
Asymmetric-access Aware Optimization for STT-RAM Caches
with Process Variations∗

Yi Zhou
Beijing Institute of Technology
zhouyi.initial@gmail.com

Chao Zhang
Peking University

zhang.chao@pku.edu.cn

Guangyu Sun
Peking University

gsun@pku.edu.cn

Kun Wang
IBM Research - China

wangkun@cn.ibm.com

Yu Zhang
IBM Research - China
zhyu@cn.ibm.com

ABSTRACT
STT-RAM (Spin Transfer Torque Random Access Memory)
has been extensively researched as a potential replacement of
SRAM (Static RAM) as on-chip caches. Prior work has shown
that STT-RAM caches can improve performance and reduce
power consumption because of its advantages of high density,
fast read speed, low standby power, etc. However, under the
impact of process variations, using worst-case design can in-
duce significant performance and power overhead in STT-RAM
caches. In order to overcome the problem of process varia-
tions, we propose to apply the variable-latency access method
to STT-RAM caches by introducing a variation-aware LRU
(Least Recently Used) policy. Moreover, we show that simply
applying traditional variable-latency access method is ineffi-
cient due to the read/write asymmetry. First, we demonstrate
that a write-oriented data migration is preferred. Second, a
block remapping is necessary to prevent some cache sets from
being significantly affected by process variations. After using
our techniques, the experimental results show that the perfor-
mance can be improved by 13.8% and power consumption can
be reduced by 14.1% compared to a prior approach [3].

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles–Cache memories

Keywords
STT-RAM caches, process variations, asymmetric-access

1. INTRODUCTION
As the mainstream of computer system moves to the regime

of multi-/many-core designs, the number of processing cores in-
tegrated on the same chip has been increasing. It also results
in an increasing requirement for on-chip memory capacity to
bridge the gap between processors and off-chip main memo-
ry. The traditional SRAM technology, however, cannot satisfy

∗This work is supported by the National Natural Science Foun-
dation of China 61202072.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’13, May 2–3, 2013, Paris, France.
Copyright 2013 ACM 978-1-4503-1902-7/13/05 ...$15.00.

the requirement due to its problems of low cell density, high
standby power, and vulnerable to soft errors [4], which lead to
the well-known problem ”memory wall” [14]. In order to attack
this problem, STT-RAM has been extensively proposed to re-
place SRAM as on-chip memory because of its advantages of
high cell density and immunity to soft errors [12, 13, 11].

Prior research has shown that replacing SRAM with STT-
RAM in various levels of on-chip caches can help improve per-
formance, reduce power consumption, and achieve a better re-
liability. Yet the main focus of prior research of STT-RAM is
on how to leverage the density, power consumption advantages
and try to mitigate the well-known issue of asymmetric-access.
The impact of process variations on STT-RAM caches and
corresponding optimization techniques, however, are not well
studied at the architectural level. In fact, since STT-RAM is
normally employed as lower level caches (e.g. L2) with large ca-
pacity, process variations have a significant impact STT-RAM
caches. Moreover, it becomes more complicated when the char-
acter of asymmetric read/write access is considered.

For the popular one-transistor-one-MTJ (Magnetic Tunnel-
ing Junction) based STT-RAM cell, various design parame-
ters, such as MTJ shape, MgO thickness, access transistor’s
gate length/width, etc., can be affected by process variation-
s. Consequently, the characteristics of STT-RAM cells in an
STT-RAM cache can be quite different from each other. In
the simple worst-case design employed for STT-RAM caches,
a large overhead can be induced for access latency and power
consumption due to process variations. Sun et al proposed a
process-variation aware data management for non-uniform ac-
cess STT-RAM caches [12]. In their work, the write latency
variation is comparable to that consumed on data movemen-
t among different banks. Thus, the data migration policy is
tailored to adapt the variable write latency caused by process
variations. However, their approach is not feasible for uniform
access STT-RAM cache, especially when the read-write asym-
metric access is considered.

In this work, we apply the variable-latency access method
to uniform access STT-RAM caches by introducing a novel
variation-aware LRU policy. Moreover, we show that simply
applying traditional variable-latency access method is ineffi-
cient due to the read/write asymmetry. First, we demonstrate
a write-oriented data migration is preferred. Second, a block
remapping is necessary to prevent some cache sets from be-
ing significantly affected by process variations. After using
our techniques, the experimental results show that the perfor-
mance can be improved by 13.8% and power consumption can
be reduced by 14.1%.

The rest of the paper is organized as follows. In the next sec-
tion, we will give a brief review of STT-RAM and the impact of

143

process variations on STT-RAM cache cells as well as the basic
idea of variable-latency access method. Then, we will present
our variation-aware LRU policy that can achieve a variable-
latency access STT-RAM cache in Section 3. In addition, we
will discuss the impact of asymmetric access and show that the
remapping technique is necessary. The evaluation results are
shown in Section 4, followed by a conclusion.

2. PRELIMINARIES
In this section, we first give a review of STT-RAM tech-

nology and how to model the effect of process variations on
STT-RAM. Then, we introduce the method of variable-latency
access to caches under process variations.

2.1 STT-RAM Basics
Different from traditional CMOS based SRAM, STT-RAM

uses MTJ devices to store the information. A MTJ has two fer-
romagnetic layers (FL) and one oxide barrier layer (BL). The
resistance of MTJ, which is used to represent information s-
tored, is decided by the relative magnetization directions (MD-
s) of the two FLs. When the MDs are parallel or anti-parallel,
the MTJ is in low (bit ’0’) or high resistance state (bit ’1’). Rh

and Rl are usually used to denote the high and the low MTJ
resistance, respectively. In a MTJ, the MD of one FL (refer-
ence layer) is pinned while the one of the other FL (free layer)
can be flipped by applying a polarized write current though
the MTJ. In the ”1T1J” cell structure, the MTJ write current
is supplied by a NMOS transistor [11, 10].

2.2 Modeling of Process Variations of STT-RAM
In the popular ”1T1J” STT-RAM cell, the transistor is used

to control the access to the MTJ while the MTJ is used to
story data. Both access transistor and MTJ can be affected by
process variations. Due to different access mechanisms in read
and write operations, the process variations of these two com-
ponents have different impact on read and write to STT-RAM
cells. Note that in this subsection, the read/write latency is
just for a single STT-RAM cell, which should be differentiated
from the cache access latency for a whole STT-RAM cache. In
addition, we find that variation of a STT-RAM cell is signif-
icantly larger than that of the peripheral circuitry. Thus, we
focus on the variation of the STT-RAM cell in this work.

The read variation is mostly determined by variations on pa-
rameters of the access transistor, which include effective chan-
nel length/width, threshold voltage, oxide thickness, etc. Sim-
ilar to prior research, variations of these parameters of tran-
sistors can be modeled with normal distributions using a well-
know method [1, 9, 2]. Having distributions of these parame-
ters, we can run Monte-Carlo based simulation to model the
characters of all access transistors in a STT-RAM cache. Then,
these numbers can be used to calculate the access latency and
energy consumption of a read operation to cells in a STT-RAM
cache. Obviously, these cells will demonstrate different access
latency and energy, which are projected in the variable-latency
access method in the next subsection.

Compared to read, the write operation of STT-RAM can
have even lager variances of latency and energy consumption
due to process variations of both the access transistor and
MTJ. For the MTJ, the process variations have effects on sev-
eral design parameters, such as MTJ shape, MgO thickness,
and the localized fluctuation of magnetic anisotropy [11, 13].
All these parameters are related to the programming current,
which is key factor for access latency and energy of a write op-
eration. Wen et al and Sun et al investigated the typical distri-
butions in various STT-RAM cell designs. A dual-exponential
function about programming current is used to provide an ex-

cellent accuracy, which can be described in equation (1) [13].
Due to page limitation, the detailed relationship among those
design parameters and characters of write operation is not p-
resented in this paper. For those readers who are interested
in the model details, please refer to Wen’s and Sun’ work for
reference.

f(I) =

{
a1e

b1(I−µ) I ≤ μ

a2e
b2(µ−I) I > μ

(1)

2.3 Variable-latency Cache Access
Variable-latency access is an effective method to mitigate

the impact of process variations on caches [3, 8, 11, 7]. In a
cache using variable-latency access technique, the cache access
latency is no longer a fixed value as in a traditional worst-
case cache design. Instead, the access latency has a variance
depending on the affect of process variations on STT-RAM
cells. In other words, the access to some parts of the caches can
be faster than the rest parts due to different effects of process
variations on the STT-RAM cells. Since the access granularity
is a cache line, the access latency of a cache line is decided
by the slowest STT-RAM cell belonging to the cache line. It
should be addressed that the energy consumption to a cache
line also varies in a cache because the energy consumption
is related to both access latency and current. Note that the
definition of variable-latency access cache is different from that
of a Non-uniform cache architecture (NUCA). For the later
one, the non-uniform access latency is caused by the specific
architecture design (e.g. network-on-chip) and also exists even
when there are no any process variations.

Extensive research has been done on the variable-latency
cache architecture. One variable-latency cache architecture
uses a delay storage to record the delay time for each cache
line [3]. In another variable-latency cache design, they en-
abled the variable access cache by modifying the function u-
nits and adding special queues to store the dependent instruc-
tions [8]. Similarly, a LA (Latency Aware)-LRU policy is put
forward to mitigate the process variation [7]. They also us-
es the delay-storage architecture, and dynamically swapping
data using the LA-LRU policy. The optimization targets in
these works are traditional SRAM caches so that the asym-
metric read/write access to STT-RAM caches are not consid-
ered. Sun et al proposed a variation aware data management
for non-uniform cache architectures. They compensate write
time variations via dynamic data migration [11]. Their data
migration method, however, is not feasible for uniform caches.
Considering the limitation of prior works, we propose a novel
LRU policy with consideration of data migrations for asym-
metric access STT-RAM caches, which will be introduced in
next section.

3. VARIABLE-LATENCY ACCESS STT-RAM
CACHE DESIGN

In this section, we first introduce the basic structure of our
STT-RAM cache that can support variable-latency access. Then,
we propose a novel LRU policy tailored to enable the data mi-
grations in the variable-latency access cache. Finally, we will
discuss the impact of cache line remapping and analyze design
overhead.

3.1 Basic Structure
With the process variations, the caches lines in a STT-RAM

cache demonstrate various access latency, in respect of read and
write operations. For example, the distribution of write latency
for a STT-RAM cache with 512 cache lines are shown in Fig-

144

ure 1. In our variable latency cache, we partition these cache
lines into two parts, which are called the fast-access part (FAP)
and the slow-access part (SAP). The partitioning is based on
the distribution of the access latency to different cache lines.
Since the STT-RAM cache has asymmetric read/write access
latency, we can have different partitioning policies based on
read latency, write latency, or a combination of them. The im-
pact of partitioning policies is discussed later in subsection 3.3.

Figure 1: An example of distribution for cache write
latency.

In the example of Figure 1, we partition the STT-RAM cache
based on write latency and set 21 clock cycles as the threshold
to differentiate SAP from FAP. In other words, for the cache
lines that can be written within 21 cycles, they are grouped
together as the FAP of the STT-RAM cache. The rest caches
lines, which have the longer write latency than 21 cycles, are
organized as the SAP of the STT-RAM. The discussion of se-
lecting a proper threshold will be introduced in subsection 3.3.
For each part of the STT-RAM cache, the write latency is fixed
and determined by the longest access latency of the cache line
in the part. For the same example in Figure 1, the write laten-
cy to SAP and FAP are 21 cycles and 35 cycles, respectively.

The organization of FAP and SAP for STT-RAM cache is
different from traditional variable-access latency cache struc-
ture in prior work [3, 8, 7]. In prior work, the access latency is
identified with a fine granularity, which is a single cache line.
It means that the access to each cache line can be finished as
soon as possible. For our variable-latency access STT-RAM
cache, however, the cache is partitioned with a coarse granu-
larity (e.g. SAP and FAP), and the access latency to a cache
line is decided by the slowest cache line in the same part.

It is easy to find that the traditional fine granularity based
structure can achieve a better performance than ours for the
static data allocation. Static data allocation means that a data
are placed in fixed positions (cache blocks) before they are e-
victed. On the contrary, a dynamic data allocation means that
data can be moved from SAP to FAP if they are frequent-
ly accessed so that the performance is improved. It should
be addressed that a dynamic data allocation is necessary for
variable-latency access cache due to temporal data locality.
Otherwise, if most frequently accessed data are always allo-
cated in the cache lines with slow access latency, we may gain
little benefits of using variable latency access cache.

When the dynamic data allocation is employed, our variable-
latency access cache structure can outperform those in prior
work for three reasons [3, 8, 7]. First, data migration is feasible
to be realized when there are only SAP and FAP. On the con-
trary, in the traditional structure, there will be many different
levels of access latency, which can significantly increase the de-
sign complexity since data migration can happen between any
two cache lines with different access latency. Moreover, when

the cache remapping technique is applied (introduced later in
the paper), design complexity of a fine granularity policy is
further significantly increased. In fact, the dynamic allocation
policy is not introduced in most of traditional structures [3,
8]. Second, a coarse partitioning granularity can help reduce
the overhead of tracing access latency of different cache lines.
In traditional structure, a table is needed to record the ac-
cess latency of each individual cache line. Such a table can
induce non-trivial overhead, especially for STT-RAM cache
which normally has the large capacity and significant variance
of write latency. Third, the design complexity for variable-
access latency control can be reduced. For example, as intro-
duced in Bennaser’s work [3], a buffer is needed to enable the
variable-latency access. The design complexity of such a buffer
and related control logic increases with the total number of d-
ifferent access latency. Since we only have two different access
latency for SAP and FAP, the design can be really simple.

3.2 A Novel LRU Policy for Data Migration
As discussed in the last subsection, a dynamic data alloca-

tion is critical to exploit the benefits of using variable-latency
access cache. In Sun’s work, dynamic data allocation is en-
abled through data migration among different cache banks in
the NUCA [11]. This data migration method, however, is not
feasible for the uniform cache architecture. First, the data
migration technique in NUCA can be enabled without the ex-
istence of process variations. Sometimes, the migration may
even depends on the infrastructure of the NUCA (e.g. network-
on-chip). When we apply the data migration in uniform cache,
the extra design overhead must be considered. Second, the
data locality is not considered in their approach, which may
destroy the LRU replacement policy. Third, using the DPVA-
NUVA-2 policy, both read and write operations can trigger the
data migration. We will discuss in next subsection that such a
combination of migration technique can harm the performance
in uniform cache. Thus, we propose a new LRU policy, which
can also enables the data migration at the same time.

The new LRU policy is illustrated in Figure 2 with a set
of cache lines belonging to an eight-set-associative STT-RAM
cache. As shown in the figure, the cache lines of the FAP are
represented using blocks with shade. In this example, there
are cache lines in FAP and five cache lines in SAP. In order to
simplify the discussion, we assume that the positions of these
cache lines in FAP are physically next to each other. The
number labeled on top of each cache line is used to represented
the position of the cache line in the LRU stack. The cache line
with number 7 is the one that is just accessed. The cache line
with number 0 is always evicted when a cache replacement
happens.

Figure 2 (a)-(c) demonstrates the initial filling process for an
empty cache set. As shown in Figure 2 (b), the data are always
allocated in the FAP when there are slots in it. Figure 2 (c)
shows the status when half of the cache set is filled. Note that
the most recently loaded data are allocated in the SAP (the
fifth cache line from left) at this time. Our experiments show
that there is little enhancement if we carry out data swapping
policy in the filling process. It is because high frequent data
reuse is rare at the initialization stage. Moreover, these data
may generate more swap operations when the data swap pol-
icy is applied. Considering the extra power consumption and
latency for data swapping, we do not swap data in the filling
process.

Figure 2 (d) and (e) shows the process when a cache replace-
ment happens. When new data are loaded and the cache set is
full, the cache line labeled with 0 is evicted. At the same time,
we need to check whether the evicted cache line is in the SAP.
If it is true, a data migration is triggered. The cache block

145

Figure 2: The illustration of LRU with the considera-
tion of data migrations.

with smallest label number (e.g. the least recently used cache
line in FAP), which is 3 in this example is, moved to the e-
victed cache line. Then, the new data is allocated in FAP (e.g.
the last cache block in Figure 2 (e)). Such a replacement can
promise that the most frequently loaded data are always allo-
cated in the FAP.

As shown in Figure 2 (f), it is possible that the most recently
accessed cache line resides in the SAP. Such scenarios usually
happen during the initial filling process and also exist when
there are some frequently accessed data that have a long reuse
distance. In order to mitigate such problems, an extra check-
and-swap step is adapted during the replacement. As shown in
Figure 2 (g) to (i), after the replacement, if the cache labeled
with number 6 is detected in the SAP, another data swapping
is employed to move the SAP. With such a LRU policy, most
data that are frequently accessed can be kept in the FAP to
improve the performance.

Note that the data migration is only triggered during the
cache replacement to avoid some useless data migration caused
by cache hits, which are used in previous work [11]. In addi-
tion, we only demonstrates our data migration method with a

perfect LRU policy to simplify the discussion. In fact, such a
method can also be applied to some fake LRU polices in re-
al processors. Due to page limitation, we will not discuss the
details in this work.

3.3 Impact of Management Policies
The efficiency of variable-latency access is related to differ-

ent cache management policies. In this subsection, we will
discuss the impact of two important policies including parti-
tioning policy and the cache line remapping.

3.3.1 Partitioning Policy
Obviously, the STT-RAM cache partitioning for SAP and

FAP is one of the most important key factor for a variable-
latency access cache design. First, it is critical to choose what
type of access latency as the basis of latency partitioning. Sec-
ond, the threshold for separating SAP from FAP also has an
important impact on the efficiency of cache design.

As discussed in subsection 2.1, the variance of read and write
latency is decided by different design parameters in STT-RAM.
Thus, read latency and write latency have different distribu-
tions, although there is a correlation between them. To this
end, we have to choose from read latency, write latency, or the
combination of them for the cache partitioning. The compar-
ison among these three partitioning methods is discussed as
follows. In prior work for traditional SRAM caches, the read
latency is normally used because the read latency is on criti-
cal path of execution time and the access latency is similar for
read and write operations.

The case for STT-RAM caches, however, is quite different
from that in SRAM caches. The reason is in three-folds: 1)
The latency of a write operation is much longer than that of a
read latency so that read operations may be blocked by write
operations for a long period [10, 12]; 2) STT-RAM is usual-
ly used in lower cache levels like L2 caches. If a L1 cache is
write-through based, the intensity of write operations can be
significantly higher than that of the read operations in the L2
cache. Thus, the access time of write operations may domi-
nate the total cache access time; 3) For each data migration,
extra write operations are induced. Since the variance of read
latency is also quite smaller than that of the write operation, a
large number of subsequent accesses to the same data is need-
ed to amortize the overhead of data migration. Later in sec-
tion 4, we will show that the read-based partitioning cannot
effectively improve the performance and may even degrade the
performance sometime when a frequently accessed data is mi-
grated to a cache line with short read latency but long write
latency. Moreover, when the energy consumption is consider
at the same time, a partitioning based on write operation is
more attractive because cache lines in FAP also consume less
energy in a write operation.

The third choice is to consider both read and write at the
same time. This method, however, has a worse performance
compared to the write-based partitioning. It is because a com-
petition of same data may happen between a cache line with
short read latency and a cache line with short write latency.
Such a competition can result in a “ping-pong” style data mi-
gration and induce huge overhead. Consequently, only the pure
read-based and write-based partitioning is considered in this
work.

Another important issue in partitioning policy is the ratio
between SAP and FAP. On one hand, if the SAP is too large,
we cannot gain much benefits because most cache lines have the
access latency of SAP, which is equal to that of the worst case in
all cache lines. In addition, there will be intensive competition
for the cache lines in the FAP, which may induce more data
migrations. On the other hand, if the FAP is too large, more

146

cache lines with long access latency will be included in the FAP
so that the access latency to FAP will be increased. Thus,
the benefits of data migration will also be reduced because
the gap of access latency between SAP and FAP is shrunk.
The optimized ratio between SAP and FAP is related to the
distribution of process variations on STT-RAM cells and the
data access pattern. For the STT-RAM cache and workloads
in section 4, the results show that the optimized ratio is in the
range of 4 to 7. Thus, the threshold 21 cycles in subsection 3.1
is plausible, for the ratio between SAP and FAP is nearly 4.

3.3.2 Cache Line Remapping
Due to the correlation of process variations, the physical po-

sition allocation of cache lines in FAP or SAP can be quite non-
uniform. It means that the ratio between SAP and FAP can
vary a lot all through the whole cache. Consequently, the effi-
ciency of using variable-latency access cache will be decreased.
In order to mitigate this problem, a cache remapping method
introduced in prior research need to be adopted to achieve a
uniform distribution of ratio between SAP and FAP [6]. Fig-
ure 3 shows an example of such a remapping method. Note
that the number labeled on the cache lines represent the index
of cache set that those cache lines belong to. The cache lines
with shade color represent the cache lines in FAP. We can find
that, after remapping, the ratio between SAP and FAP become
uniform among different cache sets.

Figure 3: An example of cache line remapping.

4. EVALUATION
In this section, we first evaluate our variable-latency access

cache with different management policies. Then, we compare
our optimization design to the worst case design and an ap-
proach from prior work [3], in respect of performance and en-
ergy consumption.

4.1 Experiment Setup
For system level simulation, we use SIMICS simulator to e-

valuate performance. It is configured to model an eight-core
processor. Each core is Ultra-SPARC-like with a 2GHz fre-
quency. There are three levels of caches. The IL1/DL1 caches
are SRAM based and the capacities are set to 64KB/64KB.
The L2 cache is a 16-way 4MB STT-RAM cache. The simula-
tor captures data addresses from all loads, stores, and prefetch
operations. We use the information to calculate the memo-
ry access intensity, and use that to compute the energy con-
sumption of the cache hierarchy. Our workloads are sets of
multi-threaded benchmarks from PARSEC.

In order to estimate the access latency and energy consump-
tion of different caches, we extend the widely used tool N-
VSim [5] to support STT-RAM technology with process vari-
ations considered. The parameters used in this work are listed
in Table 1 and Table 2. Figure 4 shows the probability of pro-
gramming current in write operations, which are fitted based
on Monte-Carlo simulation for different STT-RAM cells. Note
that in our simulations, extra latency and power consumption
are included for the data migration. For each data migration,
we add extra write access latency (30 cycles) and correspond-
ing power consumption.

Table 1: Device Parameters
Device Parameters Mean

Channel Length L 45nm
Transistor Channel Width W design dependent

Threshold Voltage Vth 0.466V
MgO Thickness τ 2.2nm

MTJ Cross Section A 45× 90nm2

Table 2: 3σ parameters of the transistor.
Width Length Vth

−15%μ +15%μ +15%μ

4.2 Experimental Results
First, we compare the performance of different benchmarks

with variable-latency access caches using different partitioning
policies in Figure 5. The y-axis represent the normalized ex-
ecution time of different benchmarks. The first set of results
labeled with Worst are for the baseline case, in which worst
case design method is used in STT-RAM cache design. The
second set of results labeled with VAL-R are for the cache
using variable-latency access caches with a read-based parti-
tioning policy. Similarly, the third set of results labeled with
VAL-W are for the cache using variable-latency access caches
with a write-based partitioning policy. The results show that
the read-based partitioning cannot help improve the perfor-
mance even with data migration supported. It is because the
variance of a read latency is not significant and read operations
only contribute a small fraction to the total access numbers.
On the contrary, using write-based partitioning can significant-
ly improve performance. Thus, the write-based partitioning
should be used for variable-latency access STT-RAM caches.
For the rest of the section, all variable-latency access caches
will use write-based partitioning.

In order to study the impact of ratio between SAP and FAP,
we assume a perfect allocations of cache blocks in SAP and
FAP. In this perfect allocation, each cache set has an identical
number of cache lines belonging to FAP. Then, we vary this
number from 1 to 8 and compare the normalized reduction of
execution time for a typical workload (bodytrack) in Figure 6.
Note that the results for other workloads show the similar trend
and we hide them due to page limitation. The results show that
the best performance can be achieved for most benchmarks
when the cache line numbers of FAP are in the range of 2 to
4. Consequently, we estimate an sub-optimized ratio between
SAP and FAP as (16− 3)/3, or 4.3.

The impact of remapping on performance is shown in Fig-
ure 7. VAL-NoRemap represents the normalized execution
time without using cache remapping. VAL-Remap represents
the normalized execution time for the case of using cache remap-
ping. the ratio between SAP and FAP of the whole cache is still
set to about 4.3 for both cases. It can be found that the perfor-
mance can be significantly improved with remap method. The
reason is that, without cache remapping, the ratio between S-
AP and FAP in many caches are quite different from that of
the whole cache. Thus, the benefits of using variable-latency
access caches are decreased significantly.

We compare our method to a prior approach using the same

f(I) =

{
0.0802e0.1604(I−84.77) I ≤ 84.77

0.0802e0.1604(84.77−I) I > 84.77

Figure 4: Fitting equation of programming current

147

Figure 5: Comparison of performance with different
partitioning policies.

Figure 6: Comparison of performance with different
ratios between SAP and FAP.

experimental setup, in respect of performance and energy con-
sumption [3]. The results of normalized execution time are
shown in Figure 8. The label VAL-Static represents the set of
results using the variable-latency access cache design in Ben-
naser’s work [3]. On average, the performance can be improved
by about 13.8%, compared to the prior approach [3]. Also, we
compare the results of normalized energy consumption in Fig-
ure 9. We can draw a similar conclusion for the results of
energy consumption. It is because the write energy consump-
tion of a STT-RAM cell is roughly proportional to the product
of programming latency and current. Since the write ener-
gy dominates in the total energy consumption of STT-RAM
caches, a similar conclusion can be drawn in the comparison.
On average, the energy consumption can be reduced by about
14.1%. Note that the VAL-Static architecture in Bennaser’s
work uses fine granularity, but without cache line remapping.
The result shows that our coarse granularity policy with cache
line remapping and dynamic data migration works better than
their approach. Theoretically speaking, fine granularity with
remapping and data migration can perform better. However,
as discussed in subsection 3.1, the design complexity of such a
fine-granularity architecture is significantly higher.

5. REFERENCES
[1] A. Agarwal, D. Blaauw, and V. Zolotov. Statistical timing analysis

for intra-die process variations with spatial correlations. In
Computer Aided Design, 2003. ICCAD-2003. International
Conference on, pages 900 – 907, nov. 2003.

[2] A. Agarwal, D. Blaauw, V. Zolotov, S. Sundareswaran, M. Zhao,
K. Gala, and R. Panda. Statistical delay computation considering

Figure 7: Comparison of performance for cases using
and without using remapping.

Figure 8: Comparison of performance for different
variable-latency access methods.

Figure 9: Comparison of energy for different variable-
latency access methods.

spatial correlations. In Design Automation Conference, 2003.
Proceedings of the ASP-DAC 2003. Asia and South Pacific,
pages 271 – 276, jan. 2003.

[3] M. Bennaser, Y. Guo, and C. Moritz. Data memory subsystem
resilient to process variations. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 16(12):1631 –1638, dec.
2008.

[4] Y. G. Choi, S. Yoo, S. Lee, and J. H. Ahn. Matching cache access
behavior and bit error pattern for high performance low vcc l1
cache. In Design Automation Conference (DAC), 2011 48th
ACM/EDAC/IEEE, pages 978 –983, june 2011.

[5] X. Dong, C. Xu, Y. Xie, and N. Jouppi. Nvsim: A circuit-level
performance, energy, and area model for emerging nonvolatile
memory. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 31(7):994 –1007, july 2012.

[6] M. Hussain and M. Mutyam. Block remap with turnoff: A
variation-tolerant cache design technique. In Design Automation
Conference, 2008. ASPDAC 2008. Asia and South Pacific,
pages 783 –788, march 2008.

[7] A. Jain, A. Shrivastava, and C. Chakrabarti. La-lru: A
latency-aware replacement policy for variation tolerant caches. In
VLSI Design (VLSI Design), 2011 24th International
Conference on, pages 298 –303, jan. 2011.

[8] S. Ozdemir, A. Mallik, J. C. Ku, G. Memik, and Y. Ismail.
Variable latency caches for nanoscale processor. In
Supercomputing, 2007. SC ’07. Proceedings of the 2007
ACM/IEEE Conference on, pages 1 –10, nov. 2007.

[9] G. Sun, C. Xu, and Y. Xie. Modeling and design exploration of
fbdram as on-chip memory. In Design, Automation Test in
Europe Conference Exhibition (DATE), 2012, pages 1507 –1512,
march 2012.

[10] G. Sun, Y. Zhang, Y. Wang, and Y. Chen. Improving energy
efficiency of write-asymmetric memories by log style write. In
Proceedings of the 2012 ACM/IEEE international symposium
on Low power electronics and design, ISLPED ’12, pages
173–178, New York, NY, USA, 2012. ACM.

[11] Z. Sun, X. Bi, and H. Li. Process variation aware data
management for stt-ram cache design. In Proceedings of the 2012
ACM/IEEE international symposium on Low power electronics
and design, ISLPED ’12, pages 179–184, New York, NY, USA,
2012. ACM.

[12] Z. Sun, X. Bi, H. H. Li, W.-F. Wong, Z.-L. Ong, X. Zhu, and
W. Wu. Multi retention level stt-ram cache designs with a
dynamic refresh scheme. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture,
MICRO-44 ’11, pages 329–338, New York, NY, USA, 2011. ACM.

[13] W. Wen, Y. Zhang, Y. Chen, Y. Wang, and Y. Xie. Ps3-ram: A
fast portable and scalable statistical stt-ram reliability analysis
method. In Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE, pages 1187 –1192, june 2012.

[14] M. Yamaoka and H. Onodera. A detailed vth-variation analysis for
sub-100-nm embedded sram design. In SOC Conference, 2006
IEEE International, pages 315 –318, sept. 2006.

148

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

