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Abstract

Programming productivity of FPGA devices remains a significant chal-
lenge, despite the emergence of robust high level synthesis tools to au-
tomatically transform codes written in high-level languages into RTL
implementations. Focusing on a class of programs with regular loop

bounds and array accesses, the polyhedral compilation framework pro-
vides a convenient environment to automate many of the manual pro-
gram transformation tasks that are still needed to improve the QoR of
the HLS tool.

In this work, we demonstrate that traditional affine loop transforma-

tions are not always enough to achieve the best throughput, determined

by the Initiation Interval (II) for loop pipelining, and other transforma-

tions such as Index-Set Splitting (ISS) can lead to better performance.

We develop a customized affine+ISS optimization algorithm that aims at

reducing the II of pipelined inner loops to reduce the program latency.

We report experimental results on numerous affine computations, show-

ing significant latency and energy improvements.

Categories and Subject Descriptors B.5.2 [Hardware]: Design
Aids — optimization; D 3.4 [Programming languages]: Processor
— Compilers; Optimization

Keywords Program Optimization; High-Level Synthesis; Loop
Pipelining

1. Introduction

Recently, FPGA devices are utilized as reconfigurable accelerators
for a variety of applications with higher performance and energy ef-
ficiency compared to traditional general purpose processors. How-
ever, programming productivity of FPGA devices remains a signif-
icant challenge. Traditional register transfer level (RTL) design is
time-consuming, error prone and difficult to debug.

High level synthesis (HLS) tools can automatically transform al-
gorithms written in high level languages (e.g. C, C++, SystemC)
to RTL implementations. After three decades of research and de-
velopment by academia and industry, HLS has become a promis-
ing productivity boost for the semiconductor industry especially the
FPGA industry [15]. For example, AutoESL [35]’s successor Xilinx
Vivado HLS [1] is now part of standard Xilinx Vivado Suite avail-
able to all Xilinx FPGA designers. While the state-of-art HLS tools
can achieve comparative quality of result (QoR) to manual RTL de-
signs [15, 23] for simple application kernels, there is still a signifi-
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cant performance gap (up to 40X according to [26]). To improve the
QoR of the HLS tool, designers often perform a number of explicit
source-code modifications to transform the original code to HLS-
friendly code addressing several key issues such as on-chip buffer
management, attention to loop dependence, avoidance of memory
port conflicts and communication/computation overlapping.

Recent research on polyhedral optimization framework has
shown great potential to automate some of these manual code
transformations for a class of programs with regular loop bounds
and array accesses (namely, affine programs [19]). The polyhedral
compilation framework is a powerful model to optimize a class of
programs whose loop bounds, conditionals and array index func-
tions are affine forms of the surrounding loop iterators. Recent work
showed how to fully automate transformations for data reuse and
latency optimization [11, 27, 28, 37] using this model and how to
customize polyhedral code generation for HLS purpose [36]. While
the performance gain over off-the-shelf usage of Vivado HLS can
be impressive (10x or more improvement in some cases), these
transformations aim first and foremost at reducing and amortizing
off-chip communication cost. The final performance of the program
requires also to carefully optimize the code implementing the com-
putation on the FPGA.

In this work we consider the problem of optimizing the perfor-
mance (i.e., throughput) of the computation part of an affine pro-
gram to be executed on the FPGA. Assuming that a first set of trans-
formations has been applied to maximize data reuse, for instance
using PolyOpt/HLS [4, 28], the present work focuses on improving
the performance of the code that performs the actual computation,
assuming all the data has been brought on-chip by a communica-
tion/prefetch function [28]. We make the following contributions.

• We perform a comprehensive study of the impact of standard,
parallelism-driven loop transformations on numerous affine ker-
nels with HLS, to characterize when these transformations are not
sufficient to achieve good performance.
• We evaluate the use of Index-Set Splitting as a complementary

transformation to extract additional loop-level parallelism and
further reduce the II of affine programs.
• We introduce a optimization algorithm using Index-Set Splitting

for HLS, based on memory port conflict detection, to separate out
conflict-free loop iterations leading to further latency improve-
ments.
• We report extensive performance results using our algorithms,

achieving up to 4× latency improvement over tiling-driven affine
transformations.

The paper is organized as follows. Sec. 2 outlines our work and
discusses previous work. Sec. 3 recalls the principles of polyhedral
program optimization. Sec. 4 presents our approaches for extracting
inner parallelism based on data dependences. Sec. 5 introduces our
approach for II optimization through ISS for resolving memory port
conflicts. Sec. 6 presents extensive experimental results.



2. Overview and Related Work

Loop Pipelining in HLS Loop pipelining [5] is a key performance
optimization technique in high-level synthesis. With loop pipelin-
ing, parallelism across loop iterations can be exploited by starting
the next iteration of the loop before the completion of the current
iteration. While the number of cycles spent for each loop iteration
stays unchanged, the total execution cycles of the entire loop is de-
creased by overlapping operations from several iterations through
loop pipelining. Loop pipelining features two key parameters:
• The initiation interval (or II for short), that corresponds to the

number of cycles between the execution of two adjacent loop
iterations.
• The depth, that represents the number of cycles required to com-

pletely execute one iteration of the loop.
Figure 1 illustrates a loop with II as 3 and depth as 8. The total
execution cycles of the entire loop can be formulated as Cycle =
(TripCount − 1) ∗ II + Depth. As a result, the performance of a
pipelined loop is driven by the II (assuming there is more than one
loop iteration).

II=3

Depth=8

Figure 1. Loop Pipelining

The achieved loop II is limited both by loop-carried dependences
and resource constraints. The existence of dependences between
loop iterations will force a delayed start of the next loop iteration,
until the data needed is computed by the previous iteration. With
limited hardware resources, the loop iteration need to be delayed
until the resource needed is available. In particular, a source for
limited II comes from simultaneous access to the same BRAM bank
by two (pipelined) iterations. Eliminating such resource constraint
has been studied extensively using array partitioning [14, 25, 33],
which splits an array into multiple arrays, increasing the number of
memory ports available at the cost of increased resource usage.

Polyhedral compilation for HLS Previous work studied the power
of the polyhedral transformation framework for FPGA design. For
instance, DEFACTO combines a parallelizing compiler technology
(SUIF) with early hardware synthesis tools to propose a C-to-FPGA
design flow [17, 29], and MMAlpha [22] focused on systolic de-
signs. These works illustrated the benefit of using advanced com-
piler technologies for memory optimization and parallelization anal-
ysis. Recently, Pouchet et al. proposed an advanced loop transfor-
mation framework based on the polyhedral model for automatic
data reuse optimization using HLS [28], considering a much richer
space of program transformations than previous work. Bayliss et
al. [11] used the polyhedral model to compute an address gener-
ator exploiting data reuse; however they do not consider any loop
transformation and therefore do not restructure the program to bet-
ter exploit its inherent data locality potential. Darte et al. use lattice-
based memory allocation to reduce memory usage while still im-
plementing the available reuse [16]. Alias et al. develop a polyhe-
dral compiler framework to optimize off-chip memory traffic and
exploit on-chip data reuse for the Altera C2H toolchain [6, 7]. Zuo
et al. recently proposed complementary polyhedral transformations
for better latency of affine programs using HLS [37], and studied
how to customize polyhedral code generation for HLS and FPGA
mapping purposes [36].

Our starting point for this work is the set of transformation
techniques implemented in the open-source software PolyOpt/HLS
[4], which is a powerful automatic source-to-source transformation
framework [28] aimed at generating optimized C code that is in-
put to tools such as Vivado HLS. In order to further improve the

performance of the generated codes, we study in the present pa-
per techniques (to be complementary with data reuse optimizations
in PolyOpt/HLS) aimed at improving the latency of the computa-
tion functions. That is, we aim for better performance of the com-
putation modules, assuming all data has already been brought on-
chip. This is a valid assumption, as PolyOpt/HLS already takes care
through careful generation of communication and prefetch functions
of moving all data needed in and out the chip, such that each compu-
tation function operates only on on-chip data. Our past experience
with PolyOpt/HLS showed that when data reuse is carefully imple-
mented, many computations that were apparently memory bound
become compute-bound on a Convey HC-1ex machine [28]. We aim
in this work for improvements of the computation module latency
wherever possible.

Affine loop transformations PolyOpt/HLS relies on advanced
program transformation techniques to partition the computation
into atomic blocks wherever possible. Such blocks (or tiles) can
often be executed in parallel, leading to exposing coarse-grain par-
allelism that is exploited on the FPGA by replicating the computa-
tion module for one tile, so as to execute multiple tiles in parallel
when possible. The algorithm implemented to expose tiling is the
Tiling Hyperplane method [13], that roughly takes care of the over-
all program structure to ensure effective data reuse and off-chip
communication schemes can be derived. Inside a tile, loop-level
parallelism is exposed using additional loop transformations such
as loop interchange, with the objective of exposing inner parallel
loops in a manner similar to the requirements of CPU SIMD vector-
ization [28]. A significant advantage of exposing inner loops which
are parallel is that we mark them for pipelining and add pragmas to
inform there is no loop-carried dependence, usually leading to much
smaller II. This transformation approach is described in Sec. 4.1.

While there could be inner-loop parallelism potentially available
after using particular affine loop transformations such as skewing,
the algorithms we use in PolyOpt/HLS are driven by tiling con-
straints and do not systematically lead to exposing inner-loop paral-
lelism inside a tile: only inter-tile parallelism is exposed on tilable
programs. We are in need of another loop transformation method
that takes the generated tile code as input, and restructure it to ex-
pose inner parallelism when possible. In this paper we develop an
approach based on ISS [21] that focuses particularly on non-uniform
dependences, as uniform dependences are usually well handled by
the existing algorithms in PolyOpt/HLS.

ISS for non-uniform data dependences PolyOpt/HLS excels at
optimizing programs with uniform dependences (that is, those
where the distance between dependent iterations is constant [9]).
For affine programs with non-uniform dependences (that is, those
where the dependence distance is not constant for the loop [9]) it
may not even be possible to find a parallel inner loop using only tra-
ditional affine transformations such as skewing, interchange, fusion,
distribution, and shifting. This observation served as the motivation
for Index-Set Splitting [21]. ISS splits iteration domains into pieces
(that is, splits one loop into multiple loops) and is complementary to
traditional affine loop transformations. After ISS, traditional affine
loop transformations can be applied on the resulting program, lead-
ing to using piecewise-affine loop transformations instead of affine
only transformations without ISS, thereby broadening the program
transformation space.

The idea of ISS can be applied in HLS to improve the throughput
of loop nests by exposing inner parallel loops. In such case, the initi-
ation interval of the loop is determined only by resource constraints,
and we can safely mark the loops as dependence-free to let HLS
tools perform more aggressive optimizations. Our ISS-based tech-
nique for exposing more parallelism is presented in Sec. 4.2. We
remark that in our framework, we are not executing parallel inner
loops in a parallel fashion, we execute them in a pipelined fashion



only. Parallelism is exposed and exploited at a coarse-grain level in
PolyOpt/HLS, by design choice. But our techniques to expose inner
parallel loops that are free of memory port conflict can be seam-
lessly used by other frameworks, including those implementing par-
allel execution of inner (parallel) loops.

Index Set Splitting for resource constraints Typical on-chip
memory modules in FPGA devices have only 2 ports. With 3 ac-
cesses on array B in the innermost loop, the loop II is at least 2. An
array can be partitioned into multiple banks to support more simul-
taneous accesses [14, 33]. Nonetheless, not all inner loop iterations
are always exposing a memory port conflict. The ideas behind ISS
can be applied to resource constraints: loop iterations can be split in
two sets according to the resource conflicts, to obtain one conflict-
free loop and one loop where conflicts systematically occur. Our
ISS-based technique for resource optimization is shown in Sec. 5.

We observe that currently Vivado HLS (2013.3) cannot always
determine the lack of memory port conflict on such codes, and with-
out further treatment fails to meet the target II of 1 for the conflict-
free loop. Indeed, contrary to data dependence, there is no pragma
available to instruct Vivado HLS about the lack of memory port
conflict. To solve this limitation, we generate a separate memory
module and connect it with the computation modules synthesized
by Vivado HLS using a stream interface [25, 37]. In the generated
memory module, arrays are cyclically partitioned into two banks.
We used this technique to bypass memory port conflict detection in
Vivado HLS. This aspect is orthogonal to the present work and does
not influence the algorithms we develop in this paper.

3. Polyhedral Compilation

We first review the key components of a polyhedral compilation
framework, including the various mathematical objects used to rep-
resent programs and their transformations.

3.1 Background and Program Representation

The polyhedral model is a flexible and expressive representation
for loop nests with statically predictable control flow. Loop nests
amenable to this algebraic representation are called static control
parts (SCoP) [19, 20], roughly defined as a set of consecutive state-
ments such that loop bounds and conditionals involved are affine
functions of the enclosing loop iterators and variables that are con-
stant during the SCoP execution (whose values are unknown at
compile-time). Numerous scientific kernels exhibit those properties;
they can be found in image processing filters, linear algebra compu-
tations, etc. [20]. Program optimization in this framework is a three-
stage process. First, the program is analyzed to extract its polyhe-
dral representation, including dependence information and access
pattern.

Iteration Domains For all textual statements in the program the
set of its run-time instances is captured with a set of affine inequal-
ities intersected with an integer lattice [10]. When the statement is
enclosed by loop(s), all iterations of the loop(s) are captured in the
iteration domain of the statement S, noted DS. DS contains only in-
teger vectors (or, integer points if only one loop encloses the state-
ment S). The iteration vector~xS is the vector of the surrounding loop
iterators. Each vector in DS corresponds to a specific set of values
taken by the surrounding loop iterators (starting from the outermost
to the innermost enclosing loop iterator) when S is executed.

Access functions They represent the location of the data accessed
by the statement. In static control parts, memory accesses are per-
formed through array references (a variable being a particular case
of an array). We restrict ourselves to subscripts that are affine ex-
pressions of surrounding loop counters and global parameters. For
instance, the subscript function of a read reference A[i][j] sur-
rounded by 3 loops i, j and k is simply fB(i, j,k) = (i, j).

Data dependences The sets of statement instances between which
there is a producer-consumer relationship are modeled as equalities
and inequalities in a dependence polyhedron. This is defined at the
granularity of the array cell. If two instances ~xR and ~xS refer to
the same array cell and at least one of these references is a write,
then they are said to be in dependence. Therefore to respect the
program semantics, the transformed program must ensure ~xR and
~xS are executed in the same order as in the original program. Given
two statements R and S and a data dependence R→ S, a dependence
polyhedron, written DR,S, contains all pairs of dependent instances
〈~xR,~xS〉. This modeling represents seamlessly uniform and non-
uniform dependences.

Multiple dependence polyhedra may be required to capture all
dependent instances, at least one for each pair of array references
accessing the same array cell (scalars being a particular case of ar-
ray). It is possible to have several dependence polyhedra per pair of
textual statements, as some may contain multiple array references.
In our work, all dependence polyhedra are automatically extracted
from the program polyhedral representation, using the Candl tool [2]
that is integrated in PolyOpt/HLS.

Program Transformations The second step in polyhedral pro-
gram optimization is to compute a transformation for the program.
Such a transformation captures, in a single step, what may typically
correspond to a sequence of several tens of textbook loop transfor-
mations [20]. It takes the form of a carefully crafted affine multidi-
mensional schedule (that is, a matrix), together with (optional) iter-
ation domain or array subscript transformations [13,28]. A schedule
is a function which associates a logical execution date (a timestamp)
to each instance of a given statement. In the case of multidimen-
sional schedules, this timestamp is a vector. In the target program,
statement instances will be executed according to the increasing lex-
icographic order of their timestamp. To construct a full program op-

timization, we build a collection of schedules Θ = {ΘS1, . . . ,ΘSn},
that is a list of the statement scheduling function for each statement
in the program, such that for all dependent instances the producer
instance is scheduled before the consumer one.

Polyhedral Code Generation Finally, the last step of polyhedral
loop transformation is to generate a transformed program according
to the optimization we previously computed. Syntactically correct
transformed code is generated back from the polyhedral representa-
tion, and this code scans the iteration spaces according to the sched-
ule we have computed with the Tiling Hyperplane method. We use
the CLOOG, a state-of-the-art code generator [10] to perform this
task, that has been optimized for HLS purpose [36].

4. Dealing with Data Dependences

One effective way to improve throughput with loop pipelining is
to eliminate loop-carried dependence. While this is not a require-
ment for loop pipelining, optimizing affine programs can usually
expose one parallel inner loop, possibly through aggressive program
transformations. Then, the innermost parallel loops are marked with
pragmas to inform HLS tools that there is no loop-carried depen-
dence, and that the loop should be pipelined with the smallest pos-
sible II value subject to resource constraints.

In this section, we focus on program transformations needed
to expose at least one level of inner parallelism, for the purpose
of using loop pipelining on these loops. Indeed, if such loops are
pipelined, only resource constraints can lead to an II larger than 1.
We first present in Sec. 4.1 our approach using tiling-driven affine
transformations, that can extract at least one level of parallelism for
all affine programs with only uniform dependences. We then present
in Sec. 4.2 a customized approach based on Index-Set Splitting to
expose further inner parallelism for programs with partial / non-
uniform dependences.



4.1 Tiling-driven Affine Transformations

In order to expose coarse-grain parallelization as well as data lo-
cality optimizations, a proven approach is to compute a polyhe-
dral transformation which is geared towards minimizing depen-
dence distance while exposing outer-loop parallelism when possi-
ble. This optimization is implemented via a composition of multi-
dimensional tiling, fusion, skewing, interchange, shifting, and peel-
ing. It is known as the Tiling Hyperplanes method [12,13], which is
implemented in PolyOpt/HLS [28].

The tiling hyperplane method has proved to be very effective in
integrating loop tiling into polyhedral transformation sequences [13,
24]. Bondhugula et al. proposed an integrated optimization scheme
that seeks to maximally fuse a group of statements, while making
the outer loops permutable (i.e., tilable) [12, 13] when possible. A
schedule is computed such that parallel loops are brought to the
outer levels, if possible. When coarse-grain parallelism is exposed
(such as through pipelined tile parallelism), it can be automatically
exploited to support concurrent execution on the FPGA.

Previous work on SIMD vectorization for affine programs has
proposed effective solutions to expose inner-loop-level parallelism
[13,30]. In PolyOpt/HLS a similar technique is implemented, which
aims at exposing inner parallel loops in the code of a (computation)
tile. It sinks a parallel outer loop (if any) in the tile code to the inner-
most level through a sequence of loop interchanges — it is always
legal to sink an outer parallel loop inside a loop nest. As a result, we
mark all innermost loops with a specific #pragma HLS pipeline,
and let the HLS tool find the best II it can for this loop.

Results We have applied the above affine loop transformations
method to a collection of affine benchmarks from PolyBench/C [3].
We observed that for the majority of benchmarks (11 out of 14) we
tested, an II of 1 can be achieved by tiling-driven affine transforma-
tions alone (that is, the technique implemented in PolyOpt/HLS), as
shown in later Sec. 6. Very interestingly, we also observe that II in
some benchmarks (for instance Floyd-Warshall and Trmm) is not im-
proved after affine transformations. A careful analysis showed two
root causes. First, for these two benchmarks, non-uniform depen-
dences and/or dependences that only affect a subset of the iteration
domain prevented the affine transformations to expose a fully paral-
lel inner loop. Second, for the rest of the benchmarks, our analysis
showed that resource conflicts (e.g., memory port conflict) was one
of the key reason for failing to meet the target II of 1.

This first series of experiments motivated the development of an-
other program transformation scheme, aimed at properly dealing
with non-uniform/partial dependences, as shown below. We inte-
grate the support of memory port conflict elimination in later Sec. 5.

4.2 More Parallelism With Index-Set Splitting

Index-Set Splitting ideas take roots in seminal work on tiling such
as from Kennedy [8] and Wolfe [34], and was generalized for the
polyhedral compilation model by Griebl and Feautrier [21]. ISS in
essence amounts to splitting the iteration domain of (some) state-
ments into multiple sub-domains. That is, intuitively, a loop sur-
rounding a statement and executing N iterations is for instance split
into two loops, each of which doing N/2 iterations. The benefit for
HLS is straightforward: it will allow independent and different treat-
ment of each sub-loop created, something not always possible with
the original, non-split code.

Let us take a program which has an inner loop to be pipelined
where a data dependence exists between only some of the iterations,
while others are independent. Current HLS tools, such as Vivado
HLS, assume a uniform loop II across all loop iterations to simplify
the control logic. Therefore, once there is a single dependence be-
tween two iterations, this dependence will be conservatively used
to compute II for the entire loop. By carefully breaking the loop
into multiple loops, one may expose parallelism in some loop(s)

created, and the synthesis tool can generate significantly better code
for the loop containing only independent iterations. Our objective is
to design an algorithm aimed at exposing inner parallel loops that
uses ISS together with complementary techniques to sink the par-
allel loop(s) obtained at the inner-most level through sequences of
interchange.

Customized ISS for Increased Parallelism Our customized ISS-
based algorithm to expose parallel inner loops is shown in Fig. 2,
we refer to this algorithm as ISS-Dep. It assumes the input code
fragment is the result of the application of tiling-driven loop trans-
formations for data reuse (e.g., using PolyOpt/HLS) and that all data
is already on-chip, this strongly relaxes data locality objectives for
our algorithm. In other words, we can safely increase the distance
between iterations accessing the same data inside the tile, it will not
change the program off-chip communication scheme implemented.
Our algorithm differs from [21] on several aspects. First, we build
it to focus on exposing parallel inner loops, and combine index-set
splitting with loop permutation to expose inner parallel loops. Sec-
ond, by only considering a subset of the possible splits, we ensure by
construction that the split we consider is always legal, without hav-
ing to consider all program data dependences. Third, we iteratively
process dependences one by one, without resorting to complex in-
coming dependence path computation as in [21]. This simplification
was sufficient to expose parallelism in the benchmarks we consid-
ered in conjunction with the fact that we applied as a pre-pass tiling-
driven transformations to expose parallelism when possible.

The objective of this algorithm is to expose inner parallel loops
in a more effective way than the tiling-driven transformation system
depicted above. In particular we resort to recursive index-set split-
ting (from the inner-most loop to the outer-most loop) combined
with affine transformations to expose more parallel inner loops when
possible. Our algorithm is initially called on each inner-most loop
which is not parallel.

DependenceSplit:

Input:

l: Polyhedral loop nest (SCoP)

Output:

l: in-place modification of l

1 D ← getAllDepsBetweenStatementsInLoop(l)

2 D ← removeAllLoopIndependentDeps(D, l)

3 parts ← {}
4 foreach dependence polyhedron Dx,y ∈ D do

5 Dy ← getTargetIterSet(Dx,y) ∩ Dl

6 if |Dy| < |Dl | then

7 parts ← parts
⋃
{Dy}

8 else

9 continue

10 end if

11 end do

12 l′ ← split(l, parts)

13 if sinkParallelLoops(l′) 6= true

.or. parentLoop(l) = null then

14 l ← l′
15 return

16 else

17 DependenceSplit(parentLoop(l))

18 end if

Figure 2. ISS-Dep: Customized Splitting for Parallelism

Function getAllDepsBetweenStatementsInLoop from algo-
rithm DependenceSplit in Fig. 2 collects all dependence poly-
hedra between statements inside the loop (that is, all dependences
between statements outside that loop and statements inside it are
discarded). Function removeAllLoopIndependentDeps removes
all dependence polyhedra from the set which are describing loop-
independent dependences, therefore the output set contains only
loop-carried dependences for loop l. We note Dl the iteration do-



main of the “loop”, which is a polyhedron made of the affine in-
equalities of the loop bounds of l. Function getTargetIterSet

computes the set of target iterations in the polyhedron Dx,y so as
to obtain the set of iterations that are targets in the dependence. It
projects out the dimensions associated to x (the source), as illus-
trated in the previous section. The result is intersected with Dl to
obtain only the set of loop iterations of l which are target to a de-
pendence. |Dl | denotes the number of points in the polyhedron Dl ,
we do not perform any split if the loop-carried dependence touches
all iterations (that is, the loop is purely sequential).

split splits a loop into multiple loops, according to the set of
sub-domains (parts) which has been computed. To generate the new
loop structure we create the code scanning each polyhedron in part
using CLooG [10]. It returns an AST l′ with one loop (nest) per
element in part. To form the input to CLooG that preserves the pro-
gram semantics we proceed in three steps. First, for each polyhe-
dron Dy in parts we compute D ′y = convHull(Dy)∩Dl , the convex

hull of Dy. The result is a set part ′ of polyhedra, containing all D ′y
computed. We do this to ensure there is no hole in the sets Dy, as
projecting out dimensions of an integer polyhedron can lead to a
non-convex set. Computing the convex hull ensures D ′y is a polyhe-

dron. Second we compute a union of polyhedra I from Dl and part ′.
The objective is to create a set of disjoint subsets (one per sub-loop
to be generated) such that ∪iIi = Dl and ∩iIi = /0. We take Dl into
consideration as there may be iterations in the original loop which
are never target of a dependence, and therefore not in any of the
Dy. I is obtained by (1) updating each element in part ′ to ensure
that in the resulting set all elements are disjoint, using intersection
and difference between elements to compute the points to remove
in each D ′y, if any, to ensure disjointess; and (2) creating the differ-

ence rem = Dl \∪i part ′i which is itself a union of polyhedra, and

set I = part ′ ∪{rem}. We note that all these operations are seam-
lessly supported in the Integer Set Library [31]. The third and final
stage is to order the elements in I by increasing lexicographic order
of their first iteration (point), to reflect the original order of the loop
iterations and ensure the generated code will follow the original ex-
ecution order for the loop that is split. As a result, our ISS algorithm
by construction preserves the program semantics. More advanced
splitting techniques allowing for non-convex splits are left for fu-
ture work, our experiments showed that this approach is sufficient
for the benchmarks we have tested.

Finally, function sinkParallelLoops takes a sequence of loop
(nests), and for each of them detects parallel loops using polyhedral
dependence analysis and sinks them using loop permutation to the
inner-most loop level when applicable. The function returns true

if all inner-most loops are parallel in the generated loop (nest) l′
. If there are inner-most loops which are still not parallel, the full
algorithm is called again but on the parent loop, attempting to split
at this dimension instead. For instance for Trmm, this is needed as
in the original code loop k is purely sequential, but the surrounding
loop j can be split, leading to two loop nests after splitting, and
the newly created j loops are sink inwards. Function parentLoop

returns the surrounding loop, or null if the loop is already the outer-
most loop inside the tile (that is, the outer-most intra-tile loop).

We remark two aspects of our algorithm. First, by construction
of the split function, we preserve the order of each loop iteration.
That is, when splitting the loop, the semantics is necessarily pre-
served. Second, one can see that aggressive split leads to numerous
loop nests being generated. This can pose a problem in terms of
resource usage on FPGA, as resource sharing typically occurs be-
tween statements under the same inner loop. In practice, with our
approach, this did not prove to be a problem. We apply the splitting
as a post-processing, once affine transformations have been used to
minimize the number of loop-carried dependences at the inner-most
loop level. We have observed that there is only very few depen-

dences left (usually 1 in our benchmark suite), leading to a very
small number of split (usually 1, up to 3).

Results We used algorithm DependenceSplit on each bench-
mark for which the target II of 1 was not met because of remain-
ing loop-carried data dependences. This is shown in Table 1, with
rows ISS-dep. The results for the two benchmarks on which tiling-
driven affine transformations failed to improve the II over the orig-
inal code show that DependenceSplit can further reduce the II by
a significant factor, from 5-8 to 2. It however can come at the cost
of increased resource usage, such as with Trmm for instance which
uses about 1.5x more flip-flops. This is explained by the increase in
the number of statements in the program, leading to lower resource
sharing.

The II found by Vivado is still not 1 for all pipelined inner loops.
After careful analysis, the memory access pattern requires more
read/write ports than those available on chip, leading to multiple
cycles (2 here) needed simply to load/store the data from BRAMs
for Trisolv. While one could address this problem possibly using ag-
gressive array partitioning [33], we propose an alternative approach
based on ISS that aims to not increase the BRAM consumption
(contrary to aggressive array partitioning), but however can increase
other resources such as LUTs and flip-flops.

5. Dealing with Resources

After applying standard affine loop transformations to expose inner
parallel loops when possible, and ISS-Dep on the remaining (inner)
loops which were still not fully parallel, we focus in this step
exclusively on inner-most loops which are parallel (according to
data dependences), but for which memory port conflicts prevent the
loop to be fully pipelined.

To address this last performance issue, we propose to rely on ISS
to split the problematic loops into sub-loops with different memory
port conflict properties. The rationale is that memory port conflicts
usually do not occur between each loop iteration, but only between a
subset of them (those which lead to accessing the same banks, such
as in A[i] and A[i+4], A[i+8], ... if we have four banks).

Bank conflict set First, let us define what is a memory port conflict
for banked access, for the case of a single port.

DEFINITION 1 (Bank conflict). Given two memory add-resses x
and y (assuming cyclic mapping of addresses to banks using the
% function). They access the same bank iff:

x % B = y % B (1)

with B the number of banks.

We also remark that Eq. (1) can be equivalently written:

∃k ∈ Z, x− y = B∗ k

We note that while cyclic mapping is used here, a wide range
of mapping including block mapping and block-cyclic partitioning
could be supported with similar techniques [11, 32]. In this work,
we are interested only in possibly splitting the inner-most loop into
multiple loops, so that different II for each loop generated could
possibly be achieved. In the motivating example we saw that a
conflict systematically occurs for some subset of the iterations in
the inner-most loop (the even ones), and never occurs for the rest of
the iterations (the odd ones). We now define a bank conflict set, as
the set of inner-most loop iterations for which a conflict necessarily
occurs between two references in the same iteration.

DEFINITION 2 (Bank conflict set). Given an inner-most loop l,

whose iteration domain is Dl , and two references F1
A and F2

A ac-
cessing the same array A. The bank conflict set CF1

A ,F
2

A
⊆Dl is:

CF1
A ,F

2
A

:
{

~xl ∈Dl | ∃k ∈ Z, lin
(

F1
A

)

− lin
(

F2
A

)

= k ∗B
}



With lin(x) the linearized form of x.

Definition 2 relies on linearizing the access functions, that is an
access (i+ 3, j + 2) for an array of size 10× 10 is represented as
(i+3)∗10+ j+2. While this may pose a problem with arrays whose
size is unknown, we use high-level synthesis only when each array
size is fully known at compile-time, so as to make the synthesis
possible. That is, the array size in each dimension is a known
constant, and therefore the linearized form of a multi-dimensional
affine array access is always an affine expression.

The algorithm We now present our algorithm for splitting inner-
most loops according to their bank conflicts in Fig. 3.

It essentially splits the original iteration domain of inner-most
loops into tuple of sets, containing either conflict-free iterations
or conflict-guaranteed iterations. We note that as we only address
the case of inner-most parallel loop, any reordering/splitting of
the domain is necessarily legal. The Integer Set Library [31] is
integrated in PolyOpt/HLS and is used to manipulate these sets and
generate the C code that scans them.

ResourceSplit:

Input:

l: inner-most parallel affine loop

sz: size of arrays in l

B: number of banks available

Output:

l: in-place modification of l

1 lst ← {}
2 all ← /0
3 foreach array A ∈ l do

4 foreach distinct pair of references F i
A,F

j
A ∈ l do

5 C
Fi

A
,F

j
A

← buildConflictSet(B,sizes(A),F1
A ,F2

A ,Dl)

6 lst ← lst
⋃
{C

F1
A
,F2

A
}

7 all ← all ∪ C
F1

A
,F2

A

8 end do

9 end do

10 rem ← Dl \ all

11 lst ← { lst, rem}
12 l′ ← codegen(lst)

13 l ← finalize(l, l′)

Figure 3. Customized Splitting Algorithm for HLS

Function buildConflictSet builds the conflict set as shown in
Def. 2, taking as input the access functions and the array size in
each dimension so as to build a linearized (but affine) conflict ex-
pression. Function codegen is traditional polyhedral code genera-
tion in CLooG [10]: we input a list of domains (lst), and rely on
CLooG to perform adequate polyhedral separation. Precisely, when
there are multiple conflicts for a particular iteration, it will be put in
a separate loop nest than iterations with a lower number of conflict.
This meets our goal, as intuitively the higher the number of conflict
per iteration, the larger the II. This procedure will automatically cre-
ate loops where the II can be one (no conflict), loops where it can be
two (one conflict), etc. taking into account the surrounding loop iter-
ators value that make the conflict occur ( j in our example). Function
finalize uses the loop structure generated by CLooG and replaces
the body of each loop generated by the body of the original loop.
Technically, for better performance, this function selectively merges
certain loops in a single loop. Leaving out the loops whose unique
statement inside its body corresponds to the domain rem in Fig. 3,
we merge together all consecutive loops with a single statement in
their body. That is, if there are two different conflicts occurring at
consecutive (but non-intersecting) iteration ranges, then these loops
are merged into a single loop before being ultimately replaced by
the original loop body.

Putting it all together Our flow to optimize computation functions
on FPGAs is as follows.

1. For each SCoP, apply the Tiling Hyperplane method, customized
for SIMD parallelism exposure [13, 28]. This is a requirement
for effective data reuse and off-chip communication generation
in our framework.

2. For each inner loop which still has loop-carried dependence,
apply ISS-Dep until all inner loops are parallel, or no useful split
is found.

3. Mark all inner loops for pipelining, and synthesize the code using
HLS. For each inner loop with II > 1, apply the algorithm for
bank conflict elimination through splitting, and use this modified
code as input to HLS tools.
This approach, while significantly outperforming in some cases

previous work on PolyOpt/HLS [28] that was limited to only step
(1) above, still has potential room for improvement in terms of per-
formance. For instance we did not explore the impact of tile size in
the final computation performance, nor different trade-offs between
more aggressive array partitioning (increased BRAM) versus more
aggressive loop splitting (increased LUT/FF/DSP). Numerous sim-
plifications we did to ensure always-legal splitting can also lead to
missing parallelism opportunities. On the other hand, our approach
often achieves an II of 1 for at least some of inner loops that are
pipelined, as shown in ISS-Res rows in Sec. 6, where an II of 1.5
is reported when at least half of the inner-most loop iterations are
pipelined with an II of 1, the rest of the iterations being put in a
separate loop with II of 2.

6. Experimental Results

In this section, we present our experimental results using a set of
computation kernels and applications. We first discuss the experi-
ments setup and evaluated benchmarks. Then, we show the perfor-
mance improvements of our proposed optimization technique.

6.1 Experimental Setup

Benchmark description We use 15 linear algebra kernels and
applications from PolyBench/C 3.2 [3]. Double precision floating
point is used as the default data type in computations as in the
original code. Computations (tiles) operate on small datasets (array
sizes are typically 500 for single dimensional arrays and 128×128
for two-dimensional arrays) so that data fits in on-chip memory. A
description of each benchmark can be found in Table 1.

Program variants For each benchmark, we compare the perfor-
mance of four different program variants. The first variant is the
original source code without any code transformation, serving as a
baseline for further improvements. The second variant is generated
by the polyhedral compiler infrastructure PolyOpt/HLS 0.2 (see [4]
for a similar framework), which itself is based on PoCC 1.2 [2]
to support affine loop transformations and loop tiling. The run-
ning time of the loop transformation computation in PolyOpt/HLS
includes solving several Parametric Integer Linear Programs [18],
which is done in no more than a few seconds for the tested bench-
marks. Our proposed algorithms for ISS are quasi-linear in the num-
ber of polyhedra to process, and computes the result in a second or
less. Techniques in [36] are used to optimize the code generation for
HLS. Index set splitting techniques introduced in this paper are used
to generate the last two variants, with ISS for loop dependence used
in the third variant and ISS for both loop dependence and resource
conflict used in the last variant. Methods in [25] [37] are used to
take advantage of array partitioning opportunities that current Vi-
vado HLS fails to exploit. In all versions, the innermost loops are
marked for loop pipelining, and we also insert compilation pragmas
for all variables which are written in the parallel loop iteration, to
prevent conservative dependence analysis.

Circuit generation We use the Xilinx Kintex-7 FPGA device as
the target hardware platform. All program variants are fed into Xil-
inx Vivado 2013.3 high-level synthesis, logic synthesis and physical



Table 1. Experimental results

Bmk. Description Version II Cycles CP(ns) LUT FF DSP Sta. Pwr Dyn. Pwr Egy/mJ

2mm Matrix-multiply D=α*A*B*C+β*D
Orig 5 21512194 7.981 1612 1410 14 0.156 0.013 2.23

Affine 1 8335874 7.612 1782 1510 14 0.156 0.016 1.02

3mm Matrix-multiply G=(A*B)*(C*D)
Orig 5 31948803 8.174 1600 1552 14 0.156 0.006 1.57

Affine 1 636371 8.908 2580 2371 25 0.156 0.005 0.28

atax Matrix Transpose and Vector Mult
Orig 5 1511502 8.257 1385 1093 14 0.156 0.019 0.24

Affine 1 531852 7.726 1488 1174 17 0.156 0.018 0.07

bicg Kernel of BiCGStab Linear Solver
Orig 5 1255502 8.176 1438 1158 14 0.156 0.012 0.12

Affine 1 53185 7.763 1606 1428 17 0.156 0.011 0.05

doitgen Multiresolution Analysis Kernel
Orig 5 5607425 7.828 1126 1024 14 0.156 0.009 0.22

Affine 1 1114331 7.659 1769 1776 23 0.156 0.006 0.10

gemm Matrix-multiply C = α.A.B + β.C
Orig 6 12582925 7.701 1225 1089 14 0.156 0.008 0.77

Affine 1 2124418 8.062 1783 1753 29 0.156 0.015 0.26

gemver Vector Mult. and Matrix Addition
Orig 5 3250551 7.902 2778 2427 30 0.156 0.007 0.18

Affine 1 555991 7.791 3733 3656 57 0.156 0.014 0.06

gesummv Scalar, Vector and Matrix Mult
Orig 5 1260501 7.705 1652 1541 14 0.156 0.014 0.17

Affine 1 532737 7.705 1652 1541 29 0.156 0.026 0.11

mvt Matrix Vector Product and Transpose
Orig 6 3000016 7.496 1371 1108 15 0.156 0.018 0.40

Affine 1 265361 7.573 1897 1890 31 0.157 0.022 0.04

syrk Symmetric rank-k operations
Orig 6 12599316 7.808 1397 1217 14 0.156 0.024 2.36

Affine 1 2124418 8.028 1784 1793 29 0.156 0.034 0.58

syr2k Symmetric rank-2k operations
Orig 10 20987924 8.123 1675 1415 14 0.156 0.019 3.24

Affine 1 2126978 7.982 3055 3069 54 0.156 0.025 0.43

floyd-
Finding Shortest Paths in a Graph

Orig 8 16777218 5.827 1085 791 3 0.156 0.009 1.08

walshall
Affine 8 16980993 5.889 1182 852 3 0.156 0.012 1.20

ISS-Dep 2 4407041 5.645 1435 1481 3 0.158 0.017 0.44

trmm Triangular matrix-multiply

Orig 5 5642753 7.398 1387 1229 14 0.156 0.009 0.72
Affine 5 3913057 7.418 2160 1964 14 0.156 0.008 0.86

ISS-Dep 2 2101106 7.696 1374 1500 25 0.156 0.017 0.32

trisolv Triangular Solver

Orig 5 637001 9.091 4418 2962 14 0.157 0.083 0.48
Affine 2 266002 9.035 4445 2992 18 0.156 0.101 0.24

ISS-Res 1.5 219002 8.799 5360 3575 18 0.157 0.107 0.21

implementation tools to generate bitstreams for FPGA. 10ns is used
as the timing constraints for all circuit generation steps.

Optimization metrics We use FPGA-specific metrics to quantify
the quality of each circuit generated by different program variants.
The number of LUTs, FFs and DSPs are used to reflect the resource
utilization of a design. All the resource utilization data are reported
by Xilinx Vivado tool after the place-and-route step. Critical path
delay and execution cycle are used to capture the performance
of a design. Critical path delay is extracted from the post place-
and-route Xilinx Vivado tool report while the execution cycle is
reported by a cycle-accurate SystemC simulator with the target
design and the testbench as the input. Switching activities of each
net are traced by the simulator using value change dump (VCD) files
for more accurate power estimation. Power data is reported by the
Xilinx Vivado tool with the place-and-routed circuits and the circuit
simulation traces as input.

6.2 Results

Table 1 describes all the raw data reported by the tool-chain includ-
ing the various resource usage, critical path, execution cycles and
power consumption. These results have been discussed in previous
sections of the paper.

In addition to the raw metrics, we also to measure the total
latency and energy consumed. Since that for the benchmark selected
in this paper, a large fraction of power consumed is static power,
we used normalized energy [36] as the metrics to total energy
consumption, where only a portion of the static power of the entire
FPGA device are taking into account. These latency and normalized

energy metrics are computed as follows.

Latency = Critical Path∗Execution Cycles

Arearatio = max

(

LUTused

LUTAvail.
,

FFused

FFAvail.
,

DSPused

DSPAvail.

)

Energynorm = (Arearatio ∗PwrStatic +PwrDyn.)∗Lat.

Interestingly, affine loop transformations may decrease the exe-
cution latency for some benchmarks (e.g. floyd-warshall and trmm)
due to the overhead of loop tiling. For other benchmarks, affine
transformation can reduce the execution latency significantly. Power
consumption and resource utilization will increase after aggressive
loop pipelining but not proportional to the throughput boost since
the resources are typically underutilized in the unpipelined imple-
mentations.

7. Conclusions and Future Work

Designers often have to perform a number of explicit source-code
modifications to transform the original code to HLS-friendly code
to improve the QoR of the HLS tool. Recent research on polyhe-
dral optimization framework has shown great potential to automate
these manual code transformations. In this work, we investigated
the particular problem of improving the performance of affine pro-
grams that have been already optimized for data reuse and commu-
nication/computation overlapping, focusing on the computation part
exclusively.

We presented detailed performance analysis of a tiling-driven
transformation framework, highlighting its limitations in only some
cases. We have developed and evaluated a customized method tai-
lored for HLS purpose to cope with these limitations, including the
optimization of memory port conflicts.



As future work, we will investigate the trade-off between de-
creasing latency versus increasing resource usage such as LUTs and
flip-flops. Indeed, our method can generate significant resource us-
age overhead, which may not be compensated by the latency im-
provement in a maximal performance scenario where we aim to
cover the entire area with accelerator replications. We will also in-
vestigate the comparison of our work with various array partitioning
techniques, both in terms of resource usage and latency benefit. One
current limitation of our work is the generation of multiple loops
from a single loop, which limits the ability of Vivado to implement
effective resource sharing.
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