
NXgraph: An Efficient Graph
Processing System on a Single Machine

Yuze Chi∗, Guohao Dai∗, Yu Wang∗, Guangyu Sun†, Guoliang Li∗ and Huazhong Yang∗
∗Tsinghua National Laboratory for Information Science and Technology, Tsinghua University

{chiyz12,dgh14}@mails.tsinghua.edu.cn,{yu-wang,liguoliang,yanghz}@tsinghua.edu.cn
†Center for Energy Efficient Computing and Applications, Peking University

gsun@pku.edu.cn

Abstract—Recent studies show that graph processing sys-
tems on a single machine can achieve competitive performance
compared with cluster-based graph processing systems. In this
paper, we present NXgraph, an efficient graph processing system
on a single machine. We propose the Destination-Sorted Sub-
Shard (DSSS) structure to store a graph. To ensure graph
data access locality and enable fine-grained scheduling, NXgraph
divides vertices and edges into intervals and sub-shards. To
reduce write conflicts among different threads and achieve a high
degree of parallelism, NXgraph sorts edges within each sub-shard
according to their destination vertices. Then, three updating
strategies, i.e., Single-Phase Update (SPU), Double-Phase Update
(DPU), and Mixed-Phase Update (MPU), are proposed in this
paper. NXgraph can adaptively choose the fastest strategy for
different graph problems according to the graph size and the
available memory resources to fully utilize the memory space
and reduce the amount of data transfer. All these three strategies
exploit streamlined disk access patterns. Extensive experiments
on three real-world graphs and five synthetic graphs show that
NXgraph outperforms GraphChi, TurboGraph, VENUS, and
GridGraph in various situations. Moreover, NXgraph, running
on a single commodity PC, can finish an iteration of PageRank
on the Twitter [1] graph with 1.5 billion edges in 2.05 seconds;
while PowerGraph, a distributed graph processing system, needs
3.6s to finish the same task on a 64-node cluster.

I. INTRODUCTION

With explosion of data volume generated and collected
from ubiquitous sensors, portable devices and the Internet,
we are now moving into the “Big Data” era. There exist
various modern Big Data applications relying on graph com-
puting, including social networks, Internet of things, and neural
networks. For example, Facebook has 1.44 billion monthly
active users during the first quarter of 2015 [2]. Both user
data and relationship among them are modeled by graphs for
further exploration. To this end, it has become a very important
problem to process, analyze, and understand these graphs.

In order to achieve scalable graph computing, researchers
have proposed many distributed or single machine solutions
[3]–[23]. Representative distributed systems include Power-
Graph [18], Giraph [15], Pregel [16], GraphLab [17], GraphX
[19], PEGASUS [20], and etc. Some of these systems are
developed based on popular distributed computing frame-
works, such as MapReduce [24] and Spark [25]. These ex-
isting distributed approaches have achieved impressive high
performance. For example, it takes PowerGraph [18] only 3.6s
to execute the PageRank [26] algorithm per iteration on the
Twitter [1] graph which is composed of 1.5 billion edges.

Performance of a distributed solution relies highly on the
underlying infrastructure, which is composed of multiple com-
puting nodes, distributed storage systems, and communication

network among them. Distributed systems might suffer from
load imbalance and communication overhead. Meanwhile,
recent studies have shown that single-machine systems are
able to handle graphs with billions of edges. For example,
Twitter [1] graph has 42 millions of vertices and 1.5 billion of
edges, which requires only 12 gigabytes to store if each edge
is represented by 8 bytes. For these graphs, graph processing
on a single machine can achieve comparable performance as a
distributed system. For instance, GraphChi [22] takes 790s to
finish the PageRank algorithm on Twitter, while Spark [25]
takes 487s. Previous research has demonstrated that single
machine based graph computing systems, like GraphChi [22],
VENUS [21], TurboGraph [23], GridGraph [27], and X-stream
[28] achieve comparable performance but with higher energy
efficiency. While the above systems adopt disk-based approach,
there are also in-memory solutions on single machines like
MapGraph [29] and Green-Marl [30]. Compared with disk-
based systems, it is difficult to scale in-memory systems to
very large graphs.

Because of poor locality [31], graph processing on a single
machine faces challenges caused by the random access pattern.
GraphChi [22] presents a novel Parallel Sliding Windows
(PSW) model on a single machine. With the PSW model,
GraphChi achieves a streamlined disk access pattern and
addresses the locality problem. GraphChi provides a basic pro-
gramming model for graph computation on a single machine.
Subsequent researches follow this model and improves the
system performance by introducing optimization techniques.

In the GraphChi system, there is a limitation that all
incoming and outgoing edges of vertices in an interval need
to be loaded into memory before calculation. This results
in unnecessary disk data transfer. TurboGraph [23] addresses
this problem with the pin-and-slide model, which also helps
exploiting locality. VENUS [21] proposes an extra data struc-
ture, v-shards, to enable streamlined disk access pattern and
high degree of parallelism. With two different Vertex-centric
Streamlining Processing (VSP) algorithms, VENUS can either
reduce the amount of disk data transfer or exploit the locality
of data access. GridGraph [27] uses a 2-Level Hierarchical
Partitioning scheme to reduce the amount of data transfer,
enable streamlined disk access, and maintain locality.

In general, a single machine system should focus mainly
on the following four optimizing rules:

1) Exploit the locality of graph data.

2) Utilize the parallelism of multi-thread CPU.

3) Reduce the amount of disk data transfer.

978-1-5090-2020-1/16/$31.00 © 2016 IEEE ICDE 2016 Conference409

4) Streamline the disk I/O.

Previous work addresses some of the above aspects to some
extent, but none of the previous work addresses all the four
aspects of the problem thoroughly. In this paper, we design
NXgraph, following all these rules to improve the overall
system performance. The main contributions of NXgraph are
summarized as follows.

• Destination-Sorted Sub-Shard (DSSS) structure:
To exploit locality of graph computation, both source
and destination vertices need to be restricted to a
limited range of memory space. NXgraph proposes a
Destination-Sorted Sub-Shard (DSSS) structure which
divides vertices and edges in a graph into intervals
and sub-shards, respectively. With the sub-shards,
graph data access locality is ensured and fine-grained
scheduling is enabled. Meanwhile, NXgraph sorts
edges within each sub-shard according to their desti-
nation vertices, which reduces write conflicts among
different threads. Thus, NXgraph can achieve a high
degree of parallelism. Experimental results show that
sorting the edges by destination vertices achieves up
to 3.5x speedup compared with sorting by source
vertices.

• Adaptive updating strategies: To reduce the amount
of disk data transfer and ensure streamlined access
to the disk, we propose NXgraph with three updat-
ing strategies for graph computation, Single-Phase
Updating (SPU), Double-Phase Updating (DPU), and
Mixed-Phase Updating (MPU). SPU applies to ma-
chines with large memory space and minimizes the
amount of disk data transfer. DPU applies to machines
with small memory space where SPU is invalid. MPU
combines the advantages of both SPU and DPU. All
these three strategies exploit streamlined disk access
pattern. We quantitatively model the updating strate-
gies and analyze how to select a proper one based on
the graph size and available memory resources.

• Extensive experiments: We conduct extensive exper-
iments to validate the performance of our NXgraph
system using both large real-world graph benchmarks
and large synthetic graph benchmarks. We validate
our design decisions first, followed by detailed exper-
iments on different environments and different com-
putation tasks. We also compare the NXgraph system
with other state-of-the-art systems. Extensive exper-
iments show that NXgraph outperforms GraphChi,
TurboGraph, VENUS, and GridGraph in various situ-
ations.

The rest of this paper is organized as follows. The ab-
straction of graph computation model is shown in Section II.
Based on Section II, the detailed system design of NXgraph
is introduced in Section III. Section IV presents extensive
experimental results. Section V introduces some previous work
on graph processing. Section VI concludes the paper.

II. COMPUTATION MODEL

A. Graph Presentation

A graph G = (V,E) is composed of its vertices V and
edges E. A computation task on G is to read and update
V and E. We assume the graph to be directed. Updates are

TABLE I: Notations of a graph

Notation Meaning

G a graph G = (V,E)

V vertices in G

E edges in G

n number of vertices in G, n = |V |
m number of edges in G, m = |E|
vi vertex i

ei.j edge from vi to vj

Ii interval i, a subset of V

Si shard i, containing all edges whose destinations are in Ii

SSi.j sub-shard i.j, contains all edges whose sources are in Ii and
destinations are in Ij

Hi.j hub i.j, contains all destination vertices and their attributes in
SSi.j

P number of intervals

Q number of intervals that reside in memory

Ba size of a vertex attribute in bytes

Bv size of a vertex id in bytes

Be size of an edge in bytes

BM size of available memory budget in bytes

d average in-degree of the destination vertices of the sub-shards

propagated from source vertex to destination vertex through the
edge. Undirected graph is supported by adding two opposite
edges for each pair of vertices.

To store vertices and edges on disk, vertices are organized
as intervals and edges are organized as shards. Vertices have
application-specific data fields, which are called vertex at-
tributes. For example, vertex ranking and out-degree are vertex
attributes for PageRank. All vertex attributes are divided into P
disjoint parts and each part is called an interval. All edges are
then partitioned into P shards, where each shard is associated
with an interval. An edge belongs to a shard if and only if
its destination vertex belongs to the corresponding interval.
Moreover, each shard is further divided into P sub-shards
according to their source vertices. Inside each sub-shard, edges
are sorted by their destination vertices. This structure of graph
presentation is the Destination-Sorted Sub-Shard (DSSS). This
presentation methodology of graph forms a two dimensional
matrix of sub-shards, as shown in Figure 1. Notations used in
this paper are listed in Table I.

For the example graph in Figure 1, interval I3 consists of
vertices v4 and v5. Interval I2 consists of vertices v2 and v3.
Therefore, sub-shard SS3.2 consists of edges e5.2, e4.3, and
e5.3. When performing update on sub-shard SS3.2, edges in
SS3.2 and vertex attributes in I3 will be read and used to
calculate new attributes for I2. Here, interval I3 is called the
source interval as all source vertices reside in it and interval
I2 is called the destination interval. By restricting data access
to the sub-shard and the corresponding source and destination
intervals, locality is ensured under the DSSS structure.

B. Update Scheme

A graph computation algorithm is composed of three parts:
input, traversal and output. The input and output processes are
relatively straight-forward and will be addressed in the last
part of this subsection. The tasks of the traversal processes
are three-fold. First, use old attributes stored in the intervals
and the adjacency information in the sub-shards to calculate
updated attributes of the intervals. Second, determine if the
computation should be terminated. Third, maintain consistency
within each iteration.

410

0

1

2
3

4

5

6

(a) Example graph

S4S3S2S1

SS1.1

SS3.2

5 2
4,5 3

SS2.2

3 2

SS1.2

1 2
0,1 3

SS1.1

SS2.1

3 0
2,3 1

SS3.1

4 1

SS1.3

1 4
0 5

SS2.3

3 4
3 5

SS3.3

5 4
4 5

SS3.4

4 6

SS2.4

SS1.4

0 6

I1

0, 1
I2

2, 3
I3

4, 5
I4

6

SS4.1

6 1

SS4.2 SS4.3

6 4

SS4.4

(b) Intervals and sub-shards

Fig. 1: Intervals and sub-shards in the graph

Algorithm 1 NXgraph update model

Input: All intervals I and sub-shards SS of graph G, optional
initialization data.

Output: Desired output results.
1: Initialize(I)
2: repeat
3: if all intervals are inactive then
4: finished← true
5: else
6: finished← false
7: end if
8: Ii ← inactive for all Ii ∈ I
9: for each SSi.j ∈ SS do

10: Ij = Update(Ij , Ii, SSi.j) // Activate Ij if necessary.
11: end for
12: until finished = true
13: return Output(I)

The first task of an iteration is to use the attributes in the
source interval and the edges in the corresponding sub-shard to
compute the new attributes of the destination interval. NXgraph
performs the computation in unit of sub-shards, as shown in
Algorithm 1.

The second task of an iteration is to determine whether
to terminate the execution with interval activity status. If no
vertex attribute in an active interval is updated in an iteration,
that interval will be noted as inactive in the next iteration.
Similarly, an interval will be activated if any vertex attribute
in that interval is updated. When all the intervals enter the
inactive state, the execution is determined to be terminated.

The last task of an iteration is to maintain consistency.
NXgraph adopts a synchronous approach. Any attribute read
from an interval must be the one written into it in the previous
iteration. Write operation in the update scheme must not break
this consistency.

The process of input is to set initialization attributes and
activity status for each interval according to the input. When
the traversal is done, the intervals are traversed for the last one
time to collect desired output.

For example, the input to an implementation of Breadth-
First Search (BFS) is the root vertex. The initialization process
sets all vertex attributes to be infinity except that the root vertex
is zero. Only the interval which contains the root vertex is
active. The traversal process updates the destination vertex

Algorithm 2 BFS’s Initialize(I) function

Input: Intervals I , root vertex vroot.
Output: Initialized intervals I .

1: Ii ← inactive for all Ii ∈ I
2: for each v in I do
3: if v is vroot then
4: v.depth← 0
5: Iroot ← active where vroot ∈ Iroot
6: else
7: v.depth←∞
8: end if
9: end for

Algorithm 3 BFS’s Update(Ij , Ii, SSi.j) function

Input: Destination interval Ij , source interval Ii and sub-
shards SSi.j .

Output: Updated destination interval Ij .
1: for each e ∈ SSi.j do
2: if e.dst.depth > e.src.depth+ 1 then
3: e.dst.depth← e.src.depth+ 1
4: Ij ← active if Ij is inactive
5: end if
6: end for
7: return Ij

Algorithm 4 BFS’s Output(I) function

Input: Intervals I .
Output: Desired output result: maximum depth.

1: return max(v.depth) where v ∈ I

attributes with the minimum depth propagated from all its
source vertices until no vertex can be updated. Finally, the
output of the algorithm might be the maximum finite attribute
of all intervals, which is the depth of the spanning tree given
the specified root vertex. This example is shown as pseudo-
codes in Algorithms 2, 3 and 4.

III. SYSTEM DESIGN

A. Preprocessing

As described in Section II-A, NXgraph uses intervals, sub-
shards and an external initialization file as input. Therefore,
NXgraph requires explicit preprocessing process to gener-
ate the intervals and sub-shards used in updating. For now
NXgraph targets static graphs, but it only requires moderate
modifications to support dynamic update of graph structure.

Indexing. The preprocessing is divided into two indepen-
dent steps, indexing and sharding. The indexing step is only
dependent on graph property. It maps the vertex index to
continuous id and calculate the vertex degree. Here, index
is possibly sparse. Id represents the unique identifier used
to denote a vertex in NXgraph. Unlike indices, ids must be
continuous. That is, a graph with n vertices will be given
indices from 0 to n − 1. This procedure is used to provide
constant-time access given a vertex id and eliminate non-
existing vertices. The indexer generates a mapping file and
a reverse-mapping file, which are used to obtain vertex id
from index and obtain vertex index from id, respectively. It
also generates a pre-shard, which is used as the input to the

411

sharding step, where the vertex indices are already substituted
to ids.

Sharding. After indexing, the sharder will divide the pre-
shard into P 2 sub-shards and allocate storage space for P
intervals. NXgraph does not have stringent limitations on the
partitioning strategy except that at least one interval must be
able to be stored in memory. In practice, we use much smaller
interval size to enable adaptation to different memory sizes.
We use an intuitive partitioning strategy which is to divide
all vertices into equal-sized intervals. NXgraph adopts a fine-
grained parallel model so that the possible imbalance among
sub-shards will barely hurt system performance. Sub-shards
are then generated according to the interval partitioning.

Because we use a continuous id as the identifier of a vertex,
an interval can be stored as only attributes of vertices and
an offset of the first vertex in the interval. This strategy not
only reduces the access time to a vertex given its vertex id
to constant time, but also decreases the space requirement to
store an interval. As for sub-shards, unlike GridGraph [27],
NXgraph sorts all edges by their destination vertex id so that
edges with the same destination vertex is stored continuously.
This enables efficient compressed sparse format of edge stor-
age, which is beneficial to reduce the amount of disk I/O and
enable fine-grained parallel computation. Furthermore, we also
sort all edges with the same destination vertex in a sub-shard
by their source vertex id, so that continuous memory segment
will be accessed when performing update. This utilizes the
hierarchical memory structure of CPU and helps maintain a
high hit rate on CPU cache.

B. NXgraph Update Strategy

NXgraph proposes three novel update models, Single-
Phase Update (SPU), Double-Phase Update (DPU), and
Mixed-Phase Update (MPU). SPU is the fastest, but it requires
that the memory is at least two times larger than all the
intervals. Graphs with too many vertices will not be able to be
processed with SPU. DPU is about two or three times slower,
but it can adapt to small memories where SPU is invalid. DPU
enables very large graph processing. MPU is a combination of
the above two update strategies, which is a trade-off between
memory requirement and system performance.

1) Single-Phase Update: Description. SPU mode stores
two copies of each interval in memory, one with the attributes
from the previous iteration and the other with the attributes
written into the interval in the current iteration. At the end of
each iteration, the two copies will be exchanged so that the
overhead of switching iteration is minimized. This procedure
is called ping-pong operation of intervals. Edges stored in sub-
shards are streamlined from either memory or disk, depending
on whether memory space is sufficient. Before initialization,
the SPU engine will actively allocate spaces for ping-pong
intervals. If there are still memory budget left, sub-shards will
also be actively loaded from disk to memory. As can be seen
in Algorithm 1, Update function is performed in unit of sub-
shards. In an iteration, each sub-shard SSi.j will invoke an
Update function to update interval Ij with previous attributes
in interval Ii.

Execution. Since all intervals are present in memory,
only sub-shards will need to be streamlined from disk. This
guarantees sequential access to disk, which provides higher
bandwidth than random access. Execution order among dif-
ferent sub-shards is not relevant in SPU mode. In practice, to

Algorithm 5 An iteration with single-phase update

Input: Intervals I , sub-shards SS.
Output: Updated intervals I .

1: InitializeIteration(Ij) for j in 1→ P
2: for i in 1→ P do
3: for j in 1→ P do
4: Ij = UpdateInMemory(Ij , Ii, SSi.j)
5: end for
6: end for

I2

2, 3

S4S3S2S1

SS1.1

SS3.2

5 2
4,5 3

SS2.2

3 2

SS1.2

1 2
0,1 3

SS1.1

SS2.1

3 0
2,3 1

SS3.1

4 1

SS1.3

1 4
0 5

SS2.3

3 4
3 5

SS3.3

5 4
4 5

SS3.4

4 6

SS2.4

SS1.4

0 6

I1

0, 1
I3

4, 5
I4

6

SS4.1

6 1

SS4.2 SS4.3

6 4

SS4.4

I1

0, 1

I2

2, 3

I3

4, 5

I4

6

Ii

vertices
In-memory
ping-pong

interval

SSi.j

sorted
edges

Sub-shard
without hub

Execution
order

Fig. 2: Single-phase update order.

avoid conflict upon destination intervals and maximize overlap
between sub-shards, SPU will traverse the sub-shards by rows.
With this traversal order, worker threads for the next sub-
shard can be issued before all threads for the current sub-
shard are finished. The pseudo-code for SPU mode is listed in
Algorithm 5. These procedure corresponds to lines 9 to 11 in
Algorithm 1. Figure 2 illustrates the SPU schedule order with
the example graph of Figure 1.

Example. In the example of Figure 2, SPU iterates over
sub-shards SS1.1 to SS1.4 first. Computation on each of the
sub-shards does not conflict with others. SPU can overlap the
four sub-shards to fully exploit multi-threading. This corre-
sponds to lines 3 to line 5 in Algorithm 5. When computation
on the first row of sub-shards is finished, SPU moves to the
second row. This corresponds to the for loop in line 2 of
Algorithm 5.

I/O. Consider a graph G with n vertices and m edges,
where Ba bytes are used to store the attribute of a vertex and
Be bytes are used to store an edge. Assume available memory
budget is BM bytes where 2n · Ba < BM < 2n · Ba + m ·
Be. After initial load from disk, the amount of disk read per
iteration will be at most:

Bread = m ·Be + 2n ·Ba −BM .

Bread = 0 if BM > 2n · Ba + m · Be. Since each edge
will only be accessed once but each vertex will be accessed
much more times in each iteration, it is more efficient to store
intervals in memory than sub-shards. This memory utilization
strategy minimizes the amount of disk I/O.

Summary. SPU strategy minimizes the amount of data
transfer, optimizes both disk access pattern and memory access
pattern, maximizes locality and provides high-degree and fine-
grained parallelism. Therefore, its performance is maximized.
However, since at least two copies of all intervals need to be
present in memory, SPU will be invalid for graphs with too

412

many vertices. This issue will be solved by DPU and MPU
mode, as will be addressed in the following paragraphs.

2) Double-Phase Update: Description. Unlike SPU, DPU
mode is completely disk-based. Intervals will only be loaded
from disk when accessed and sub-shards are streamlined from
disk as in SPU mode. Since intervals can be partitioned to
be much smaller than the total size of vertices, DPU can
always handle very large graphs. DPU allocates a hub for each
shard as an intermediate for vertex attributes. DPU shard hubs
solve the consistency problem by storing the update vertex
attributes in them. A DPU shard hub consists of all destination
vertex ids and their corresponding attributes. The attributes
stored in a hub are incremental attributes contributed from its
corresponding source interval, which can be accumulated later.

Execution. DPU reduces the amount of disk I/O by
properly scheduling the updating order of the sub-shards. As
indicated in its name, Double-Phase Update consists of two
phases. The first is ToHub phase. In this phase, attributes
in the previous iteration are read from the intervals and the
calculated incremental attributes are written to the hubs. To
avoid unnecessary disk reads, DPU iterates over the sub-shards
by row in ToHub phase, loading each interval from disk only
once per iteration, as shown in Figure 3. The second phase is
FromHub phase. In this phase, attributes written into the hub
are accumulated and written into the intervals. To minimize
disk writes, DPU iterates over the sub-shards by column in
FromHub phase, writing each interval to disk only once per
iteration, as shown in Figure 4. The pseudo-code for DPU is
in Algorithm 6.

Algorithm 6 An iteration with double-phase update

Input: Intervals I , sub-shards SS.
Output: Updated intervals I .

1: for i in 1→ P do
2: LoadFromDisk(Ii)
3: for j in 1→ P do
4: Hi.j = UpdateToHub(Ii, SSi.j)
5: end for
6: ReleaseFromMemory(Ii)
7: end for
8: for j in 1→ P do
9: InitializeIteration(Ij)

10: for i in 1→ P do
11: Ij = UpdateFromHub(Ij , Hi.j)
12: end for
13: SaveToDisk(Ij)
14: end for

Example. In the ToHub phase of DPU, as shown in
Figure 3, DPU iterates over sub-shards SS1.1 to SS1.4 first.
Interval I1 is loaded into memory before the computation as
shown in line 2 in Algorithm 6. Hubs H1.1 to H1.4 are written
to the disk during the execution of the UpdateToHub function
in line 4. DPU can overlap the four sub-shards to fully exploit
multi-threading since their write destinations, i.e., their hubs,
do not overlap. When the computation on the first row is
finished, DPU releases interval I1 and loads the next interval
I2, as shown in lines 6 and 2.

In the FromHub phase of DPU, as shown in Figure 4,
DPU iterates over sub-shards SS1.1 to SS4.1 first. Interval
I1 is initialized in memory before the computation as shown
in line 9. Hubs H1.1 to H4.1 are read from the disk during

S4S3S2S1

SS1.1

SS3.2

5 2
4,5 3

SS2.2

3 2

SS1.2

1 2
0,1 3

SS1.1

SS2.1

3 0
2,3 1

SS3.1

4 1

SS1.3

1 4
0 5

SS2.3

3 4
3 5

SS3.4

4 6

SS2.4

SS1.4

0 6

SS4.1

6 1

SS4.2 SS4.3

6 4

SS4.4

I1

0, 1

I2

2, 3

I3

4, 5

I4

6

SS3.3

5 4
4 5

Ii

vertices

On-disk
interval

SSi.j

edges
Sub-shard
with a hub

Execution
order

Hub
attached to
a sub-shard

Fig. 3: ToHub phase execution order in DPU schedule.

S4S3S2S1

SS1.1

SS3.2

5 2
4,5 3

SS2.2

3 2

SS1.2

1 2
0,1 3

SS1.1

SS2.1

3 0
2,3 1

SS3.1

4 1

SS1.3

1 4
0 5

SS2.3

3 4
3 5

SS3.3

5 4
4 5

SS3.4

4 6

SS2.4

SS1.4

0 6

SS4.1

6 1

SS4.2 SS4.3

6 4

SS4.4

I1

0, 1
I2

2, 3
I3

4, 5
I4

6
Ii

vertices
On-disk
interval

SSi.j

edges
Sub-shard
with a hub

Execution
order

Hub
attached to
a sub-shard

Fig. 4: FromHub phase execution order in DPU schedule.

the execution of the UpdateFromHub function in line 11
of Algorithm 6. When the computation on the first column is
finished, DPU writes interval I1 back to the disk and initializes
the next interval I2, as shown in lines 13 and 9.

I/O. Consider a graph G with n vertices and m edges,
where Bv bytes are used to store a vertex id, Ba bytes are
used to store the attribute of a vertex and Be bytes are used to
store an edge. Assume G is divided into P equal-sized intervals
and therefore P 2 sub-shards. In DPU mode, the amount of disk
read and write per iteration will be at most:

Bread = m ·Be + n ·Ba +m · (Ba +Bv)/d

= m · (Be +
Ba +Bv

d
) + n ·Ba

Bwrite = n ·Ba +m · (Ba +Bv)/d

= m · Ba +Bv

d
+ n ·Ba.

In the above equations, d denotes the average in-degree
of the destination vertices of the sub-shards. For real-world
graphs like Yahoo-web [32], typical value of d is about 10
to 20, depending on the partitioning. Observe that Bread and
Bwrite are not dependent on P or memory budget, DPU mode
can scale to very large graphs or very small memory budget
without significant performance loss.

Summary. DPU can handle very large graphs with the
price of high disk access compared to SPU. However, DPU is
not the optimized trade-off point. As shown in Section IV-B3,
DPU is about two to three times slower than SPU. MPU mode
will provide a better trade-off, as addressed in the next part of
this section.

413

3) Mixed-Phase Update: Description. As analyzed in Sec-
tion III-B1, it is more efficient to store vertices in memory than
edges. Therefore, MPU loads as many intervals as possible in
memory. For these in-memory intervals, MPU adopts the SPU-
like strategy to perform update. As for those that cannot be
loaded into memory at the same time, MPU uses the DPU-like
strategy to perform update. Suppose Q out of P intervals reside
in the memory. Only (P − Q)2 out of P 2 sub-shards should
use DPU-like update strategy whereas the rest of sub-shards
can use SPU-like strategy. This is done as follows.

Execution. First, the MPU engine iterates over the Q2 sub-
shards using the same order of SPU. Then, the MPU loads each
on-disk interval Ii as the source interval and iterates over its
corresponding sub-shards, SSi.j . When the destination interval
resides in memory, SPU-like update can still be performed
since both source and destination intervals are loaded into the
memory. When the destination interval resides on disk, the
first phase, i.e., the ToHub phase is applied on the sub-shard.
After that, the MPU engine will then iterate over sub-shards
SSi.j where 0 < i ≤ P,Q < j ≤ P by column. When
the source interval resides in memory, MPU still adopts the
SPU-like strategy. When the source intervals reside on disk,
MPU will perform the second phase of DPU, i.e., the FromHub
phase on each sub-shard, updating the destination intervals
with attributes stored in the shard hubs. The pseudo-code for
MPU is Algorithm 7.

Algorithm 7 An iteration with mixed-phase update

Input: Intervals I , sub-shards SS.
Output: Updated intervals I .

1: InitializeIteration(Ij) for j in 1→ Q
2: for i in 1→ Q do
3: for j in 1→ Q do
4: Ij = UpdateInMemory(Ij , Ii, SSi.j)
5: end for
6: end for
7: for i in Q+ 1→ P do
8: LoadFromDisk(Ii)
9: for j in 1→ Q do

10: Ij = UpdateInMemory(Ij , Ii, SSi.j)
11: end for
12: for j in Q+ 1→ P do
13: Hi.j = UpdateToHub(Ii, SSi.j)
14: end for
15: ReleaseFromMemory(Ii)
16: end for
17: for j in Q+ 1→ P do
18: InitializeIteration(Ij)
19: for i in 1→ Q do
20: Ij = UpdateInMemory(Ij , Ii, SSi.j)
21: end for
22: for i in Q+ 1→ P do
23: Ij = UpdateFromHub(Ij , Hi.j)
24: end for
25: SaveToDisk(Ij)
26: end for

Example. Take the example in Figure 5. In this case, P =
4, Q = 2, Interval I1 and I2 reside in memory (purple in
the figure). I3 and I4 are loaded into memory when accessed
(blue in the figure). Among the P 2 = 16 sub-shards, only
(P − Q)2 = 4 of them are attached a hub (orange in the
figure). These sub-shards adopt DPU strategy. Other sub-shards

S4S3S2S1

SS1.1

SS3.2

5 2
4,5 3

SS2.2

3 2

SS1.2

1 2
0,1 3

SS1.1

SS2.1

3 0
2,3 1

SS3.1

4 1

SS1.3

1 4
0 5

SS2.3

3 4
3 5

SS3.3

5 4
4 5

SS3.4

4 6

SS2.4

SS1.4

0 6

SS4.1

6 1

SS4.2 SS4.3

6 4

SS4.4

I1

0, 1

I2

2, 3

I3

4, 5

I4

6

I2

2, 3
I1

0, 1

S4S3S2S1

SS1.1

SS3.2

5 2
4,5 3

SS2.2

3 2

SS1.2

1 2
0,1 3

SS1.1

SS2.1

3 0
2,3 1

SS3.1

4 1

SS1.3

1 4
0 5

SS2.3

3 4
3 5

SS3.3

5 4
4 5

SS3.4

4 6

SS2.4

SS1.4

0 6

SS4.1

6 1

SS4.2 SS4.3

6 4

SS4.4

I1

0, 1

I2

2, 3

I2

2, 3
I1

0, 1
I3

4, 5
I4

6

Ii

vertices
In-memory
ping-pong

interval

SSi.j

edges

Sub-shard
without hub

Execution
order

Ii

vertices
On-disk
interval

SSi.j

edges
Sub-shard
with a hub

Hub
attached to
a sub-shard

Fig. 5: Mixed-phase update order.

(cyan in the figure) adopt SPU strategy. MPU first updates sub-
shards SS1.1, SS1.2, SS2.1, and SS1.2 with SPU, as shown in
lines 2 to 6 in Algorithm 7. Then MPU loads interval I1 into
memory and iterates over SS3.1 to SS3.2 as shown in lines 8
to 11, performing SPU. On sub-shards SS3.3 to SS3.4, MPU
performs the ToHub phase of DPU on them, as shown in lines
12 to 14. After that, MPU iterates over the next row, as shown
in the for loop of line 7. For column 3 of the sub-shards,
as shown in the right sub-figure of Figure 5, MPU performs
SPU on sub-shard SS1.3 to SS2.3 first. For sub-shard SS3.3 to
SS4.3, MPU performs the FromHub phase of DPU. After that,
MPU writes interval I3 back to the disk (line 25) and moves
to the next column, as shown in the for loop of line 17.

I/O. Take the assumptions in Section III-B2. Further as-
sume that the sub-shards have the same size for the sake of
simplicity. Assume available memory budget is BM bytes.
Note that to perform SPU, these Q intervals must be main-
tained as ping-ping intervals, which will take 2Q · Ba bytes
of memory space. In MPU, the amount of disk read and write
per iteration will be at most:

Bread = m ·Be +
P −Q

P
n ·Ba + (P −Q)2 · m

P 2
· (Ba +Bv)

= m

[
Be +

(P −Q)2

P 2
(Ba +Bv)

]
+

P −Q

P
n ·Ba

Bwrite =
P −Q

P
n ·Ba + (P −Q)2 · m

P 2
· (Ba +Bv)

=
(P −Q)2

P 2
m · (Ba +Bv) +

P −Q

P
n ·Ba

where

Q ≤ BM
2n
P Ba

=
BM

2nBa
P.

When BM > 2n · Ba, Q = P and MPU will act exactly
the same as SPU. When Q = 0, MPU will act exactly the
same as DPU. When BM goes smaller, or equivalently, the
scale of graph goes larger, I/O amount of MPU has the same
upper bound as DPU.

Summary. Both SPU and DPU take advantages of se-
quential disk access, high memory access locality and high
parallelism. As a combination of SPU and DPU, MPU has
the above advantages as well. MPU also has the advantage
of adaptation to different graph scales and low disk access
amount. With properly partitioned intervals and shards, MPU

414

can seamlessly adapt to different memory budgets without the
need of re-doing preprocessing or significant loss on system
performance. Therefore, NXgraph uses MPU by default.

C. Comparison with TurboGraph-like Update

For small memory sizes, we use MPU which combines
SPU and DPU together. However, TurboGraph [23] and Grid-
Graph [27] use another update strategy for small memory sizes.
In this subsection, we will analyze the amount of data transfer
of DPU and TurboGraph-like strategy, to illustrate why we
don’t combine SPU and TurboGraph-like updating strategy.

TurboGraph and GridGraph first load several source and
destination intervals which can be fit into the limited memory.
After updating all the intervals inside the memory, they replace
some of the in-memory intervals with on-disk intervals. Turbo-
Graph uses this strategy with active interval caching whereas
GridGraph uses this strategy with the 2-level partitioning
mechanism. We name this strategy after TurboGraph since it
is an earlier work than GridGraph. We address only the I/O
amount without considering interval caching mechanism, since
the caching part is basically the same as MPU.

Take the assumptions in Section III-B3. Under the
TurboGraph-like strategy, the amount of disk read and write
per iteration will be:

Bread = m ·Be + P 2 · n
P
·Ba

= m ·Be + nP ·Ba

Bwrite = P · n
P
·Ba = n ·Ba

where

P ≥ 2nBa

BM
.

As P increases, the amount of I/O will increase linearly.
This puts a limitation on partitioning. To get the best perfor-
mance, the system must be partitioned into about 2nBa/BM

intervals or the system will not run as fast as it could be.
TurboGraph mentioned that it uses a page (interval) size of
several megabytes, which will result in quite a number of
pages, significantly damaging the performance. TurboGraph
uses an active caching mechanism to mitigate this problem, but
it still requires too much I/O to work efficiently on HDD. Grid-
Graph uses a two-level partitioning mechanism to dynamically
combine intervals and sub-shards together. This brings much
flexibility since the equivalent P can be significantly reduced,
but it also loses the advantages of sorted sub-shards, namely,
efficient compressed sparse format of edges storage and fine-
grained parallelism. Besides, as the scale of graph increases,
the combination mechanism will eventually stop working and
P will start to increase.

As a comparison, we use a real-world graph, Yahoo-web
[32], as an example to show the different on the amount of disk
I/O. For Yahoo-web, n = 7.20×108 and m = 6.63×109. Note
that the vertex number here is less than the number of vertex
indices because there are a large amount of vertices with no
edge connected to it. When the memory is not sufficient for
SPU, the best practice for MPU is to take Q = BM

2nBa
P and

the amount of read and write per iteration will be:

0 2 4 6 8 10 12
Memory budge(GB)

0

0.2

0.4

0.6

0.8

1

R
at

io

Fig. 6: Ratio of total I/O of MPU and TurboGraph-like.

BMPU = m ·Be + 2m

(
1− BM

2nBa

)2

(Ba +Bv)/d

+ 2

(
1− BM

2nBa

)
nBa.

where d is the average in-degree of the destination vertices
in the (P − Q)2 sub-shards with hubs. Experimental results
indicate that this value is about 10 to 20 for Yahoo-web. We
will use d = 15 for calculation. We assume a 4-byte vertex
id and an 8-byte vertex attribute as it is for the PageRank
algorithm. For edges, we assume an edge can be represented
with about 4 bytes in average.

As for TurboGraph-like strategy, the total amount of I/O is
minimized when Q = 0 and P = 2nBa/BM . Therefore, the
amount of read and write per iteration will be:

BTurboGraph-like = m ·Be + 2
(nBa)

2

BM
+ nBa.

The ratio of total I/O between MPU and TurboGraph-
like strategy when memory budget varies from 0 to 2nBa

is shown in Figure 6. As the plot shows, MPU always out-
performs TurboGraph-like strategy. When available memory
budget grows even larger, SPU starts to be valid and will bring
even more performance benefits.

We list all four update strategies addressed above in Ta-
ble II. As can be seen in the table, SPU outperforms all other
strategies on both read and write data amount. As for DPU,
although it requires more disk writing, it has less amount of
data transfer as analyzed above. The amount of data transfer
of MPU is between SPU and DPU. When BM = 0, MPU
becomes DPU and when BM = 2nBa, MPU is the same as
SPU.

D. Fine-grained Parallelism in Each Sub-shard

NXgraph adopts a fine-grained parallelism model within
each Destination-Sorted Sub-Shard for both SPU and DPU
as well as their combination, MPU. It exploits the power of
multi-thread CPU as follows.

Since the edges in a sub-shard is ordered by destination
vertex ids, the execution is issued in bunch of destination
vertices. That is, within a sub-shard, each worker thread will
take charge of several destination vertices and their associated
edges. There is no write conflict between these threads since
they are in charge of different destination vertices. No thread
locks or atomic operations are required to maintain consistency

415

TABLE II: Amount of read and write for different update strategies

Bread Bwrite

TurboGraph-like mBe + 2(nBa)
2/BM + nBa nBa

SPU mBe − (BM − 2nBa), BM > 2nBa 0

DPU mBe + m(Ba + Bv)/d + nBa m(Ba + Bv)/d + nBa

MPU mBe + m(1− BM/2nBa)
2(Ba + Bv)/d + n(1− BM/2nBa)Ba m(1− BM/2nBa)

2(Ba + Bv)/d + n(1− BM/2nBa)Ba

except for the control signal. This enables high degree of
parallelism when a sub-shard is large enough, i.e., to the scale
of several thousands of edges. At the same time, access to
the disk is still sequential as long as each thread reads and
caches its own data. Besides, worker threads for different sub-
shards can overlap with each other as long as their destination
intervals are not the same. SPU takes advantage of this and
exploits even more parallelism. In the case of DPU, everything
is the same except that the destination of write operation
becomes the hub instead of the interval for the ToHub phase.
Because the destinations are sorted, the write operation to the
hub is also sequential. For the FromHub phase, the execution
order determines that threads cannot be overlapped among
hubs, which will hurt performance to some extent. However,
the high parallelism within a hub is still valid. GraphChi,
TurboGraph or GridGraph cannot provide similar advantages.

Inside each worker threads, NXgraph takes advantage of
CPU cache hierarchy by sorting edges with the same desti-
nations according to their source vertex id. In this way, both
spacial locality for the read operation and temporal locality
for the write operation can be guaranteed. As a comparison,
GridGraph maintains good locality by using a fine-grained
lower-level partitioning strategy so that access to the main
memory is limited to the lower-level of chunks, but that will
make partitioning dependent on the size of CPU cache and
its caching strategy, which is out of the designers’ control.
Besides, since the edges are not sorted, due to the multi-level
hierarchy of CPU caches, the hit rate for lower-level caches
will be lower than the sorted case. GraphChi and TurboGraph
do not address the CPU cache locality issue. VENUS exploits
locality in the dynamic view algorithm where v-shards are
materialized, but suffers from the overhead of maintaining
consistency among v-shard attributes.

NXgraph addresses Rules 1 and 2 with DSSS, as discussed
in Section III-D. Rules 3 and 4 are addressed by the three
updating strategies, as discussed in Section III-B.

IV. EXPERIMENTS

In this section, we will first describe the evaluation setup of
our experiments, followed by the demonstration on how system
performance varies with different computational resources.
We will then demonstrate system performance with different
computational tasks. Further comparison with other state-of-
the-art systems are listed in the next part of this section,
followed by the analysis on how design factors should affect
system performance.

Note that in the implementation of NXgraph update model,
there can be two different mechanisms to solve the synchro-
nization problem. One is to invoke a callback function at the
end of each worker thread and send a proper signal. NXgraph
engine reads and controls the execution according to this
synchronization signal. The other is to set a lock on each desti-
nation interval when writing, blocking the worker threads with

TABLE III: Datasets used in the experiments

Dataset # Vertices # Edges

Live-journal 4.85 million 69.0 million

Twitter 41.7 million 1.47 billion

Yahoo-web 720 million 6.64 billion

delaunay n20 1.05 million 6.29 million

delaunay n21 2.10 million 12.6 million

delaunay n22 4.19 million 25.2 million

delaunay n23 8.39 million 50.3 million

delaunay n24 16.8 million 101 million

vertices does not include isolated vertices.

write conflicts. These two implementations are both supported
in current version of implementation and experimental results
show that neither one always outperforms the other. Therefore,
we report results for both of them in our experiments.

A. Evaluation Setup

We run all our experiments on a personal computer
equipped with a hexa-core Intel i7 CPU running at 3.3GHz,
eight 8GB DDR4 memory and two 128GB SSD configured as
RAID 0. This computer also has a 1TB HDD for operating
systems. NXgraph and GraphChi are evaluated under Ubuntu
14.04 LTS 64bit version whereas TurboGraph is evaluated
under Windows 10 64bit educational edition. Note that under
Ubuntu, we are able to change memory size at runtime by
tweaking Linux kernel options but Windows does not offer
similar interfaces. Therefore, for TurboGraph, we can only
change memory size by the step of 8GB. We do not evalu-
ate memory resource consumption with the memory budgets
specified by the program because the operating system will
use unoccupied memory space as disk cache, which will bring
unpredicted performance impacts. We will always specify the
maximum memory budget possible.

To get rid of the impact of random phenomenon, we run
PageRank for 10 iterations unless otherwise specified. We limit
the memory size to 16GB and enable all 12 available threads
with hyper-threading unless otherwise specified. The properties
of the datasets used in the experiments are listed in Table III.
Note that vertices without any edge connected to them are
excluded in the number of vertices.

B. Design Decisions

1) Exp 1 Sub-shard Ordering and Parallelism: NXgraph
sorts the edges in a sub-shard by their destination ids and
adopts a fine-grained parallelism, as first proposed in VENUS
[21]. GraphChi [22] adopts another sorting policy, namely sort
the edges by sources, so that its coarse-grained Parallel Sliding
Windows (PSW) model can apply. GridGraph [27] chooses not
to sort the edges at all. In both of the last two cases, parallelism
has to be enabled by a coarse-grained model. We test both

416

TABLE IV: Performance with different sub-shard model

Model
Elapsed Time(s)

Live-journal Twitter Yahoo-web

src-sorted, coarse-grained 1.44 72.06 696.14

dst-sorted, fine-grained 1.00 20.50 519.31

Task: 10 iterations of PageRank

P (Number of intervals)
2 4 6 12 18 24 36 48

E
la

sp
ed

 T
im

e(
se

c.
)

10

15

30

60
Performance with different numbers of interval on Twitter

PageRank
BFS
SCC

Fig. 7: Performance with different partitioning.

sub-shard ordering and parallelism models with the three real-
world graphs, as listed in Table IV. As shown from the results,
the destination-ordering and fine-grained parallelism always
outperforms the other in all three assessed cases.

2) Exp 2 Partitioning: Figure 7 demonstrates the impact of
partitioning on system performance for different algorithms.
Global query algorithms like PageRank are less sensitive to
the number of intervals and sub-shards, whereas targeted query
algorithms like SCC are more sensitive because active status
is saved in unit of intervals. Too less number of intervals will
make it hard to efficiently skip unnecessary sub-shards. For
global queries, an enough number of intervals are necessary
to enable full overlap among execution threads and maintain
high-parallelism. However, too many number of sub-shards
will bring more overhead of thread switching and sub-shard
storage. From the experimental results, P = 12 to 48 are all
good practices for interval partitioning.

3) Exp 3 SPU vs DPU: Figure 8 compares the performance
of SPU and DPU under different environments and algorithms.
As shown in the figure, SPU always outperforms DPU in all
assessed cases, demonstrating the advantages of SPU scheme.
Therefore, SPU is always preferred over DPU. As a combi-
nation of SPU and DPU, MPU will try to apply SPU on as
many sub-shards as possible, as described in Section III-B3.

C. Different Environments

In this subsection, 10 iterations of PageRank are performed
on three real-world graphs respectively, namely Live-journal
[33], Twitter [1] and Yahoo-web [32].

1) Exp 4 Memory Size: Experiment 1 reports the elapsed
time as memory size changes. The number of threads is 12
in this experiment. As can be seen in Figure 9, for small
graphs like Live-journal, performance hardly changes as all
intervals and sub-shards can be stored in memory. In this
case, NXgraph outperforms TurboGraph and GraphChi by
fully utilizing CPU locality and enabling high parallelism. For
Twitter graph, performance of NXgraph saturates at about 10
GB of memory, which is approximately the point when all
intervals and sub-shards are loaded into memory. For larger
graph, namely Yahoo-web, the saturation point is about 40GB.

2) Exp 5 Number of Threads: Experiment 2 reports the
elapsed time as the number of available threads changes. The

�������	
�������
� � � � � �� ���

�
��

��
��

��
��

��
��

�

�

���

���

���
��������	
�	������

�!"���#$%
�!"���&$%

�������	
�������
� � � � � �� ���

�
��

��
��

��
��

��
��

�

�

'�

���

�'�
���	
�	������

�!"���#$%
�!"���&$%

�������	
�������
� � � � � �� ���

�
��

��
��

��
��

��
��

�

�

'�

���

�'�

���
���	
�	������

�!"���#$%
�!"���&$%

*���+,�
� � � �� �� �� ���

�
��

��
��

��
��

��
��

�

�

���

���

���
��������	
�	������

�!"���#$%
�!"���&$%

*���+,�
� � � �� �� �� ���

�
��

��
��

��
��

��
��

�

�

'�

���

�'�

���
���	
�	������

�!"���#$%
�!"���&$%

*���+,�
� � � �� �� �� ���

�
��

��
��

��
��

��
��

�

�

���

���

���

���
���	
�	������

�!"���#$%
�!"���&$%

Fig. 8: SPU vs DPU on performance.

memory size is 16GB in this experiment. As can be seen in
Figure 10, for relatively small graphs like Live-journal and
Twitter whose data can be completely loaded in memory,
the degree of parallelism has significant impact on system
performance of NXgraph because NXgraph can exploit the
degree of parallelism very well. However, in the case of Yahoo-
web, performance of NXgraph is limited by disk I/O. Thread
number has relatively less impact.

D. Different Tasks

1) Exp 6 Scalability: Experiment 3 reports the flexible
scalability of NXgraph. As analyzed in Section III-B, the
relative amount of I/O does not increase as the scale of graph
increases. In a certain range, larger graph can bring higher
parallelism since the average overhead of thread switching
can be reduced. This is shown in Figure 11. As the scale
of graph changes in this experiment, execution time cannot
represent system performance very well. Instead, Million Tra-
versed Edges Per Second (MTEPS) is reported as a metric of
system performance, indicating the system throughput. It can
be observed that TurboGraph shows a tendency of decrease
on throughput, which matches the analysis in Section III-C.
GraphChi does not show a clear tendency of increase or
decrease on performance in the assessed range of graph scale.

2) Exp 7 More Tasks: Experiment 4 reports the execution
time of more graph algorithms on the three real-world graphs.
These algorithms include Breadth-First Search (BFS), Strongly
Connected Components (SCC) and Weakly Connected Com-
ponents (WCC). We use full computational resources in this
experiment, namely, 12 threads and 64GB memory. Although
performed on the basis of iterations, NXgraph can skip unnec-
essary updates on certain sub-shards by setting the active status
of its corresponding intervals as described in Section II-B,
which makes it as efficient even for algorithms like BFS and
connected components. However, as can be seen in the third

417

Mem(GB)
2 4 6 8 10 12 14 16E

la
sp

ed
 T

im
e(

se
c.

/1
0i

te
rs

)

0

5

10

15

20

25
PageRank on Live-journal

NXgraphcallback
NXgraphlock
GraphChi
TurboGraph

Mem(GB)
2 4 6 8 10 12 14 16E

la
sp

ed
 T

im
e(

se
c.

/1
0i

te
rs

)

0

200

400

600

800

1000

1200
PageRank on Twitter

NXgraphcallback
NXgraphlock
GraphChi
TurboGraph

Mem(GB)
2 4 8 12 16 24 32 48E

la
sp

ed
 T

im
e(

se
c.

/1
0i

te
rs

)

0

1000

2000

3000

4000

5000

6000

7000
PageRank on Yahoo-web

NXgraphcallback
NXgraphlock
GraphChi
TurboGraph

Fig. 9: Memory size changes (12 threads). We cannot change the memory size arbitrarily on Windows for TurboGraph.

Number of threads
1 2 4 6 8 10 12E

la
sp

ed
 T

im
e(

se
c.

/1
0i

te
rs

)

0

5

10

15

20

25
PageRank on Live-journal

NXgraphcallback
NXgraphlock
GraphChi
TurboGraph

Number of threads
1 2 4 6 8 10 12E

la
sp

ed
 T

im
e(

se
c.

/1
0i

te
rs

)
0

500

1000

1500
PageRank on Twitter

NXgraphcallback
NXgraphlock
GraphChi
TurboGraph

Number of threads
1 2 4 6 8 10 12E

la
sp

ed
 T

im
e(

se
c.

/1
0i

te
rs

)

0

1000

2000

3000

4000

5000
PageRank on Yahoo-web

NXgraphcallback
NXgraphlock
GraphChi
TurboGraph

Fig. 10: Number of threads changes (16GB memory).

Number of vertices in the graph (× 220)
1 2 4 8 16

M
TE

P
S

0

100

200

300

400

500

600

700
Scalability

NXgraphcallback
NXgraphlock
GraphChi
TurboGraph

Fig. 11: Scalability.

subfigure, TurboGraph outperforms NXgraph on WCC of the
Yahoo-web. This is because TurboGraph is fully optimized
for targeted queries by using very small intervals (several
megabytes) as analyzed in their work [23]. For Yahoo-web,
such small intervals will result in thousands of intervals and
millions of sub-shards. NXgraph currently does not support
such large number of sub-shards due to the limitation on the
number of opened files by the operating system.

Note that TurboGraph does not provide a program for SCC
nor an interface to implement one, therefore we cannot assess
its performance for that. Besides, BFS program provided by
TurboGraph keeps crashing so that we are not able to access
its performance, either. GraphChi cannot finish SCC or WCC
on Yahoo-web within 24 hours. We set the root vertex to the
first one for all graphs and systems in the BFS algorithm.

E. Comparison to Other Systems

In Experiment 5 and 6, we run NXgraph under two
different resources availabilities and compares it to other state-
of-the-art graph processing systems that are not included in
our own experiments. Performance reported in this section are
cited from previous work except for NXgraph. The “evaluation
environment” column in the table reports the CPU resources,
number of available threads, memory budget size/physical
memory size and the type of disk in the above order.

1) Exp 8 Limited Resources: In Table V, NXgraph is as-
sessed under HDD with 8 available threads and 8GB memory,

which simulates the evaluation setup of VENUS [21]. Since
we cannot access the executable of VENUS or the source code,
we compare NXgraph with VENUS in this way. Although
NXgraph does not require SSD, it will benefit from higher
bandwidth. Therefore, HDD is only used in this experiment.

As can been seen in the table, NXgraph (HDD) outper-
forms VENUS by about 7.6 times. The reason why NXgraph
outperforms VENUS is analyzed as follows. The v-shard is
the key idea involved in VENUS. A v-shard is composed of
all in-neighbors of vertices in an interval. It is very efficient
to perform update with the presence of v-shards, which signif-
icantly reduce the amount of data transfer by reading vertex
attributes from the in-memory v-shard. However, a v-shards is
usually much larger than its corresponding interval. A vertex
is very likely to have connection with any other vertex, in or
out of its own interval. A v-shard much fit in memory to bring
benefits and this results in even smaller intervals. With trivial
effort on preprocessing, a large amount of intervals will be
generated. This will then result in large overhead to maintain
consistency of vertex attributes in each v-shard. To obtain high
performance under VENUS framework, partitioning must be
carefully designed so that connections between intervals are
minimized, which is a non-trivial clustering problem. NXgraph
does not introduce the v-shards to reduce the amount of data
transfer or to maintain locality.

The other four results in Table V are reported by GridGraph
in [27]. These results are run in an AWS EC2 server with a
high volume of physical memory, which might be used for
cache by the operating system. Note that VENUS states that
the file caching mechanism is disabled in their experiments but
we are not able to disable it successfully with the same tools.

2) Exp 9 Best Performance: In Table VI, NXgraph is
assessed under 8 threads and 16GB memory on SSD. Fur-
ther increasing resources hardly improves performance for
the assessed task. We also report the best case performance
obtained by other graph processing systems on the same task.
As shown in the table, NXgraph outperforms all assessed
single-machine system even with better resources. Moreover,
NXgraph is able to outperform PowerGraph by 1.79 times,

418

Algorithms
BFS SCC WCC

E
la

sp
ed

 T
im

e(
se

c.
)

0.1

0.5

1

5

10

50

100
More tasks on Live-journal

NXgraphcallback
NXgraphlock
GraphChi
TurboGraph

Algorithms
BFS SCC WCC

E
la

sp
ed

 T
im

e(
se

c.
)

10

20

50

100

200

500

1000

2000
More tasks on Twitter

NXgraphcallback
NXgraphlock
GraphChi
TurboGraph

Algorithms
BFS SCC WCC

E
la

sp
ed

 T
im

e(
se

c.
)

100

101

102

103

104

105

More tasks on Yahoo-web
NXgraphcallback
NXgraphlock
GraphChi
TurboGraph

Fig. 12: BFS, SCC, and WCC on Live-journal, Twitter, and Yahoo-web.

TABLE V: System performance with limited resources

System Time(s) Speedup Evaluation environment

NXgraph 7.13 1.00 Intel i7 3.3GHz, 8t, 8G, SSD

GridGraph 26.91 [27] 3.77 AWS EC2 8t, 8G/30.5G, SSD

X-stream 88.95 [27] 12.48 AWS EC2, 8t, 8G/30.5G, SSD

NXgraph 12.55 1.00 Intel i7 3.3GHz, 8t, 8G, HDD

VENUS 95.48 [21] 7.60 Intel i7 3.4GHz, 8t, 8G/16G, HDD

GridGraph 24.11 [27] 1.92 AWS EC2, 8t, 8G/30.5G, HDD

X-stream 81.70 [27] 6.51 AWS EC2, 8t, 8G/30.5G, HDD

Task: 1 iteration of PageRank on Twitter [1] graph

TABLE VI: System performance in the best case

System Time(s) Speedup Evaluation environment

NXgraph 2.05 1.00 Intel i7 3.3GHz, 8t, 16G, SSD

X-stream 23.25 [28] 11.57 AMD Opteron 2.1GHz, 32t, 64G, SSD

GridGraph 24.11 [27] 11.99 AWS EC2, 8t, 8G/30.5G, HDD

MMAP 13.10 [34] 6.52 Intel i7 3.5GHz, 8t, 16G/32G, SSD

PowerGraph 3.60 [18] 1.79 64×(AWS EC2 Intel Xeon, 16t, 23G)

Task: 1 iteration of PageRank on Twitter [1] graph

which is a distributed system consists of a cluster of 64 high-
performance machines.

V. RELATED WORK

Previous graph processing work can be classified into two
categories, distributed systems and single-machine systems.
Distributed systems use a cluster of machines for large-scale
graph problems. These systems need to handle synchronization
and consistency problems among the machines. In contrast,
single-machine systems can solve large-scale graph problems
in a comparable time against distributed systems, with lower
power consumption and lighter communication cost.

A. Distributed Systems

Pregel [16] is a distributed synchronous system for large
graphs. Pregel applies the vertex-centric programming model.
In this model, each vertex executes a kernel function to
update its neighbor vertices. Meanwhile, Pregel adopts the
Bulk-Synchronous Parallel (BSP) model. In this model, kernel
function is executed in unit of super-steps. Kernels functions of
different vertices are executed in parallel within a super-step.
A barrier is imposed between super-steps so that the whole
execution is synchronized.

GraphLab [17] is an asynchronous distributed system de-
signed for machine learning algorithms. GraphLab applies
the vertex-centric model. Each vertex executes the updating
algorithm and is able to access graph data on other machines.
PowerGraph [18] is another asynchronous distributed system,
focusing on the partitioning of large-scale graph in a dis-
tributed graph processing systems. In the PowerGraph system,
each vertex is attached to its master machine and its mirrors

will be maintained on all other machines. All mirrors will be
sent to the master machine to update the vertices, which brings
communication overhead.

Synchronous systems suffer from the imbalanced load
among different machines while asynchronous systems make
lots of effort to guarantee the data consistency of different
machines. All these distributed graph processing systems suffer
from the overhead of fault tolerance, low robustness and heavy
communication costs. In this paper, we compare the distributed
systems with NXgraph on certain computational tasks. The
result shows that NXgraph is 1.79x faster than PowerGraph
when performing PageRank on the Twitter [1] graph.

B. Single-machine Systems

GraphChi [22] is the first graph processing system based
on the interval-shard structure on a single machine. It applies
the Parallel Sliding Windows (PSW) method for processing
very large graphs from disk. Vertices are divided into intervals
and exactly one shard is attached to each interval. The shard
consists of all edges with destination vertices in its associated
interval. Edges are sorted by their source vertex indices so that
PSW model can apply. The interval-shard structure ensures
data access locality. The sliding windows ensures streamlined
data access for each shard but among different shards, the
access pattern is random. Besides, all related edges need to
be loaded into memory in GraphChi. Therefore, GraphChi
requires relatively more disk data transfer. Another difference
between GraphChi and NXgraph is that GraphChi does not
provide high degree of parallelism, limited by its high disk
data transfer and randomness of I/O.

TurboGraph is another disk-based graph processing system,
which proposes a novel parallel model, pin-and-slide. It con-
tains a list of slotted pages. Each page contains the outgoing
edges of several vertices. TurboGraph system uses a buffer
pool in the memory to store several pages. It also divides the
vertices into several chunks to ensure data access locality. Each
chunk is loaded into memory in sequence and updated by each
edge in the buffer pool. TurboGraph requires SSD to ensure
its performance because it uses parallel I/O. Compared with
TurboGraph, NXgraph reduces the amount of data transfer and
enables streamlined disk access pattern.

VENUS [21] is more friendly to hard disks. It enables
Vertex-centric Streamlined Processing (VSP) on their system.
The system proposes v-shards to store the source vertices
of edges in each shard. VENUS provides two algorithms
with different implementations of v-shard. The first algorithm,
called VSP-I, materializes all v-shard attributes in each shard.
And the second algorithm, called VSP-II, applies merge-join to
construct all v-shard attributes on-the-fly. By involving the v-
shards, VENUS enables streamlined disk I/O with fine-grained
parallelism. NXgraph achieves streamlined disk access pat-
tern without introducing v-shards. Another difference between

419

VENUS and NXgraph is that sub-shards in NXgraph achieve
a higher locality than v-shards in VENUS.

GridGraph [27] adopts similar streamlined processing
model on a single machine. In the GridGraph system, edges
are further divided into smaller grids rather than shards in
the GraphChi system. Meanwhile, GridGraph applies a 2-level
hierarchical partitioning of the grids, which organizes several
adjacent grids into a larger virtual grid. In this way, GridGraph
can not only ensure data locality but also reduce the amount of
disk I/O. However, with a TurboGraph-like updating strategy,
GridGraph requires more disk data transfer than NXgraph.
Besides, GridGraph cannot fully utilize the parallelism of
multi-thread CPU without sorted edges.

VI. CONCLUSION

We have presented NXgraph, an efficient graph computa-
tion system that is able to handle web-scale graphs on just a
single machine. It provides three novel update strategies under
the Destination-Sorted Sub-Shard (DSSS) structure. It also has
an efficient implementation fully utilizing the main memory,
CPU cache locality and parallelism, reducing the amount of
disk I/O. Extensive experiments on three real-world graphs
and five synthetic graphs show that NXgraph outperforms
GraphChi, TurboGraph, VENUS and GridGraph in various
situations. Moreover, NXgraph, running on a single commodity
PC, outperforms PowerGraph, a distributed graph processing
system for PageRank on the Twitter graph. For future work,
NXgraph will be extended to support dynamic change on graph
structure, which will make NXgraph capable of more graph
computation tasks. We will also try to optimize our system for
some representative graph algorithms, e.g., more intervals for
targeted queries may lead to even better performance.

ACKNOWLEDGMENT

This work was supported by 973 project 2013CB329000
and 2015CB358700, National Natural Science Foundation of
China (No. 61373026, 61261160501, 61422205, 61572045),
the Importation and Development of High-Caliber Talents
Project of Beijing Municipal Institutions, Xilinx University
Program, Huawei Technologies Co., Ltd, and Tsinghua Uni-
versity Initiative Scientific Research Program. The authors
would like to thank the anonymous reviewers for their helpful
comments.

REFERENCES

[1] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” in WWW. ACM, 2010, pp. 591–600.

[2] “Facebook company info,” http://newsroom.fb.com/company-info/.

[3] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader, “Scalable graph
exploration on multicore processors,” in SC. IEEE Computer Society,
2010, pp. 1–11.

[4] S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallel graph
exploration on multi-core cpu and gpu,” in PACT. IEEE, 2011, pp.
78–88.

[5] D. P. Scott Beamer, Krste Asanović, “Direction-Optimizing Breadth-
First Search,” in SC, 2012, pp. 1–10.

[6] R. Chen, X. Weng, B. He, and M. Yang, “Large graph processing in
the cloud,” in SIGMOD. ACM, 2010, pp. 1123–1126.

[7] S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng, “Hama:
An efficient matrix computation with the mapreduce framework,” in
CloudCom. IEEE, 2010, pp. 721–726.

[8] E. Krepska, T. Kielmann, W. Fokkink, and H. Bal, “Hipg: parallel
processing of large-scale graphs,” SIGOPS, vol. 45, no. 2, pp. 3–13,
2011.

[9] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos, “Gbase: a
scalable and general graph management system,” in SIGKDD. ACM,
2011, pp. 1091–1099.

[10] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu, F. Yang,
L. Zhou, F. Zhao, and E. Chen, “Kineograph: taking the pulse of a
fast-changing and connected world,” in EuroSys. ACM, 2012, pp.
85–98.

[11] B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine on
a memory cloud,” in SIGMOD. ACM, 2013, pp. 505–516.

[12] M. Sarwat, S. Elnikety, Y. He, and M. F. Mokbel, “Horton+: a
distributed system for processing declarative reachability queries over
partitioned graphs,” PVLDB, vol. 6, no. 14, pp. 1918–1929, 2013.

[13] L. Barguñó, V. Muntés-Mulero, D. Dominguez-Sal, and P. Valduriez,
“Parallelgdb: a parallel graph database based on cache specialization,”
in IDEAS. ACM, 2011, pp. 162–169.

[14] L. Qin, J. X. Yu, L. Chang, H. Cheng, C. Zhang, and X. Lin, “Scalable
big graph processing in mapreduce,” in SIGMOD. ACM, 2014, pp.
827–838.

[15] “Giraph,” http://giraph.apache.org/.

[16] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel : A System for Large-Scale
Graph Processing,” in SIGMOD, 2010, pp. 135–145.

[17] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “GraphLab: A New Framework for Parallel Machine Learn-
ing,” in UAI, 2010, pp. 340–349.

[18] J. Gonzalez, Y. Low, and H. Gu, “Powergraph: Distributed graph-
parallel computation on natural graphs,” in OSDI, 2012, pp. 17–30.

[19] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “GraphX : Graph Processing in a Distributed Dataflow
Framework,” in OSDI, 2014, pp. 599–613.

[20] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: A peta-
scale graph mining system implementation and observations,” in ICDM.
IEEE, 2009, pp. 229–238.

[21] J. Cheng, Q. Liu, Z. Li, W. Fan, J. C. S. Lui, and C. He, “VENUS:
Vertex-Centric Streamlined Graph Computation on a Single PC,” in
ICDE, 2015, pp. 1131–1142.

[22] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-Scale Graph
Computation on Just a PC,” in OSDI, 2012, pp. 31–46.

[23] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim, J. Kim, and H. Yu,
“TurboGraph: A Fast Parallel Graph Engine Handling Billion-Scale
Graphs in a Single PC,” in SIGKDD, 2013, pp. 77–85.

[24] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–
113, 2008.

[25] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: cluster computing with working sets,” in HotCloud, vol. 10,
2010, p. 10.

[26] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: bringing order to the web.” 1999.

[27] X. Zhu, W. Han, and W. Chen, “GridGraph : Large-Scale Graph Pro-
cessing on a Single Machine Using 2-Level Hierarchical Partitioning,”
in ATC, 2015, pp. 375–386.

[28] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-Stream: Edge-centric
Graph Processing using Streaming Partitions,” in SOSP, 2013, pp. 472–
488.

[29] Z. Fu, M. Personick, and B. Thompson, “Mapgraph: A high level api
for fast development of high performance graph analytics on gpus,” in
GRADE. ACM, 2014, pp. 1–6.

[30] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun, “Green-Marl: A DSL
for Easy and Efficient Graph Analysis,” in ASPLOS, 2012, pp. 349–362.

[31] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, “Challenges in
parallel graph processing,” Parallel Processing Letters, vol. 17, no. 01,
pp. 5–20, 2007.

[32] “Yahoo! altavisata web page hyperlink connectivity graph, circa 2002,”
http://webscope.sandbox.yahoo.com/.

[33] “Livejournal social network,” http://snap.stanford.edu/data/
soc-LiveJournal1.html.

[34] Z. Lin, M. Kahng, K. Sabrin, D. Horng, and P. Chau, “MMap : Fast
Billion-Scale Graph Computation on a PC via Memory Mapping,” in
ICBD. IEEE, 2014.

420

