
3D-SWIFT: a High-performance 3D-stacked Wide IO DRAM∗

Tao Zhang, Cong Xu,
Yuan Xie

Penn State University
{zhangtao, czx102,

yuanxie}@cse.psu.edu

Ke Chen
Oracle Corporation

ke.c.chen@oracle.com

Guangyu Sun
Peking University
gsun@pku.edu.cn

ABSTRACT
Wide IO has been standardized as a low-power, high-bandwidth
DRAM for embedded system. The performance of Wide IO, how-
ever, is limited by the power constraint and unexploited fine-grained
memory parallelism. In this work, we propose a novel architecture,
3D-SWIFT, that achieves high access parallelism by partitioning a
memory bank into sub-banks with a fine access granularity, which
takes advantage of 3D die-stacking. The power constraint is nat-
urally eliminated by the fine-grained structure due to the reduced
activation power. Moreover, we propose sub-bank autonomy and
introduce corresponding management policies to enable an intel-
ligent interface protocol. Thanks to sub-rank autonomy, the over-
head of tracking huge concurrent accesses in the memory controller
is significantly reduced, making our 3D-SWIFT architecture scal-
able for future memory systems. We evaluate our 3D-SWIFT and
the results show that 3D-SWIFT can achieve 87.6% performance
improvement compared to the state-of-the-art Wide IO.

1. INTRODUCTION
As an early adoption of 3D integration, 3D-stacked DRAM is a

promising technology for overcoming the barriers in DRAM scal-
ing, thereby offering an opportunity to break the “memory wall”
with improved DRAM cell density (capacity) and wire routing re-
sources (connectivity), as well as reduced wire length (latency and
power) [1, 2, 3, 4, 5, 6]. In particular, Wide IO DRAM [1] has
been standardized by JEDEC as a high bandwidth and low-power
3D DRAM for embedded SoC system. A Wide IO DRAM has four
channels that are independent of each other. Each channel is 128-
bit wide with single data rate. The Wide IO follows the low-power
design methodology of LPDDR so that it removes the delay lock
loop (DLL) and on-die termination (ODT) logic and applies lower
supply voltage to achieve low static power.

Unfortunately, Wide IO does not take full advantage of the die-
stacking since it has to comply with conventional DRAM structure
where the bank size is large and the number of banks is small. In
addition, the increasing number of channels in turn mandates more
memory controllers (MCs) and interconnects between them, bring-
ing in issues that may hinder its popularity. As 3D die-stacking
eliminates (or at least alleviates) most of the physical limitations,
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it provides the opportunity to further enhance memory parallelism
with novel memory architecture. In this work, we propose 3D-
SWIFT to enable a fine-grained memory architecture so as to im-
prove performance in Wide IO. The contributions of our work can
be summarized as follows.

• Fine-grained 3D DRAM structure. We find that the power
constraint can suppress the performance of Wide IO DRAM.
To eliminate the power constraint, a bank in 3D-SWIFT is
further divided into multiple sub-banks and each sub-bank
has the ability to independently serve a memory request and
provide an entire cacheline. Once there is a memory access,
only the target sub-bank is activated. In this way, the fine-
grained access reduces the activation/precharge current and
thus enables higher memory parallelism. To our best knowl-
edge, this is the first work that takes into account power con-
straint in designing high-performance Wide IO.

• Sub-bank “autonomy”. Leveraging the close-page row-
buffer management policy, sub-bank autonomy is developed
to combine the commands RAS, CAS and PRE as REQ to ac-
tivate a sub-bank, carry on the data burst, and close the sub-
bank automatically. We devise a packet-based interface pro-
tocol accordingly to simplify the memory transaction. More-
over, by making use of the rich routing resource on the logic
die, a wide data bus is employed to deliver a full cacheline in
one cycle.

• Simplified memory controller design. 3D-SWIFT takes
into account the design complexity of MCs. By leveraging
the sub-bank autonomy and packet-based protocol, a MC of
3D-SWIFT can be integrated into the processor die so that it
is visible to the processor for the system-level optimization.

2. BACKGROUND AND MOTIVATION
In conventional DDRx family, the pin count constraint is a ma-

jor factor that limits the memory bandwidth due to the packaging
limitation. The long off-chip memory bus implemented with the
transmission line mandates the trade-off between a high operat-
ing frequency and the channel capacity because of the load and
signal integrity. In addition, since all DRAM devices (chips) in a
rank work in lockstep, DDRx exposes an extremely large logic row
while only a small fraction of data is delivered for each memory
access (see Figure 1a). Even though the data overfetching is ben-
eficial for applications with high spatial locality, the fixed device
association limits bank-level parallelism since few banks are visi-
ble to the MC.

Once we relocate the DRAM from off-chip to on-chip, multi-
ple DRAM dies can be stacked together to increase the cell den-
sity. The Wide IO (Figure 1b) is applicable for memory bandwidth
improvement for two reasons. First of all, the pin-out constraint
is eliminated and the on-chip I/O bus replaces the long off-chip
transmission lines. Moreover, the compact DRAM layout reduces
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Figure 1: Data access mechanisms in different memories. (a) DDR3: the data is distributed over all devices in a rank. Only a small fraction
of row is fetched in each memory access; (b) Wide IO: the data is placed in a large row and no individual device exists. Still only a portion
of data is fetched; (c) 3D-SWIFT: the width of fetched data matches cacheline width. The rest of a row is idle.

memory access latency as well as power consumption. Despite the
benefits a Wide IO provides, some new problems emerges and need
to be solved carefully:
• More restricted power and current density constraints. A
new problem in Wide IO is the requirement of low-power design,
which is critical for the success of 3D DRAM due to the increas-
ing power density [7]. Since no DLL or ODT is employed, the
background power is dramatically reduced and the burst and ac-
tivation/precharge power now starts to dominate in the Wide I/O
DRAM. As illustrated in Figure 1b, the entire row is activated but
only a portion of data is fetched, which still indicates large power
redundancy. In addition, considering the power supply challenges
in 3D ICs [8, 9], the power constraint becomes more restricted in
3D context. Therefore, Wide IO has conservatively switched the
restriction on memory accesses from four-bank activation window
(tFAW) to two-bank activation window (tTAW) and extended the
window width from 30ns to 50ns (the lower the better for perfor-
mance) [1].

As shown in Figure 2, with a large tTAW constraint (tTAW=50ns),
no further improvement is observed even if the bank-level paral-
lelism is augmented as the bank number increases from 8 to 64.
In other words, the power constraint can significantly suppress the
bank-level-parallelism in a rank (channel), which has also been ver-
ified in [10] when close-page row buffer management policy is ap-
plied. Once the power constraint is eliminated (tTAW=0ns), the
performance gain can be up to 44% when increasing the bank num-
ber from 8 to 64. Moreover, by getting rid of tTAW constraint, the
bank-level parallelism can further provide 14% performance im-
provement. As a result, neglecting the power constraint and simply
increasing the bank number or bank size in 3D DRAM is not a
wise choice in terms of either performance or power. Instead, 3D
DRAM design should carefully cope with the power constraint to
make sure it does not incur performance degradation.
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Figure 2: The impact of power constraint on 3D DRAM. The sim-
ulation is done with 8/64 banks(BK) and tTAW=50ns/0ns (see Sec-
tion 5 for the details of simulation setups).

• Increased design complexity of memory controller. The sec-
ond problem is that the increasing number of channels one Wide
IO provides can result in higher design complexity of memory con-
trollers. For example, eight independent channels have been imple-
mented by Tezzaron [3]. While more channels can effectively im-
prove the bandwidth, the need of multiple MCs induces noticeable

area overhead when MCs are deployed in the processor die. These
MCs are required to have either peer-coordination [11] or smart ap-
plication assignment [12] to achieve better memory performance,
which aggravates the design complexity. Alternatively, HMC [2]
puts the memory controller on the logic layer, which leaves little
room for a system designer to conduct further system optimization
on the MC for the better communication with 3D DRAM [13].

3. 3D-SWIFT–A NOVEL WIDE IO DRAM
As shown in Figure 3, 3D-SWIFT re-maps a 2D DRAM that has

nine devices (eight for data and one for ECC) and eight banks per
device into the 3D-stacked DRAM. With respect to the process op-
timization, 3D-SWIFT separates control and interface logics from
DRAM cells and put them in the logic layer as other state-of-the-
art 3D DRAM does. Note that 3D-SWIFT is extensible when more
ranks are employed. Those ranks can be either stacked vertically or
placed horizontally as neighbors. Like HMC, multiple 3D-SWIFTs
can be populated on the interposer to increase the memory capacity.

Rank

Processor

DRAM Cell Layer
Logic Layer

Interposer

Rank0 Rank1
Rank2 Rank3

(a) CPU+3DMEM Stack (b) Interposer Connection

Rank0

High speed serial link

Rank1
Rank2 Rank3

(c) PCB Connection

Rank0 Rank1
Rank2 Rank3

TSV Array

Bank

PCB
1/4 Sub-bank

Figure 3: 3D-SWIFT memory subsystem and possible applica-
tions. (a) 3D-SWIFT directly stacks on the top of CPU; (b) 3D-
SWIFT is connected to CPU by interposer; (c) 3D-SWIFT is placed
on PCB with high speed links. Multiple 3D-SWIFTs can be popu-
lated to provide large memory capacity (not shown).

3.1 Fine-grained Memory Architecture
Without loss of generality, we use an example DRAM design

with specific configurations to demonstrate the 3D-SWIFT design.
To enable the fine-grained memory access, a 128M-bit (16K×8K)
bank is further split into 16 identical sub-banks so that each sub-
bank is sized by 16384×512 to provide a full cache line. As a con-
sequence, a device with eight banks has 128 sub-banks and totally
2,048 sub-banks are available in 4 channels within the four layers.
As multiple DRAM layers are provided, each sub-bank can be fur-
ther folded [14]. For example, when there are four layers, only
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four sub-banks belonging to the same bank are on one layer. Since
a sub-bank can serve a memory request independently, 3D-SWIFT
can significantly improve the memory parallelism. In particular,
TAW constraint can be eliminated since ideally 3D-SWIFT allows
as many as 2×16=32 sub-banks to be activated in pipeline due to
the reduction of active row size1, which always holds with 1/cycle
request rate and tRC row cycle (in this work, tRC=36ns=15cycles).
Furthermore, the 16 identical sub-banks guarantee that 3D-SWIFT
can provide sustained bandwidth even in the the worst case, where
all requests access the same bank but no sub-bank conflict occurs.

3.2 Sub-bank Autonomy
In traditional DDRx protocol, MC and DRAM work in a master-

slave manner. As a master, MC must send various commands, in-
cluding RAS (row activation), CAS (column read/write) and PRE
(precharge), to order the target DRAM bank to complete a data
transaction. These commands can only be issued under various
timing constraints (tRAS, tRCD, tRP, etc.). As MC is a queuing
system, commands can be rescheduled to maximize row buffer hit
rate and/or bank-level parallelism. The growing design complex-
ity of the scheduler, however, incurs large hardware overhead and
makes MC error-prone.

To offload MC’s complexity, 3D-SWIFT employs the sub-bank
autonomy, in which each sub-bank can automatically go through
the state transition loop without intervention from MC. To enable
the sub-bank autonomy, one sub-bank should be aware of the tim-
ing stamp to complete the state transition. Thanks to the deter-
ministic access latency listed above, a transition generator can be
deployed to easily signal the sub-bank when to move. As a result,
a new client-server relation is established between MC and 3D-
SWIFT: Whenever there is a new memory request, MC (client) only
needs to send the request to 3D-SWIFT and then wait for the sub-
bank’s response. Once a sub-bank (server) detects a request, the
sub-bank carries on the transition and completes the data transfer
automatically. As a result, 3D-SWIFT eliminates the complicated
and area-consuming scheduler in MC.

3.3 Packet-based Interface Protocol
With respect to the sub-bank autonomy, a simple packet-based

interface protocol is developed to simplify MC’s interface design.
As shown in Figure 4, MC sends a REQ with a full memory address
and read/write signal to 3D-SWIFT. After tRCD+CL cycles, MC
should receive the data on the data bus if it is a read, or put the
write data on the data bus in the case of a write. Multiple memory
requests can be issued in pipeline as long as these requests do not
cause sub-bank conflict, which happens once a request reference to
a busy sub-bank. As a result, even though overfetching is disabled,
a series of back-to-back requests can be issued to mimic the open-
page overfetching. In addition, the request pipeline can also be used
to support a DMA transfer that usually has a larger data size than a
cacheline, in which case MC generates multiple memory requests
in burst to 3D-SWIFT.

To enable the sub-bank autonomy, the automatic state transition
shown in Figure 4 must be designed so that the sub-bank knows
how to move forward to complete data transaction. A dedicated
transition generator is deployed as a timer to signal the sub-rank to
complete transition (see Figure 5). According to the cycle number
of tRC, (15cycles), a 4-bit counter is sufficient to count the cycle
number in the transition generator. Whenever one of the control
signals “Data phase”, “Pre phase” or “Idle” is asserted, the sub-

1In fact, the number of concurrent active sub-banks in 3D-SWIFT
is less than 16 because of the 2-cycle data burst and the read/write
turn-around overhead.

. . .

R1 R2REQ

Clock

DATA

tRCD

. . .

tRAS

SB1 SB2
. . .

ADDR

. . .
W/R

ACT REQ

tRCD

tRAS

tRC

idle act

data
. . .

IDLE 

tRP

tRC

pre

  

 

ACT 

DATA PRE 

DATA

Sub-bank1

Sub-bank2

Ri

SBj

PRE IDLE 

Data1 Data2

CL

Figure 4: Packet-based interface protocol. Memory controller only
issues REQ to initiate a memory access. The sub-bank can com-
plete the data transfer and precharge to close the row automatically.

Write 
Buffer

Read 
Buffer

Arbiter
Refresh
Control

Power 
Control

Read 
Driver

Write 
Driver

B
Busy 
Table

PD

Data 
Timer

REQ/& 
ADDR & 

W/R

DATA

Req Queue

Memory 
request

Write Data

Read Data

clock

. . .REQ
1

clock

Idle
Data 

phase

tRCD. . .
tRC

clock

1

REQ
(from MC) enable

tRC

tRCD

tRAS

Idle
Data 

phase
Pre 

phase

reset

To sub-bank

=

=

=
rst

counter

D

reset
en

(1) 3D-SWIFT Memory Controller

(2) Transition Generator

(3) Data Timer
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controller; (2) Transition generator; (3) Data timer. The length of
the counter and shifter are determined by the cycle number of tRC.

bank automatically moves to the next state till the time it returns to
idle.

3.4 The Design of Memory Controller
As mentioned, the proposed packet-based interface protocol can

significantly reduce the design complexity and area overhead of
MC. Unlike a conventional MC that needs to maintain a bank sta-
tus table for guarding the timing constraints, a 3D-SWIFT MC
(Figure 5) only needs to affirm the freedom from sub-bank con-
flict with simple logic. In addition, command queues are removed
to improve area efficiency. Considering the negligible footprint of
the data timer, 3D-SWIFT is able to reduce MC’s area and make it
simpler for verification.

Different from HMC, of which the MC is transparent to the user,
the smaller MC in 3D-SWIFT can be integrated into the processor
die with few pin-outs. As a consequence, processor designers can
apply system-level optimization on the “visible” MC. We believe
this is meaningful for the wide adoption of 3D-SWIFT.

Busy Table. As MC is responsible to avoid sub-bank conflict, a
busy table is deployed to track sub-banks’ status. As shown in Fig-
ure 5, one table entry has two bits: 1) the “busy” bit tells whether
the sub-bank is idle (‘0’) or busy (‘1’); and 2) the “PowerDown”
bit indicates if the sub-bank is in PowerDown mode. Since the
size of busy table is relatively small (4,096bits), a 512B multi-port
(4R4W) register file is simply employed. The area and power of
the busy table is estimated based on [15].

Data Timer As mentioned in Section 3.2, MC and 3D-SWIFT
have the agreement that they know exactly when to put the data on
the data bus. Different from a sub-bank that gets the information
from the transition generator, MC completes the data transfer with
the assistance of a data timer. The data timer is in fact a bit shifter
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Table 1: Hardware Implementation Summary

Name Type Area Power
Rank decoder &

5-32dec 58.92μm2 9.40μW
Device decoder

Bank decoder 3-8dec 13.41μm2 2.05μW

Subbank decoder 4-16dec 27.87μm2 4.68μW

Transition generator counter 55.75μm2 18.71μW

Data timer shifter 93.25μm2 35.85μW

Row address register register 101.61μm2 35.92μW

Busy table [15] regfile 0.02mm2 25mW

that has tRC bits. Figure 5 illustrates the function of the data timer.
A valid request sets the left-most bits to indicate a data transfer is
scheduled. Once the “Data phase” is asserted, MC knows there
should be a data transfer in the following cycle. The “Idle” phase
notifies MC to clear the busy bit in busy table. Two data timers
are used to distinguish the data read and write. They also help MC
meet the bus turn-around constraint.

4. DESIGN OVERHEAD ANALYSIS
Since DRAM is very cost-sensitive and area is the major contrib-

utor to the memory cost, we strive to minimize the area overhead
of our sub-bank design in 3D-SWIFT. In this section, we elaborate
the floorplan of the 3D-SWIFT with sub-bank design in addition to
the description in Section 3.

Sub-bank DRAM Floorplan. In general, our goal is to increase
the data width per mat to output all bits in the sense amplifier (i.e.,
row buffer) without introducing extra metal layer or area overhead
on wire interconnect. Figure 6 shows the 3D-SWIFT floorplan in-
side a bank which consists of 16 sub-banks. As shown, each sub-
bank has 8 mats on one layer, with a total size of 8Mb over four
layers. Note that we keep a consistent mat size with the same 512
wordlines and 512 bitlines as in the conventional DRAM design.
To minimize the overhead on intra-bank wiring incurred by the
sub-bank partitioning, we leverage similar design as in the prior
fine-grained 3D DRAM design [14].

In the conventional 2D DRAM, since each mat outputs 4 data
bits, there are 512/4=128 column select lines per mat. Note that the
numbers of column select lines (M3) and global data lines (M3) in
a mat are complementary, meaning that the product of the two num-
bers is in fact the total number of bitlines of a mat. Alternatively, in
3D-SWIFT we can switch the usage of the wires and have 128 data
lines and 4 column select lines. This is easily accomplished by flip-
ping the direction of the three-state driver that connects the column
select line and data line (the driver input is the sense amplifier out-
put). In this way, the output of a mat is increased by 128/4=32 times
without incurring any area overhead or wire routing overhead. In
order to provide the full 512 bits from each mat’s sense amplifier to
feed an entire cache line, we use an internal burst length of 4.

Simply switching the column select line and global data line is at
the risk of increasing the data line access latency, because the orig-
inal column select lines are usually densely routed above the mats
and are relatively narrow and slow. Specifically, the new global
data line has a pitch of only 8F (while F is feature size=45nm).
Fortunately, because we can partition the bank and sub-bank into
different die layers (connected with TSVs), the length of the global
dataline (equal to the height of the bank) is effectivelly shortened
by four folds. In addition, we can layout the TSVs in the middle
ground between the mats and share the TSVs between the half sub-
banks on two sides as shown in Figure 6, which further reduces the
data line length by half. In this way, the wire latency and power
consumption is effectively reduced to 1/8 of the original.

Figure 6: The Floorplan of 3D-SWIFT. A sub-bank consists of 32
mats and each mat is 256Kb (512×512).

Area Overhead. Based on the above-mentioned design, we ba-
sically eliminate the data wire routing overhead. The area overhead
now comes from two parts: 1) the address/command buses and the
row drivers routed to the individual sub-banks because they need to
be accessed independently. 2) The TSV layout overhead. Here we
assume that all sub-banks in a bank share a common 128-bit wide
TSV data bus. We modified CACTI-3DD [16] to model the sub-
banked 3D DRAM with the aforementioned configurations, and
compare the results against a Wide IO design with the same mem-
ory capacity and mat size. The results show that our design has
only a negligible 1.6% area overhead with each DRAM die size as
29.3mm2.

Specifically for the TSV overhead part, according to ITRS’ pro-
jection [17], the size of TSV will quickly shrink to 2-4μm. Based
on the published 3D DRAM prototype [5, 6], the TSV used in this
work is set as 2μm wide, 6μm high, and has 4μm pitch. The TSV
count is calculated as follows. In one bank, there are 128 TSVs
for data delivery. In addition, one redundant TSV is inserted to ad-
dress the TSV reliability issue [18]. Given 14-bit row address and
5-bit control signals, one bank needs 147 TSVs with a total num-
ber of 4,704 TSVs employed in each layer, which consumes about
0.075mm2 as one TSV takes 16μm2.

In addition, the wire model in CACTI-3DD is used to calculate
the bus delay, where 1mm wire introduces 0.087ns delay and TSV
has 0.03ns delay at 45nm technology. Since the RC delay is pro-
portional to the wire length, the longest path, which crosses four
layers and goes from the corner to the center, is around 5.35mm
and thus introduces 0.58ns delay. Compared to the 2.5ns clock pe-
riod, the signal propagation delay does not incur extra bus latency
(in cycle).

Control Logic Overhead. Except the busy table, all control log-
ics in the 3D-SWIFT and MC have been implemented and verified
by ModelSim. All designs are further synthesized by Design Com-
piler with TSMC 45nm technology for the area and power analysis.
Table 1 shows the the synthesis results.

As the MC of 3D-SWIFT can be integrated into the processor
die, it does not consume any area in 3D-SWIFT. The main area
overhead caused by the control logic is from the dedicated row ad-
dress register. Given 2,048 sub-banks in 3D-SWIFT, the row ad-
dress register consumes 0.21mm2 area in total (four layers). Simi-
larly, the area overhead of transition generator is 0.12mm2, if each
sub-bank also has a dedicated generator. In fact, the number of
transition generators can be reduced to the value of tRC (in cy-
cle) by sharing the generators among all sub-banks, as at least one
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Table 2: Simulation Platform Configuration

System
Cores 4, ALPHA, out-of-order

CPU Clock Freq. 3 GHz
LDQ/STQ/ROB Size 32 / 32 / 128 entries
Issue/Commit Width 8 / 8

L1-D/L1-I Cache
32kB / 32kB 2-way

2-cycle latency
D-TLB/I-TLB Size 64 / 48 entries

L2 Cache
Shared, Snooping, 4MB, LRU

8-way, 15-cycle latency
Memory

2D

JEDEC-DDR3, 2GB, 2 ranks
8 banks(×8), 64-bit bus,
800MHz (1.6GHz DDR)

tRAS-tRCD-tRP-tTAW: 28-10-10-24

3D-WIDE
128-bit/channel, 4-channel, 400MHz
tRAS-tRCD-tRP-tTAW: 20-8-8-20

3D-SWIFT
128-bit/channel, 4-channel, 400MHz

tRAS-tRCD-tRP-tTAW: 20-8-8-0

transition generator is free after a row cycle. However, the shared
transition generators induce the internal multiplexing logic and dis-
tribution network. Therefore, we insist on the dedicated transition
generator. Accounting for the address decoder, the area overhead
caused by control logic circuit is 0.35mm2, which is only 1.2% of
one layer.

5. EXPERIMENT

5.1 Evaluation Methodology
In this work, we adopt gem5 [19] as our simulation platform.

We modified the DRAMSim2 [20] and successfully integrated it to
gem5 as the DRAM model. The SPEC2006 [21] and STREAM [22]
benchmarks are employed as multi-programmed benchmarks. Nor-
malized Instructions-Per-Cycle (IPC) is used as the speedup crite-
ria. Table 2 shows the gem5 setup during the simulation. In this
work, two memory systems are developed as our reference models.
2D is the base model that simulates a commodity JEDEC DDR3-
1600 SDRAM. 3D-WIDE is a Wide IO DRAM model that lever-
ages the wider memory bus to deliver the burst data. For the fair-
ness of comparison, even though 3D-WIDE has four independent
channels, all channels are used as ranks and connected to a single
MC. In addition, the data bus in 3D-WIDE runs at 400MHz with
double data rate, which is envisioned as the next generation Wide
IO. FR-FCFS scheduling scheme [23] is used in 2D and 3D-WIDE,
to maximize the row buffer hit rate, whilst FCFS is deployed in 3D-
SWIFT due to the close-page policy. The key timing parameters are
shown at the bottom of the table. Note that the tTAW of 3D-SWIFT
is 0 to indicate that it eliminates the power constraint.

5.2 Performance Analysis
Single-core Simulation. Firstly, we characterize the benchmark

in the single-core simulation. We run each SPEC2006 CPU bench-
mark with reference input size for 100 million instructions to warm
up the cache and another 100 million instructions for the statistics.
According to the miss per kilo instructions (MPKI) of last level
cache (LLC), we classify the benchmarks into three categories.
The symbols H, M, and L stand for the applications that have high
(>10), medium ([1, 10]), and low memory intensity (<1), respec-
tively. Only eight benchmarks are selected as the representatives
of L class because the rest have almost the same results. Table 3
lists the classification and the corresponding MPKIs. All selected
benchmarks are numbered as shown in the table.

Table 3: Benchmark Classification
#Benchmarks(MPKI)

H
1bzip2(45.89), 2bwaves(36.62), 3zeusmp(19.37), 4gobmk(37.69),
5sjeng(33.51), 6lbm(26.44), 7STREAM(34.43)

M
8milc(5.13), 9cactusADM(7.85), 10leslie3d(8.33),
11libquantum(6,94), 12wrf(7.33), 13astar(1.01)

L
14soplex(0.16),15gamess(0.12), 16gromacs(0.14),17sphinx3(0.08),
18gcc(0.12),19hmmer(0.08),20GemsFDTD(0.001),21namd(0.04)

MixH

mix1: bzip2, bwaves, zeusmp, lbm
mix2: lbm sjeng, gobmk, stream
mix3: bzip2, sjeng, zeusmp, stream
mix4: zeusmp , bwaves, gobmk, lbm

MixM

mix1: milc, cactusADM, leslie3d, wrf
mix2: astar, libquantum, wrf, milc
mix3: cactusADM, leslie3d, astar, libquantum
mix4: wrf, libquantum, leslie3d, astar

MixL

mix1: gcc, gamess, gromacs, namd
mix2: GemsFDTD, soplex, hmmer, sphinx3
mix3: gcc, soplex, gromacs, sphinx3
mix4: GemsFDTD, gamess, hmmer, namd

The performance result of signle-core simulation is shown in
Figure 7a. 3D-WIDE experience 13.5% performance drop on aver-
age. The performance degradation of 3D-WIDE mainly stems from
its larger access latency, which adversely affects the memory par-
allelism. The results from H and M benchmarks indicate that 3D-
WIDE has poor performance with memory-intensive applications.
In contrast, 3D-SWIFT only has small performance loss in some
H and M benchmarks. On average 3D-SWIFT achieves 17.8% and
38.4% performance improvement over 2D and 3D-WIDE, respec-
tively.

In particular, cactusADM has 2.18X improvement with 3D-
SWIFT. Note that cactusADM has absolutely random accesses
as the row buffer hit rate is 0. Therefore, 3D-SWIFT can fully take
advantage of sub-bank activation to maximize the memory concur-
rency. This observation indicates that 3D-SWIFT is more promis-
ing in a multi-core system in which the intensive memory requests
are more likely to be random due to the interference among appli-
cations.

Four-Core Simulation. We randomly select benchmarks from
each category for four-core simulation. The mixed benchmarks are
listed at the bottom of Table 3 and Figure 7b presents the results.
Similar to the single-core simulation, 3D-SWIFT performs better
in H and M benchmarks. In general, 3D-SWIFT achieves 64.7%
(58.2%) and 87.6% (67.3%) improvement over 2D, and 3D-WIDE,
respectively for H-Mix (M-Mix) benchmarks. The application in-
terference that destroys the data locality and makes the memory
request more random is the main reason for the performance im-
provement, as observed in [24].

Impact of Power Constraint (tTAW). As mentioned, the tTAW
becomes larger (50ns) in [1]. We intentionally apply a 20ns tTAW
to 3D-WIDE to see the impactof tTAW. As shown in Figure 8a,
tTAW has significant impact on the memory-intensive applications.
Particularly, STREAM has 21.5% performance drop compared with
larger tTAW. On average, 8.5% performance degradation is ob-
served, which results from the more restricted power constraint on
Wide IO. As a result, 3D DRAM design should carefully cope with
the power constraint and 3D-SWIFT is one of potential solutions.

Address Mapping. As shown in Figure 8b, we evaluate the im-
pact of three address mapping schemes: “bank(b):subbank(sb):row(r)”,
“b:r:sb”, and “r:sb:b” and compare it to the baseline “r:b:sb” which
maximizes the sub-bank-level parallelism. First of all, there is no
difference to prioritize the sub-bank-level (r:b:sb) or bank-level par-
allelism (r:sb:b) since both levels can be accessed in parallel. In
contrast, both b:r:sb and b:sb:r introduces significant performance
drop. The reason is these two schemes suppress the sub-bank-level
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Figure 7: Performance results of single-core and 4-core simulation. All results are normalized to 2D DRAM design.
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Figure 8: Sensitivity Study. (a) Impact of tTAW; (b) Performance
with different address mapping schemes. “r”–row, “b”–bank, “sb”–
sub-bank.

parallelism. In particular, b:sb:r is the worst case since it maps a
large continuous memory space to a single sub-bank, where lots
of sub-bank conflicts are fired so that following memory requests
must stall and access the sub-bank sequentially. As a result, the
overall performance drops by 33.5% and some applications even
experiences 75% degradation. Therefore, 3D-SWIFT adopts r:b:sb
as the solution.

6. CONCLUSION
In this work, we propose a fine-grained 3D-stacked Wide IO

DRAM architecture–3D-SWIFT, to exploit high memory parallelism
for improving performance and power efficiency. Sub-bank auton-
omy and packet-based interface protocol are devised to simplify
the MC design. The experiment results show that 3D-SWIFT can
achieve 64.7% and 87.6% performance improvement than conven-
tional 2D DRAM and 3D Wide IO, respectively. The results indi-
cates the promising future of 3D-SWIFT.
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