms the program for effective data reuse,
including the handling of on-chip buffers [24]. Zuo et al. perform
inter- and intra-block optimizations for high-level synthesis using
polyhedral loop transformations [28]. These works make extensive
use of the polyhedral compilation model, a powerful program repre-
sentation that leverages strong mathematical foundations to model
arbitrarily complex sequences of loop transformations in a single,
well-designed optimization stage [18, 19].

One key component of the polyhedral compilation framework
that needs to be adapted in the context of high-level synthesis is
polyhedral code generation. This is the process where C code is
generated from an optimized polyhedral representation, that imple-
ments the loop transformations set by the user. It has been the sub-
ject of intense research in the past two decades, but with a very
strong emphasis on x86 CPU execution. When generating code
for CPUs, we devote our attention to the code segments where the
largest fraction of total time is spent, mostly ignoring segments
which account for a small fraction of the computation time. On
the other hand, for FPGAs these non-critical code segments could
very well require more chip surface than the hot spots, and therefore
need special attention too.

In this work we study how to tailor the process of polyhedral
code generation for HLS and FPGA mapping purposes, with the
objective of minimizing resource usage without any performance
(e.g., latency) penalty. Our paper creates a solid basis for future
work using the polyhedral optimization framework on top of HLS
tools. We make the following contributions.

• We provide a comprehensive study of the area, performance,
power and energy of various techniques for code generation
in the polyhedral model. In particular, we study the tuning
of arithmetic operators generated during complex loop tiling,
and two alternative methods to generate loop bounds for tiled
programs.

• We show that using our techniques, we can fine-tune the state-
of-the-art polyhedral code generator CLooG for HLS pur-
pose, reducing by 2x on average (up to 10x) the area used.

The paper is organized as follows. Sec. 2 provides background
and motivation for our work. Sec. 3 recalls the principles of poly-
hedral program generation and high-level synthesis. Sec. 4 presents
a collection of techniques to reduce resource usage for polyhedral
codes mapped on FPGAs. Sec 5 presents an alternative loop tiling
technique suited for HLS. Extensive experimental results on eleven
benchmarks are presented in Sec. 6 before we conclude in Sec. 7.
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2. BACKGROUND AND MOTIVATION
Optimizing programs using the polyhedral model is a three-stage

process. First, a mathematical representation (made from polyhedra
and matrices) of the input program is computed from its original
abstract syntax tree. Second, a program transformation is computed
in the form of a schedule for each dynamic instance of each syntac-
tical statement in the program. Third, this schedule is applied to the
polyhedral program representation, and a new AST that represents a
program implementing this new execution order is generated. This
last stage is called polyhedral code generation, and is the focus of
the present work.

Polyhedral code generation has been the subject of much previ-
ous work in the past two decades [8, 23, 22, 25], culminating with
the development of CLooG, a generic and scalable code generator
[10, 1]. CLooG has been the de facto state-of-the-art code gener-
ator for almost a decade because of its effectiveness and generic
support of arbitrary affine schedules. However, the focus for its de-
velopment has been mostly about effective program execution on
CPUs. That is, objectives such as reducing possible interference
with branch predictors (through the avoidance of conditionals in in-
nermost loops), or reducing the number of branches taken to execute
a computation have been used to drive its development.

The advent of HLS systems has triggered more aggressive uses
of the polyhedral model in the compilation process [7, 16, 11, 28,
24]. But numerous FPGA optimization metrics differ significantly
from CPU optimization metrics with regard to polyhedral code gen-
eration quality. For FPGAs, controlling the resource usage (i.e., the
number of LUTs, DSPs, etc.) is critical to reduce energy and/or
to enable hardware replication of a functional block to reduce the
total execution time. Resource sharing is key for FPGAs, and has
to be achieved by using different program structures than those for
CPUs. The impact of complex loop bounds as generated by polyhe-
dral transformations can be very significant too.

All those factors drive the need for a dedicated polyhedral code
generation strategy tailored for high-level synthesis purposes. Ta-
ble 1 use two benchmarks to illustrate how all those aspects can
be effectively tuned for HLS. We consider two stencil benchmarks,
Seidel-2D and Jacobi-2D, which have been tiled for effective on-
chip data reuse. In their untiled variant, as shown later in Fig. 1
for Seidel-2D, these codes use only two arithmetic operations in
the loop bound expressions. Applying loop tiling and the required
pre-transformations to make tiling legal dramatically increases the
complexity of loop bounds, as shown by the # ops column in Ta-
ble 1, which reports the number of +, −, /, ∗, ceil, f loor, min and
max operations used in loop bounds. The performance of the code
obtained by current polyhedral tools using CLooG 0.18.0, out-of-
the-shelf [1] is shown as Default. The area metric is a normalized
expression of the resource used by the program (LUT, FF, DSP),
the lower the better; the latency is reported in milliseconds (ignor-
ing off-chip communication time). Xilinx Vivado-HLS was used to
compute this data. With careful tuning of the code generation pro-
cess proposed in this paper, significantly better metrics are achieved,
as shown by the Tuned rows.

Table 1: Impact of tuning polyhedral code generation for HLS
# Stmts # for # if # ops Area Latency(ms)

Seidel-Default 1 6 0 115 0.699 1395.78
Seidel-Tuned 1 6 0 86 0.129 1377.65
J2D-Default 13 12 12 394 0.533 120.08
J2D-Tuned 2 7 2 137 0.087 103.51

Recent work on polyhedral code generation has focused primarily
on parametric tiling, a code generation process where the tile sizes
are not known [26, 21, 9]. However, those approaches still suffer

from drawbacks when implementing the program on FPGAs, such
as code size explosion and/or very complex loop bound expressions.
Other work such as CLooG-VHDL focused on the generation of
VHDL from a polyhedral representation [17], operating only on a
subset of affine programs. In contrast, our work is applicable to any
polyhedral program that can be input to CLooG. In the following we
perform an extensive evaluation of several techniques to improve the
resource usage and latency of polyhedral programs, leveraging key
aspects of HLS such as resource sharing opportunities.

3. PRELIMINARIES
In the following, we outline the key features of polyhedral code

generation and high-level synthesis.

3.1 Polyhedral Code Generation
To illustrate the underlying ideas behind program transformations

in the polyhedral model and polyhedral code generation, we use the
code in Fig. 1 as a driving example.

for (t = 0; t < TSTEPS; ++t)

for (i = 1; i < N - 1; ++i)

for (j = 1; j < N - 1; ++j)

R: A[i][j] = (A[i-1][j-1]+A[i-1][j]+A[i-1][j+1]

+A[i][j-1]+A[i][j]+A[i][j+1]+A[i+1][j-1]

+A[i+1][j] + A[i+1][j+1])/9.0;

Figure 1: Seidel-2D

Iteration domain. The iteration domain of a syntactic statement
(R in Fig. 1) precisely captures the set of dynamic instances of the
statement during the program execution. It is modeled using a (para-
metric) polyhedron DR, whose bounding hyperplanes are an affine
form of the surrounding loop iterators (t, i, and j for R) and con-
stants whose value are unknown at compile-time (TSTEPS and N

here). The iteration domain of R is:

DR : {(t, i, j) | 0 ≤ t < T ST EPS ∧ 1 ≤ i, j < N −1}

The set DR contains exactly one integer point per executed instance
of R, and this point has as coordinates the value taken by the sur-
rounding loop iterators when the instance is executed. Visually, DR

is a 3D rectangle of size roughly T ST EPS×N ×N. In the poly-
hedral model, each syntactic statement in the program is associated
with its iteration domain. These are input to the polyhedral code
generation process, together with an order in which instances (e.g.,
each point in each iteration domain) have to be executed.

Scheduling function. The order in which instances are executed
is modeled with a (multidimensional) affine function. Each state-
ment has its own scheduling function, which associates a (multi-
dimensional) timestamp to each point in the iteration domain. For
instance, in order to make loop tiling valid, it is first required to re-
order the execution of the instances of R. This is achieved by the
following schedule ΘR:

ΘR(t, i, j) = (t, t + i,2t + i+ j)

This scheduling function assigns to each 3-dimensional point (t, i, j)
in DR another 3-dimensional point whose coordinates are computed
by the function ΘR. One may note that as ΘR is restricted to be an
affine form of t, i and j, then ΘR can be written in the form of a
matrix.

Code generation. For a given program, the iteration domain and
scheduling function of each statement are input to the polyhedral



code generator. The goal is to generate a new AST, made of for
loops, if conditionals, and the statements, which scan each itera-
tion domain in the order described by the schedule. Loop transfor-
mations are implicitly modeled during this process: for example,
if instances from two statements are scheduled at the same time,
then they will share a common surrounding loop scanning those in-
stances in the generated code, thereby achieving loop fusion.

The process is as follows. First, the new schedule is embedded
in the original iteration domain DR to create a new iteration do-
main D

′

R such that the lexicographic order of points in D
′

R is strictly
identical to the ordering specified by ΘR. Then, a valid AST (using
loops) is generated, scanning D

′

R in lexicographic order. This two-
step approach allows the design of a single, schedule-independent
code generation primitive that scans all points in each input polyhe-
dra in lexicographic order, provided that the user-defined schedule
of operations has been integrated in the original iteration domain
first. For instance, using the example above, we get:

D
′

R : {(c0,c1,c2) | 0 ≤ t < T ST EPS ∧ 1 ≤ i, j < N −1

∧ c0 = t ∧ c1 = t + i ∧ c2 = 2t + i+ j}

Visually, D
′

R is a 3D parallelogram obtained by "skewing" DR along
two dimensions. Syntactic code scanning each of the new domains
is then generated. Starting from the outermost dimension (e.g., c0
in our example), each new iteration domain is projected onto this
dimension. The range of this projection (e.g., 0 ≤ c0 < T ST EPS)
determines the loop bound for this dimension. If there are multiple
statements, and/or the projection is not contiguous, then possibly
many loops are generated, each scanning a contiguous set of points
in the projection. This process of creating multiple loops to cope
with having possibly different statements covering different ranges
in the projection is called separation [25, 10], and is key to effective
CPU code generation.

The alternative is to generate a single loop that iterates on the hull
of the projection, and use if conditionals inside this loop body to
skip loop iterations that do not correspond to a dynamic statement
instance to be executed. This leads to code with less loops being
generated, at the cost of having inner conditionals that are frequently
evaluated. In contrast, separation leads to a higher number of loop
nests, but with a lower number of conditionals inside them. This
has been shown to be a significantly more effective approach for
modern CPUs [10]. However, we show in Sec. 4 that this approach
is often detrimental for HLS.

Once the (list of) range(s) on the outermost dimension has been
computed, the process is recursively applied on the next dimension
(e.g., c1 in our example) [10]. That is, for each range of c0 obtained
previously, we project out D

′

R along the c1 dimension and repeat the
process of possibly separating the projections into multiple contigu-
ous regions. There is only one range for c0 in our example, and we
get c0+ 1 ≤ c1 ≤ c0+N − 2 for the range of c1. Fig. 2 shows the
result of this algorithm when applied to a simple, single-statement
program.

for (c0 = 0; c0 <= (TSTEPS + -1); c0++)

for (c1 = c0 + 1; c1 <= c0 +N-2; c1++)

for (c2 = c0 + c1 + 1; c2 <= c0+c1 + N -2; c2++) {

i = ((-1* c0) + c1);

j = (((-1 * c0) + (-1 * c1)) + c2);

R: A[i][j] = (A[i-1][j-1]+A[i-1][j]+A[i-1][j+1]

+A[i][j-1]+A[i][j]+A[i][j+1]+A[i+1][j-1]

+A[i+1][j] + A[i+1][j+1])/9.0;

}

Figure 2: Seidel-2D after skewing to enable tilability

One may note that as output, we obtain a transformed program

where loop skewing has been applied on two of the loops. As a
result, now all data dependences have positive components, and all
loops are permutable; therefore, tiling can now be applied on all
loops, including the time loop t [12].

Artifacts of polyhedral code generation. Despite its ele-
gant expression, polyhedral code generation can very quickly lead
to the generation of extremely complex codes. This is illustrated
with the Jacobi-2D example in Sec. 2 where a transformation that
achieves loop fusion, skewing, and multidimensional tiling leads to
a code containing 13 loops and 12 conditionals. This complexity
mainly comes from the following points.

First, when the projection along a given dimension cX is not a
simple inequality (i.e., l ≤ cX), but a conjunction of inequalities
(i.e., l1 ≤ cX ∧ l2 ≤ cX), then min/max expressions are generated
to correctly capture that the loop bound is a conjunction of expres-
sions (i.e., min(l1, l2) ≤ cX). Such conjunctions arise quickly with
tiled programs with more than one statement, and/or programs with
parametric loop bounds.

Second, when applying loop tiling in the polyhedral model, one
popular approach is to insert new dimensions in D

′
to model the

loops scanning the set of tiles created; these are called inter-tile
loops, or tile loops. The loop bounds for the existing dimensions
are adapted so that they scan only the body of a tile; they are called
intra-tile loops, or point loops. Inter-tile loops execute a fraction
of the loop’s original iteration range. That is, if the loop originally
iterates N times and the tile size is 32, then a loop with N/32 iter-
ations (the tile loop) is created, and a loop with 32 iterations (the
point loop) is created. This creates division expressions in the loop
bounds, in conjunction with ceil and floor operations.

Third, when separation is applied, numerous loop nests are gen-
erated to capture all possible cases of statement combinations. Intu-
itively, for a tiled program, we will have cases where all statements
are executed inside a given tile, or where only one of the statements
is in the tile, where the tile is a full rectangle, or where it is only a
partial rectangle, etc. Most of those cases are corner cases that arise
very infrequently in the program execution, but for which resources
on a FPGA will be required.

Our objective in this work is to control and tailor those artifacts
so as to minimize their impact on the FPGA design, in particular in
terms of resource usage and total latency.

3.2 High-Level Synthesis
High-level synthesis (HLS) plays a central role in boosting the

productivity in hardware accelerator design by automatically trans-
forming the high-level untimed algorithmic description to low-level
cycle-accurate RTL specifications. First, the input program is trans-
lated into a control/dataflow graph (CDFG) by a compiler front-end.
Some common optimization techniques, including dead-code elim-
ination, constant propagation and common subexpression elimina-
tion, could be performed on the intermediate representation.

Operation scheduling and resource binding are the key steps at
the heart of high-level synthesis. During the operation scheduling
step, HLS tools will determine in which cycle each operation will
occur. The scheduling objective is optimized considering various
design constraints including dependency constraints, timing con-
straints and resource constraints. The resource allocation step de-
termines the amount and type of resources, and binding determines
which operations use which resources. For example, HLS tools will
automatically determine if two add operations will share the same
adder by time-multiplexing or use two separated adders. Since the
decisions in the resource allocation step can influence the schedul-
ing of operations, sometimes the two steps are iterated [15].



Due to the inherently parallel nature of synthesized hardware ar-
chitecture, HLS tools have different design trade-offs than software
compilers. For example, divergent branches in the innermost loop,
which could possibly flush the pipeline of a processor, will not be a
problem for a system generated by the HLS tool.

4. FINE-TUNING CLOOG FOR HLS
We now present a collection of alternative syntactic code gen-

eration schemes, each targeting a particular artifact of polyhedral
code generation. We focus our work on CLooG, and our reference
point uses the default setting of CLooG [1]. All developments pro-
posed are tuned for this software. To evaluate the impact of our tech-
niques, we use as input programs a collection of numerical bench-
marks from the PolyBench/C 3.2 suite [5], which are tiled using the
tiling hyperplane method implemented in the Pluto software [12].
We particularly focus on five benchmarks for the detailed analysis
of each individual optimization presented in this section before re-
porting their combined impact for eleven benchmarks in Sec. 6.

4.1 Optimization Metrics
In order to quantify the quality of a design, we use a set of FPGA-

specific metrics that will be collected for each program variant we
evaluate. Those metrics are as follows.

For the area, we consider the number of LUTs, FFs, slices, BRAMs
and DSPs. Modern FPGA devices contain a heterogeneous mixture
of different kinds of hardware blocks. Lookup table (LUT) ele-
ments give the FPGA devices the flexibility to implement arbitrary
digital logic using truth tables. Most commonly used hardware el-
ements, such as registers, memory blocks and arithmetic function
units, are integrated as dedicated hardware blocks such as flip-flop
(FF), block ram (BRAM) and digital signal processor (DSP) units
in modern FPGA devices. For the performance, we consider the
critical path and execution cycles. The frequency of a FPGA de-
sign is determined by the delay of its longest path, usually referred
to as the critical path (CP). The overall latency is the product of
CP and the number of execution cycles. For power, both dynamic
power and static power are considered. Experimental results show
that the static power of Xilinx Virtex-6 VLX75T varies very little
(from 1290.24 mW to 1295.23 mW) while the dynamic power can
change from 1.97 mW to 309.93 mW. The total energy consumption
is also reported for our complete experiments in Sec. 6.

4.2 Experimental Setup

Generating program variants. Our framework is based on
PoCC, the Polyhedral Compiler Collection [4], which includes both
CLooG and Pluto. We particularly consider four stencil computa-
tions from PolyBench: Jacobi-1D (J1D) is a 1D 3-point iterative
Jacobi process, Jacobi-2D (J2D) is a 2D 5-point iterative Jacobi
process, Seidel-2D (Seid) is a 2D 9-point iterative Seidel process,
and FDTD-2D (FDTD) is a finite-domain time difference discrete
solver. In addition, we use a matrix-multiplication kernel GEMM.
These five codes each benefit from aggressive tiling and have a large
data reuse potential; and the four stencils pose numerous code com-
plexity challenges when the required transformations for tiling have
been applied. The loop bounds of GEMM remain constant num-
bers with simple rectangular shape after loop tiling, and we use this
benchmark to validate that our techniques are not detrimental in the
case of simple, regular benchmarks. For all we chose a tile size of
5×20×20, enough to exploit most of the available data reuse. Ad-
ditional benchmarks are used in later Sec. 6. For each tiled program,
we perform code generation using different techniques described
later in this section. Each variant obtained (possibly through com-
bining several techniques) is synthesized as described below.

We use problem sizes of 20 for the time loop of stencils and 500
for each remaining loop in the programs. We note that the final
FPGA design after HLS would not differ much if we used larger
problem sizes: the core computation is a tile (of size 5× 20× 20).
Increasing the problem size only changes the number of iterations
of the outer loops in the tiled program (those which iterate on the
set of tiles), therefore it has little to no impact on the design.

Program synthesis. The optimized code segments are then syn-
thesized and implemented using high-level synthesis, logic synthe-
sis and physical implementation tools. The Xilinx Virtex-6 FPGA
device, Xilinx Vivado 2012.3, and Xilinx ISE 14.3 tools are used in
our experiments. Various optimization techniques such as constant
propagation, common sub-expression elimination and global value
numbering are automatically applied by the LLVM compiler used
in Vivado-HLS.

Area utilization (represented by the number of LUTs, FFs and
DSPs used) and the critical path delay are reported by ISE after
place-and-route. Execution cycles are reported by a cycle-accurate
SystemC simulator with the target circuit and test bench as the input.
During the simulation, switching activities of each wire are traced
by the simulator using value change dump (VCD) files.1 Power data
is reported by the Xilinx XPower tool with the place-and-routed
circuits and the circuit simulation traces as the input.

4.3 Polyhedra Separation
The first technique we investigate relates to the issue of choosing

a code structure with more loop nests and less conditionals – that
is, using polyhedral separation – versus choosing a code structure
with less loop nests but more (inner) conditionals – that is, no sepa-
ration is used. CLooG offers options to control separation, and we
evaluate the impact of turning it on (e.g., separation happens at all
loop levels, which is the default setting) or off.

The benefits of turning off separation are: (1) it reduces the code
size, and reduces the number of syntactic statements; (2) as state-
ments are syntactically closer, typically under the same loop nest,
the HLS tool has a better opportunity for resource sharing between
the computing elements of the statements (they are typically made
of numerous fixed/floating point arithmetic operations); (3) fewer
loop nests will possibly reduce the area consumed by complex loop
bound calculation. On the other hand, the drawbacks of turning
off separation are: (1) the creation of conditionals that have to be
evaluated for each dynamic instance of a statement (i.e., T × N2

for Seidel-2D); (2) loops with possibly more iterations than strictly
needed; and (3) more pipeline stages added to the loop body. Table 2
shows the impact of separation on four representative benchmarks.

Table 2: Impact of separation
LUT FF DSP CP(ns) Cycle Pwr(mW)

FDTD-sep 39803 24532 56 11.313 12622094 1378.49
FDTD-nosep 25595 16692 40 8.965 11500269 1452.56

Gemm-sep 1822 1532 14 7.609 14567698 1302.43
Gemm-nosep 1822 1532 14 7.609 14567698 1302.43

J1D-sep 11926 7586 14 8.435 7638461 1384.48
J1D-nosep 11327 7350 14 8.100 5724101 1411.92

J2D-sep 24818 15351 35 8.990 13356949 1435.77
J2D-nosep 14216 10103 27 8.582 21800977 1427.02

Seid-sep 32561 19599 9 8.763 159281806 1459.67
Seid-nosep 32561 19599 9 8.763 159281806 1459.67

First, for the case of Seidel-2D and GEMM, turning on or off sep-
aration has no impact: a single loop nest is being generated, iden-
tical with or without separation. For all other cases, we observe

1To save the simulation time and space, only the first 10ms of the
entire trace is recorded.



a strong benefit in terms of resource savings. However, the im-
pact on the latency varies from benchmark to benchmark. Despite
both being stencils, opposite results are observed for Jacobi-2D and
FDTD-2D. This is due to the two contrary effects introduced by
turning off polyhedra separation. On the one hand, turning off sep-
aration will reduce the number of loop nests, which could reduce
the cost of starting and ending outer loop nests. On the other hand,
turning off separation will introduce branch conditions in the inner-
most loop nest, which could possibly increase the pipeline stages.
The extra cycles to fill and drain longer pipelines is non-trivial con-
sidering the small innermost loop trip counts after loop tiling. For
Jacobi-2D, complex conditions with division in the innermost loop
increases the pipeline stages from 33 to 77. Techniques described
in Sec. 4.4 will greatly bridge this gap.

4.4 Loop Bounds Tuning
We now study a collection of alternatives to generate the loop

bound expressions. In particular, we study 1) the impact of hoist-
ing common expressions in loop bound computations as early as
possible, 2) the impact of using integer or bit operations in place
of the default floating-point operations generated by CLooG, and 3)
alternatives to compute conjunctions of constraints.

Hoisting and CSE. We first conducted experiments to hoist the
loop bound computations as early as possible, and perform basic
common subexpression elimination. Production compilers using
SSA representation like LLVM use global value numbering (GVN)
[3] to eliminate obviously redundant expression computations, such
as those generated by polyhedral code generation. Our experiments
were aimed at validating that Vivado-HLS was able to hoist and sim-
plify loop bounds as expected through hoisting and GVN passes.
We observed that in all cases, performing hoisting and common
subexpression elimination in the input program did not result in
any improvement in any of the metric. We therefore concluded that
Vivado-HLS was already able to perform these optimizations effec-
tively.

We also point out that Vivado-HLS takes as input a C program
where all loop bounds are known at compile-time: they are expres-
sions made of only compile-time constants and loop iterators (for
instance TSTEPS is replaced by 20, N by 500, etc.). The required
complex loop bound expressions using ceil/floor/min/max cannot
be simplified further by Vivado-HLS compiler passes, thus motivat-
ing the techniques developed in this paper.

Division Optimization (dopt). In polyhedral code generation,
four operations are heavily used, particularly for tiled codes. Those
operations relate to the division of an expression by a constant inte-
ger value (taking either the ceil or floor of the result), typically the
tile size, and conjunctions of expressions (taking either the min or
max of various expressions). The default implementation of those
functions in CLooG is shown below, with the mathematical opera-
tion on the left, and its C implementation on the right.

⌈ x
y ⌉ ceil(((double)(x))/((double)(y)))

⌊ x
y ⌋ floor(((double)(x))/((double)(y)))

min(x,y) ((x) < (y)? (x) : (y))

max(x,y) ((x) > (y)? (x) : (y))

These operator implementations are known to perform very ef-
fectively for CPUs. However, the use of floating point operations
in loop bound computations is, of course, to be avoided as much as
possible on FPGAs. We have evaluated a series of alternative im-
plementations of these operators. First, IntDiv replaces the floating-
point division by the appropriate integer division and offset (x and
y are integer expressions, so the C semantics of x/y is an integer

division):
⌈ x

y ⌉ ((x > 0)? (1 + (x - 1)/y): (x / y))

⌊ x
y ⌋ ((x > 0)? (x / y): (1 + (x -1)/ y))

Second, MulUB is a technique to scale the upper bound constraints

to eliminate division whenever possible. That is, cX ≤
⌊

x
y

⌋

is re-

placed by y · cX ≤ x. In the case of conjunction of constraints, the
largest common multiple is used as the scaling factor.

Third, LcmLB is a technique to scale the lower bound constraints,
to eliminate division whenever possible. That is,

⌈

x

y

⌉

≤ cX ∧
⌈u

v

⌉

≤ cX

is replaced by








max(
lcm(y,v)

y x,
lcm(y,v)

v u)

lcm(y,v)









≤ cX

lcm(y,v)
y ,

lcm(y,v)
v and the least common multiple lcm(y,v) can be

computed at compile time if y and v are constant numbers. We re-
port the cumulative impact of these three techniques in Table 3.

Table 3: Impact of division optimization
LUT FF DSP CP(ns) Cycle Pwr(mW)

FDTD-nosep 25595 16692 40 8.965 11500269 1452.56
+ IntDiv 11319 8864 100 8.948 11487327 1365.44
+ MulUB 9210 7456 62 8.722 11486905 1366.24
+ LcmLB 9988 7572 50 8.668 11488085 1364.21

Gemm-nosep 1822 1532 14 7.609 14567698 1302.43
+ IntDiv 1822 1532 14 7.609 14567698 1302.43
+ MulUB 1822 1532 14 7.609 14567698 1302.43
+ LcmLB 1822 1532 14 7.609 14567698 1302.43

J1D-nosep 11327 7350 14 8.100 5724101 1411.92
+ IntDiv 2759 1897 17 8.148 3194601 1312.37
+ MulUB 2495 1787 16 8.853 3094421 1312.42
+ LcmLB 2496 1835 15 7.946 3094951 1312.11

J2D-nosep 14216 10103 27 8.582 21800977 1427.02
+ IntDiv 6312 4749 39 8.757 12408718 1318.99
+ MulUB 5221 4164 32 8.596 12150238 1319.23
+ LcmLB 4968 4148 31 8.428 12148886 1320.37

Seid-nosep 32561 19599 9 8.763 159281806 1459.67
+ IntDiv 8844 5909 33 8.460 159265028 1369.15
+ MulUB 7934 5227 18 7.908 159265296 1366.94
+ LcmLB 7573 5125 16 8.039 159265212 1368.42

A floating point division requires more than 3K LUTs and more
than 3K FFs, while an integer point division will use 4 DSPs (with
very little LUT and FF elements) after transforming the division to
multiplication [6]. As expected, we observe a dramatic improve-
ment in terms of LUT and FF required when floating-point opera-
tions are replaced by equivalent integer operations. However, this
leads to a significant increase in DSP consumption.

The increase in the number of DSP required is largely compen-
sated by the reduction in all other resources, reducing the total en-
ergy consumed by the system. Without any penalty on latency, these
techniques bring consistent improvements on resource usage. While
it may happen that optimizing lower bounds slightly increases re-
source usage, we nevertheless choose to systematically apply all
these techniques because of their potential benefit.

Balanced min/max tree. The third technique we evaluated is a
simple reorganization of conjunctions in a tree, versus a sequence.
Currently, for a bound of the form

cX ≤ A ∧ cX ≤ B ∧ cX ≤C ∧ cX ≤ D

CLooG generates cX ≤min(min(min(A,B),C),D). We instead gen-
erate cX ≤ min(min(A,B),min(C,D)). Table 4 summarizes the re-



sults. These improvements, albeit marginal, further reduce resource
usage in all cases.

Table 4: Impact of balanced min/max tree (bmt)
LUT FF DSP CP(ns) Cycle Pwr(mW)

FDTD-ns-dopt 9988 7572 50 8.668 11488085 1364.21
+ bmt 9746 7542 50 8.273 11486733 1365.45

Gemm-ns-dopt 1822 1532 14 7.609 14567698 1302.43
+ bmt 1822 1532 14 7.609 14567698 1302.43

J1D-ns-dopt 2496 1835 15 7.946 3094951 1312.11
+ bmt 2496 1835 15 7.946 3094951 1312.11

J2D-ns-dopt 4968 4148 31 8.428 12148886 1320.37
+ bmt 4968 4148 31 8.428 12148886 1320.37

Seid-ns-dopt 7573 5125 16 8.039 159265212 1368.42
+ bmt 7495 5097 16 8.348 159265212 1370.78

16-bit iterators. The last technique leverages the fact that we
can determine, at compile time, precisely the integer range of each
loop iterators. In all the benchmarks we tested, the range of all iter-
ators will not exceed 216 = 65536. Therefore, we can use fewer bits
to represent iterators, e.g., changing iterators from 32-bit integers to
16-bit integers. This modification is useless for modern x86 CPUs,
yet quite useful for HLS-generated code, especially on FPGA plat-
forms. Typical hardware multiplier blocks in modern FPGA devices
are a 25× 18 multiplier. Our experiments show that 16-bit integer
multiplication will use two less DSPs and two less pipeline stages
than 32-bit integer multiplication. The range of each iterator can be
precisely analyzed given all parameter values at compile-time using
standard polyhedral analysis. The experimental results are shown in
Table 5.

Table 5: Impact of short iterators

LUT FF DSP CP(ns) Cycle Pwr(mW)

FDTD-dopt-bmt 9746 7542 50 8.273 11486733 1365.45
+ short iterator 7259 5780 51 8.986 11357291 1369.41

Gemm-dopt-bmt 1822 1532 14 7.609 14567698 1302.43
+ short iterator 1731 1464 14 7.603 14568594 1302.78

J1D-dopt-bmt 2496 1835 15 7.946 3094951 1312.11
+ short iterator 1882 1493 15 7.727 3094421 1312.78

J2D-dopt-bmt 4968 4148 31 8.428 12148886 1320.37
+ short iterator 3698 2913 25 8.453 11760982 1320.35

Seid-dopt-bmt 7495 5097 16 8.348 159265212 1370.78
+ short iterator 6094 3922 10 8.268 159264736 1372.26

From the results, we can see that using short iterators will benefit
both area and performance (as well as total energy). One exception
is the extra DSP consumed by FDTD after applying the technique.
After comparing the RTL code generated, we found that the reason
for this is that the same expression 5∗ i is synthesized into a shifter-
and-adder in one version and a multiplier in the other version. We
believe that design trade-offs by HLS tool will change according to
the scarcity of various resources.

5. TILING EXPERIMENTS
We now investigate the impact of two different tiling methods.

First we recall the basics of loop tiling as it is implemented in PoCC
(that is, what we used to generate the input codes in the previous
section). Then, we present an alternative strategy to simplify the
loop bounds.

Loop tiling (a.k.a. blocking) is a powerful loop transformation
that partitions the iteration space into regular blocks (the tiles), so
that each tile can be executed in isolation from the rest of the com-
putation [27]. Polyhedral loop tiling is performed by extending the
iteration domain of the statements to be tiled with additional di-
mensions (e.g., loops) to model the strip-mining and interchange of

loops to be tiled [19]. Tile loops are the loops iterating on the set of
tiles. Point loops are the loops iterating on each point of the iteration
space inside a given tile.

Previous work has focused on improving the quality of tiled code,
especially in the context of parametric tiling where the tile sizes are
not known at compile-time. One way is to produce a bounding box

of the iteration space and use guards to test whether the iteration
to be executed actually belongs to the original iteration space. This
method can introduce many "empty tiles" – particularly for com-
plex iteration domain shapes. Other work uses approaches based on
syntactic separation [21] and scanning only non-empty tile origins
[26]. However, none of these fit the requirements of our problem:
the code size quickly grows out of control with syntactic separa-
tion [21], and the inset/outset method does not exhibit a parallel tile
schedule [26]. Goumas et al. developed a rectangular tiling tech-
nique, however it is restricted to perfectly nested loops [20].

5.1 Sub-Bounding-Box Tiling

5.1.1 Overview

Our strategy takes the advantage of the bounding box idea, and
tailors it to the properties of polyhedral rectangular tiling. Our
method separately considers the tile loops (inter-tile) and point loops
(intra-tile). For tile loops, the key idea of our method is to use a rect-
angular grid superimposed on the iteration domain to be tiled as the
tiling structure. Each point in this grid represents a tile origin, and
we aim for the appropriate parallelogram (or hyper-parallelogram,
for domains of more than two dimensions) that contains the set of
all tile origins to be executed. This idea is reminiscent of parametric
tiling [9], but we tailor it to fixed-size tiling. Then the planes bound-
ing this parallelogram become simple affine expressions of other
dimensions and constants. Therefore min/max operations are not
needed and loop bounds are simplified. This may introduce some
extra points in the tile loop domain in the form of empty tiles (tiles
that are scanned but do not contain any point of the original iteration
domain), but for the benchmarks we evaluated carefully, choosing
the parallelogram shape leads to very few empty tiles. Fig. 3 is the
original tile iteration domain and its parallelogram approximation
of Seidel-2D when looking at dimensions c1 and c2.
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Figure 3: Tile origin iteration space and its approximation

The points inside the solid lines are the actual tile origins. The
dashed lines show the new parallelogram bounds found by our method.
By adding three more tile origins (top right and bottom left), the
shape is now much simpler to describe.

For the point loops, we simplify the boundary by using a rect-
angular grid to support each tile. This is possible since the loops



tiled are permutable. To make sure that the generated point loops
only scan points in the original iteration domain, we construct the
new boundary with the intersection of the tile boundaries and the
original iteration domain boundaries.

5.1.2 Sub-bounding Box Algorithm

Our approach works by taking as input the polyhedral represen-
tation using standard polyhedral tiling (which will be altered by
our algorithm) that is fed to CLooG; this includes the polyhedral
schedule for all loops/dimensions. The algorithm is divided into
two parts. First, generate the tile loop boundaries. At this step, we
find the parallelogram that approximates the tile origin space, and
combine the new parallelogram domain with the scheduling func-
tions given as input. Second, generate the point loop boundaries to
scan the iteration points within the tile in the order specified by the
(arbitrary, user-specified) schedule. At this step, point loop bound-
aries are made of the intersection of the tile bounds and the iteration
domain bounds.

New tile origin iteration domain. Vector~s represents the tile
size, where si is the tile size along dimension i. We construct the
diagonal matrix L = diag(~s). We use tile(L~x) to represent the set of
points in the tile whose origin is L~x.

tile(L~x) = {~z|L~x ≤~z < L~x+~s}

where~z represents the points within a tile. We define the set of tile
origins as the set of points L~x such that L~x is the origin of the tile
which is either partial tile or full tile.

Dtile = {L~x|tile(L~x)∩DR}

where DR is the iteration domain.

Parallelogram hull of the tile origin domain. The key idea
is to find the smallest parallelogram that contains Dtile, that is, the
parallelogram hull of Dtile. It may lead to the inclusion of tile ori-
gins for which the corresponding tile does not intersect with the
program iteration domain (empty tiles). To compute this parallelo-
gram hull, we first generate the code scanning Dtile using CLooG.
For each loop bound using more than one expression (that is, there
is a min/max expression in the associated loop bound), we select as
the unique lower (resp. outer) loop bound the expression that has
the largest (resp. smallest) value when the variables involved in the
expression (that is, the surrounding loop iterators) are set to a value
in the middle of their range. This computation is possible by oper-
ating from outermost to innermost loops, and because the value of
parameters such as TSTEPS or N is known at compile-time.

The method is implemented as follows. First, we construct the tile
origin iteration domain, and generate the code scanning it in lexico-
graphic order using CLooG. Then, going from the outermost loop
level to innermost, we calculate the new loop bounds. These loop
bounds form the parallelogram hull of Dtile, phull (Dtile). Finally,
we assign the scheduling function for tile loops initially provided as
input to CLooG for this program, and generate the code scanning
phull (Dtile) with CLooG.

Generating the point loops. Once the tile origins are com-
puted, we need to generate the code scanning the iteration points
within one tile. To ensure that it only scans points in the original
iteration space, the bounds are made up of the intersection of the
tile bounds and the iteration space bounds.

Since we are using rectangular tiling, the code generation for
point loops is simple, and also reminiscent of parametric tiling [9].

We use a rectangular grid to model tiling, where the grid spacing
equals the tile size. First we generate the code scanning the input
iteration domain without tiling (that is, it implements the schedule
given to CLooG). Then we post-process the generated code such
that, for each lower bound lbi and upper bound ubi, we add the tile
lower bound si ∗ ti and upper bound si ∗ ti + si − 1, where si is the
tile size of the i-th dimension, and ti is the tile origin iterator for di-
mension i, generated at the previous stage. Finally, the lower bound
and upper bound are written in the format of max(lbi,si ∗ ti) and
min(ubi,si ∗ ti + si − 1). The complete code is created by making
this modified code the body of the innermost loop generated during
the tile loop code generation mentioned above.

Fig. 4 illustrates this process: dots on the lower left corner of each
tile represent tile origins, other dots represent iterations inside each
tile. The dashed lines bounds the iteration domain. The boundary is
the intersection of the iteration domain bounds and the tile grid.

Figure 4: Optimization for point loop

5.2 Evaluation
To evaluate the quality of the generated code using the proposed

sub-bounding box algorithm, we performed two sets of experiments.
We integrated the sub-bounding box algorithm on top of the short
iterator optimization result, which is in Table 6. We can see that
based on top of the other optimizations presented in Sec. 4, the sub-
bounding box algorithm achieves about 15% reduction in LUTs and
FFs required on average, and 22% reduction for DSPs, for a slight
decrease in power (about 1%) without performance loss.

Table 6: Impact of tiling bounding-box method
LUT FF DSP CP(ns) Cycle Pwr(mW)

Seid-s-itr 7133 4366 9 7.704 159135759 1361.17
+ BB 5882 3637 5 7.874 159143274 1352.77

J2D-s-itr 4037 3237 24 8.244 11761063 1320.35
+ BB 3236 2514 19 7.943 11752537 1300.22

J1D-s-itr 2004 1558 15 8.068 3094952 1294.78
+ BB 1808 1475 15 8.12 3074938 1295.32

FDTD-s-itr 7259 5780 51 8.986 11357291 1369.41
+ BB 6956 5549 50 8.768 11354663 1368.06

As there are similarities between the proposed sub-bounding-box
method and parametric tiling code generation, we also make a com-
parison with PTile, a tool included in PoCC which generates para-
metric tiling [9]. Parametric tiling is designed to allow the run-
time selection of the tile size, a feature which requires heavy loop
structures to be generated. We note that this feature is of no obvi-
ous interest for HLS, as the loop bounds need to be determined at
compile-time. Nevertheless, PTile does use the idea of a rectangu-
lar supporting grid for the tiling, and a convex hull approximation
of the tile origin domain, motivating the comparison with the sub-
bounding box method.



Parametric tiled code was generated with PTile and we set the
symbolic tile sizes to be constants (5× 20× 20). For fair compari-
son, as parametric tiling requires even more complex loop bound ex-
pressions that could not be optimized with the techniques presented
in Sec. 4, we did not apply any of these optimizations anywhere.
The results are in Table 7.

Table 7: Bounding-Box tiling versus PTile
LUT FF DSP CP(ns) Cycle Pwr(mW)

Seid+BB 6653 4310 19 8.12 159016038 1354.29
Seid+PTile 10787 7140 23 8.992 162090843 1361.80

J2D+BB 5134 3995 32 8.212 12011882 1298.89
J2D+PTile 8626 5919 23 8.938 21647016 1301.98

J1D + BB 2706 1959 18 7.909 3125028 1296.98
J1D + PTile 5337 3814 17 8.625 8512131 1296.18

FDTD + BB 8386 6571 51 8.949 11225174 1297.99
FDTD + PTile 10728 8123 22 8.996 35509389 1303.84

The results show that compared to parametric tiling, the sub-
bound-ing box method uses less resources and is much faster. This
is because PTile uses more complex loop bounds for symbolic tile
sizes, including numerous floating point operations. Not only do
they increase the resource cost, but they also make the dependence
analysis in the HLS tool very conservative, this leads to an increased
initiation interval (II) for the pipeline. In our experiment, the II
for the sub-bounding-box is 3, while for parametric tiling it is 6.
We conclude that a direct use of the PTile software out-of-the-box
would not be an effective method for tiled code generation.

6. EXPERIMENTAL RESULTS
Based on the analysis in previous sections, we learned that turn-

ing off polyhedra separation, optimizing division operations, using
hierarchical min/max operations, short iterations, and simplifying
loop bounds using sub-bounding box tiling, could benefit polyhe-
dral code generation for high-level synthesis. In this section, all
these optimization techniques are integrated and applied on a set of
eleven computation kernels and applications.

6.1 Experiments Setup
We use a set of benchmarks from PolyBench/C 3.2 [5], with small

datasets (array sizes are typically 500 in each dimension) and a tile
size of 5×20×20, which is large enough to exploit the vast major-
ity of the data reuse in all benchmarks we evaluated. As programs
are tiled, larger problem sizes would simply lead to increasing the
number of tiles visited, by increasing the iteration count of the outer
(tile) loops; this is not expected to have any significant impact on
the computed design. In the experiments, only the computation
module is evaluated. Off-chip communication time is ignored, and
memory utilization is omitted in the experimental results. Indeed,
effective techniques to reduce off-chip communication while reduc-
ing the on-chip buffer size have been developed in previous work
[24], and these considerations are orthogonal to the present work.
Double precision floating point is used to be the main data type in
computations as in the original code. A description of each bench-
mark can be found in Table 8. In all versions, the innermost loops
are pipelined. Macro USE_SCALAR_LB is defined, and Vivado-HLS
inter-loop dependence pragmas are added.

6.2 Complete Results
Table 8 describes all the raw data reported by the tool-chain in-

cluding the various resource usage, critical path, execution cycles
and power consumption. We generated codes 1) using CLooG with
default parameters, 2) using CLooG but turning off polyhedra sepa-
ration option, and 3) using CLooG with all optimization techniques

described in this paper (mentioned as Default, NoSep and HLSOpt
versions thereafter).

In addition to these raw metrics, we also use Eq. (1) and Eq. (2)
to measure the total latency and energy consumed by the target cir-
cuit with the given inputs. Experimental results show that for the
benchmark selected in this paper, a large fraction of power con-
sumed is static power, ranging from 76.4 % to 99.8%. If only a
portion of the target FPGA device is used, the rest of the device
could possibly be used by some other modules. Considering this,
the static power of the whole FPGA device can be conceptually di-
vided between multiple modules according to the area utilization.

Here max
(

LUTused

LUTAvail.
, FFused

FFAvail.
, DSPused

DSPAvail.

)

is used as the metrics to rep-

resent the proportion of the FPGA device used by a certain mod-
ule. The area utilization is overestimated as we select the largest
ratio between used and available hardware resources, computed in-
dividually for LUTs, FFs and DSPs. Using this notion, we use a
Normalized Energy metric in this paper to reflect the quality of the
generated circuit with area, performance and power information in-
cluded (Eq. (4)). These metrics are computed as follows.

Latency = Critical_Path∗Execution_Cycles (1)

Energy = (PwrStatic +PwrDyn.)∗Latency (2)

Arearatio = max

(

LUTused

LUTAvail.
,

FFused

FFAvail.
,

DSPused

DSPAvail.

)

(3)

Energynorm = (Arearatio ∗PwrStatic +PwrDyn.)∗Lat. (4)

Latency, energy, area Ratio and normalized Energy calculated
for the three implementations for all the benchmarks are shown in
Fig. 5-8.

Latency. As explained in Sec. 4.3, turning off polyhedra separa-
tion could possibly increase or decrease the execution latency for
different benchmarks. The latency of the HLSOpt version is consis-
tently shorter than the NoSep version. For LU, HLSOpt is slightly
slower than the Default version by 3.2% due to longer critical path.
For other benchmarks, HLSOpt can reduce the execution latency
by 0.1%(GEMM) to 61.8%(J1D) when compared to Default. The
average latency reduction over the 11 benchmarks is 17.5%.

Energy. Since energy is proportional to both latency and power,
the NoSep version could increase or decrease the total energy. How-
ever, HLSOpt is consistently more energy efficient. Total energy
reduction of HLSOpt over Default ranges from 0.1% (GEMM and
Lug) to 63.8% (J1D), with an average of 21%.

Area Ratio. Experiment results in Fig. 7 show that the techniques
proposed in this paper are quite efficient for area reduction. The
area reduction of HLSOpt vs. Default is 0(GEMM) to 91.4%(Dynp)
with an average of 55.1%. NoSep uses consistently less area than
Default, with an average of 17.2% area reduction.

Normalized Energy. Considering the significant area reduction,
energy reduction is much more noticeable after separating the static
power according to the area consumption. Results in Fig. 8 show
a maximum reduction in normalized energy consumption of 93.6%
(Dynp), for an average reduction of 59.8%.

7. CONCLUSION
Despite significant progress achieved by high-level synthesis tools,

numerous subsequent transformations of the input C code are still



Table 8: Experimental results

Benchmark Description Version LUT FF DSP CP(ns) Cycle Static Pwr Dyn. Pwr

ADI Alternating Direction Implicit solver

Default 7542 7279 34 8.993 174425051 1292.34 96.76
NoSep 7542 7279 34 8.993 174425051 1292.34 96.76

HLSOpt 6843 6167 24 8.484 170436051 1292.31 95.39

dynprog Dynamic programming (2D)

Default 14485 9636 14 8.892 8410401 1292.47 102.60
NoSep 11326 7299 7 7.904 7494801 1292.40 99.38

HLSOpt 1399 1033 8 8.271 6048301 1290.24 1.97

FDTD-2D 2-D Finite Different Time Domain Kernel

Default 39803 24532 56 11.313 12622094 1292.11 86.38
NoSep 25595 16692 40 8.965 11500269 1293.73 158.84

HLSOpt 6956 5549 50 8.768 11354663 1291.88 76.18

GEMM Matrix-multiply C = α.A.B + β.C

Default 1822 1532 14 7.609 14567698 1290.46 11.97
NoSep 1822 1532 14 7.609 14567698 1290.46 11.97

HLSOpt 1731 1464 14 7.603 14568594 1290.46 11.97

Gradient-2D Jacobi-like 2D stencil

Default 30096 20175 124 8.000 20565307 1295.23 226.26
NoSep 17798 13730 114 7.918 29568426 1294.59 197.61

HLSOpt 7164 6559 117 7.917 18997282 1292.28 94.01

Jacobi-1D Jacobi 1D stencil

Default 11926 7586 14 8.435 7638461 1292.24 92.24
NoSep 11327 7350 14 8.1 5724101 1292.84 119.08

HLSOpt 1790 1461 15 7.988 3084421 1290.65 20.79

Jacobi-2D Jacobi 2D stencil

Default 24818 15351 35 8.990 13356949 1293.36 142.41
NoSep 14216 10103 27 8.582 21800977 1293.17 133.85

HLSOpt 3236 2514 19 7.943 11752537 1290.86 29.94

Laplacian-2D Jacobi-like 2D stencil

Default 26288 17141 46 7.975 13773376 1293.70 157.71
NoSep 14908 11087 25 7.894 22460226 1293.64 155.13

HLSOpt 3371 2779 25 7.661 11753289 1291.16 43.79

LU LU decomposition

Default 12086 9177 14 8.553 1990925 1292.84 118.92
NoSep 11718 8794 14 8.814 2102483 1292.88 120.73

HLSOpt 5622 5151 14 8.854 1984462 1291.85 74.52

ludcmp LU decomposition

Default 5918 5135 14 8.932 4073294 1292.74 114.62
NoSep 5564 4964 14 8.140 4079524 1292.71 113.09

HLSOpt 5525 5011 14 7.741 4079524 1292.53 105.08

Seidel-2D Seidel 2D stencil

Default 32561 19599 9 8.763 159281806 1293.88 165.79
NoSep 32561 19599 9 8.763 159281806 1293.88 165.79

HLSOpt 5882 3637 5 7.874 159143274 1291.93 78.02

adi dynp j1d j2dfdtdgemmgrad lapl lu ludu seid avg
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Figure 5: Latency (normalized to default)

adi dynp j1d j2dfdtdgemmgrad lapl lu ludu seid avg
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Figure 6: Energy (normalized to default)

adi dynp j1d j2dfdtdgemmgrad lapl lu ludu seid avg
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Figure 7: Area ratio (normalized to default)

adi dynp j1d j2dfdtdgemmgrad lapl lu ludu seid avg
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Figure 8: Normalized energy (normalized to default)



required to effectively exploit data reuse potential in the applica-
tions, and coarse- and fine-grain parallelism. The polyhedral com-
pilation model has shown great promise in automating those tasks.
However, the expressiveness and flexibility of this compilation frame-
work comes at a cost: the programs obtained after polyhedral code
generation usually contain very complex loop bounds. The code
structure typically contain a hot spot loop nest and numerous other
loop nests that correspond to infrequently executed cases. This is
not an issue when operating on modern x86 CPUs, but is a ma-
jor issue for FPGAs: extra resources are consumed for each case,
including the ones with an extremely low contribution to the total
execution time. Therefore, it is necessary to tailor polyhedral code
generation to the specifics of FPGA execution for best results.

In this paper we investigated several techniques to reduce the re-
source usage for codes that are automatically generated by a polyhe-
dral compilation framework. Focusing on Vivado-HLS and CLooG,
two state-of-the-art tools, we extensively studied the impact of alter-
native loop bound computation techniques, and ended with system-
atic and significant resource savings when compared to off-the-shelf
use of CLooG.

Acknowledgments. This work was supported in part by the Cen-
ter for Domain-Specific Computing (CDSC) funded by NSF “Expe-
ditions in Computing” award 0926127; China Postdoctoral Science
Foundation (2012M520115); and the SRC/DARPA CFAR center.
We are grateful to Xilinx, Inc. for equipment donations and finan-
cial contributions.

8. REFERENCES
[1] CLooG 0.18 .0.http: //www.cloog.org.

[2] http://www.xilinx.com/products/design-
tools/vivado/index.htm.

[3] LLVM project. http://www.llvm.org.

[4] Pocc 1.2. http://pocc.sourceforge.net.

[5] Polybench 3.2. http://polybench.sourceforge.net.

[6] Xilinx dsp: Designing for optimal results.
http://www.xilinx.com/publications/archives/books/dsp.pdf.

[7] C. Alias, A. Darte, and A. Plesco. Optimizing DDR-SDRAM
communications at C-level for automatically-generated
hardware accelerators an experience with the Altera C2H
HLS tool. In Intl. Conf. on Application-specific Systems

Architectures and Processors (ASAP’10), pages 329 –332,
July 2010.

[8] C. Ancourt and F. Irigoin. Scanning polyhedra with DO
loops. In 3rd ACM SIGPLAN Symp. on Principles and

Practice of Parallel Programming, pages 39–50, June 1991.

[9] M. Baskaran, A. Hartono, S. Tavarageri, T. Henretty,
J. Ramanujam, and P. Sadayappan. Parameterized tiling
revisited. In CGO, April 2010.

[10] C. Bastoul. Code generation in the polyhedral model is easier
than you think. In IEEE Intl. Conf. on Parallel Architectures

and Compilation Techniques (PACT’04), pages 7–16, Sept.
2004.

[11] S. Bayliss and G. A. Constantinides. Optimizing sdram
bandwidth for custom fpga loop accelerators. In Proceedings

of the ACM/SIGDA international symposium on Field

Programmable Gate Arrays, FPGA ’12, pages 195–204, New
York, NY, USA, 2012. ACM.

[12] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral program
optimization system. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, June

2008.

[13] J. Cong, M. Huang, and Y. Zou. Accelerating fluid
registration algorithm on multi-fpga platforms. In Proc. of

Intl. Conf. on Field Programmable Logic and Applications

(FPL’11). IEEE, 2011.

[14] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and
Z. Zhang. High-level synthesis for fpgas: From prototyping
to deployment. Trans. Comp.-Aided Des. Integ. Cir. Sys.,
30(4):473–491, Apr. 2011.

[15] J. Cong, B. Liu, and J. Xu. Coordinated resource optimization
in behavioral synthesis. In Proc. of the Conference on Design,

Automation and Test in Europe (DATE’10), pages
1267–1272, 2010.

[16] J. Cong, P. Zhang, and Y. Zou. Combined loop transformation
and hierarchy allocation for data reuse optimization. In
Proceedings of the 2011 IEEE/ACM International conference

on Computer-aided design, ICCAD. IEEE, 2011.

[17] H. Devos, K. Beyls, M. Christiaens, J. Campenhout, E. H.
D’Hollander, and D. Stroobandt. Transactions on
high-performance embedded architectures and compilers i.
chapter Finding and Applying Loop Transformations for
Generating Optimized FPGA Implementations, pages
159–178. Springer-Verlag, 2007.

[18] P. Feautrier. Some efficient solutions to the affine scheduling
problem, part II: multidimensional time. Intl. J. of Parallel

Programming, 21(6):389–420, Dec. 1992.

[19] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello,
M. Sigler, and O. Temam. Semi-automatic composition of
loop transformations for deep parallelism and memory
hierarchies. Intl. J. of Parallel Programming, 34(3), 2006.

[20] G. Goumas, M. Athanasaki, and N. Koziris. An efficient code
generation technique for tiled iteration spaces. Parallel and

Distributed Systems, IEEE Transactions on,
14(10):1021–1034, 2003.

[21] A. Hartono, M. Baskaran, J. Ramanujam, and P. Sadayappan.
Parametric tiled loop generation for effective parallel
execution on multicore processors. In IPDPS, 2010.

[22] W. Kelly, W. Pugh, and E. Rosser. Code generation for
multiple mappings. In Intl. Symp. on the frontiers of

massively parallel computation, pages 332–341, McLean,
VA, USA, Feb. 1995.

[23] M. Le Fur. Scanning parameterized polyhedron using
Fourier-Motzkin elimination. Concurrency - Practice and

Experience, 8(6):445–460, 1996.

[24] L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong.
Polyhedral-based data reuse optimization for configurable
computing. In 21st ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays (FPGA’13), Monterey,
California, Feb. 2013. ACM Press.

[25] F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of
efficient nested loops from polyhedra. Intl. J. of Parallel

Programming, 28(5):469–498, Oct. 2000.

[26] L. Renganarayanan, D. Kim, S. Rajopadhye, and M. M.
Strout. Parameterized tiled loops for free. SIGPLAN Notices,

Proc. of the 2007 PLDI Conf., 42(6):405–414, 2007.

[27] M. Wolfe. High performance compilers for parallel

computing. Addison-Wesley Publishing Company, 1995.

[28] W. Zuo, Y. Liang, P. Li, K. Rupnow, D. Chen, and J. Cong.
Improving High Level Synthesis Optimization Opportunity
Through Polyhedral Transformations. In Proc. of the

ACM/SIGDA Intl. Symp. on Field Programmable Gate Arrays

(FPGA’13), 2013.



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     3.6000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     10
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     3.6000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     10
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     3.6000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     10
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     3.6000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     10
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



