
A Fast and Accurate Approach for Common Path
Pessimism Removal in Static Timing Analysis

Baihong Jin†, Guojie Luo,†‡§ and Wentai Zhang†
†Center for Energy-efficient Computing and Applications, School of EECS, Peking University

‡PKU-UCLA Joint Research Institute in Science and Engineering
§Collaborative Innovation Center of High Performance Computing, National Univ. of Defense Tech.

Email: happyucb@gmail.com, gluo@pku.edu.cn, rchardx@gmail.com

Abstract—The dual-mode delay model, while being effective
for characterizing on-chip timing variations, also yields timing
analysis results that are overly pessimistic due to the Common
Path Pessimism (CPP). In this paper, we develop a fast and
accurate block-based algorithm for removing this pessimism
in timing analysis, when the dual-mode delay model is used.
We illustrate the effectiveness of our algorithm on a set of
benchmarks from the TAU 2014 Contest [1].

I. INTRODUCTION

Timing closure has always been the main concern of digital
designers. A design team may spend months on the design
iterations to achieve the timing target. The purpose of Static
Timing Analysis (STA) techniques is to estimate the maximum
frequency that a digital circuit can achieve, and an accurate
estimation will reduce the number of design iterations and
improve the design quality.

As device scaling continues, the process variations have
become more significant and also harder to model. Dual-mode
analysis, or “early-late split”, provides a simple yet effective
way to model the the On-Chip Variation (OCV) in timing
analysis, where each timing edge in the timing graph has
an early-mode delay and an late-mode delay that bounds the
possible delay values. However, as will be introduced shortly,
this delay modeling approach, when directly incorporated
into block-based timing analysis schemes, will bring about
undesirable Common Path Pessimism (CPP).

Over the past decades, there have been a number of efforts
at Common Path Pessimism Removal (CPPR) techniques [2],
[3], [4], which can be traced back to the early work of
Hathaway et al [2]. The recent TAU 2014 Contest [1] has
inspired a number of new approaches for CPPR. Among the
contest winners, Yang et al. proposed using a dynamic branch-
and-bound technique to retrieve the true critical paths [5],
based on the pre-CPPR timing analysis results. Huang et al. [6]
adopted a sophisticated path-based method and also achieved
a good acceleration performance on parallel platforms.

Different from the aforementioned approaches, our ap-
proach to be introduced in this paper can directly derive
accurate timing analysis results without CPP from a block-
based timing analysis flow. To the best of our knowledge,
this approach has not been seen in the previous literature. To
demonstrate the effectiveness of the proposed approach, we
prototyped the algorithm and compared it with the winners
in the TAU 2014 Contest. It is worthy to note that in this
paper we restrict our scope to, as in the TAU 2014 Contest,

edge-triggered sequential circuits with a tree-structured clock
network. For discussions on more general clock networks,
readers are referred to [2], [3], [4].

The remainder of this paper is structured as follows: Sec. II
gives the necessary background on STA. In Sec. III, we
formulate the CPPR problem under bounded delay models.
Detailed descriptions and analysis on our algorithm are given
in Sec. IV and the experimental setup and results are presented
in Sec. V. We conclude the paper in Sec. VI.

II. PRELIMINARIES

A. Timing Graph

A timing graph abstracts the timing properties of a circuit.
Formally, a timing graph G = (V,E) is a Directed Acyclic
Graph (DAG) where V is the set of vertices (nodes) and E
the set of edges. The pins of circuit elements, as well as
the Primary Inputs (PIs) and the Primary Outputs (POs) of
the circuit, are represented as vertices. Gate and wire delay
information is described by the weights on the corresponding
edges. In dual-mode analysis, each edge carries a weight
wi = {δi, δi} that bounds all possible delay values δi on edge
ei, i.e.

δi ≤ δi ≤ δi. (1)

Besides, it is often convenient to connect all PIs to a virtual
source node vsrc, which results in a timing graph with a single
source. The weights on virtual edges connecting vsrc and PIs
can be used to model the input arrival times.

A path p in G can be defined as an alternating sequence
of vertices and edges,

p = {v0, e0, v1, e1, . . . , en, vn+1}. (2)

In this paper, a path unless otherwise stated is assumed to
start at vsrc. The weight of a path W (p) = {D(p), D(p)} in
dual-mode analysis, where

D(p) =

n∑
i=0

δi, D(p) =

n∑
i=0

δi (3)

are respectively the lower and the upper bounds of the path
delay D(p). A path is said to be complete if it connects vsrc
and a PO. In other words, a complete path cannot be extended
in the timing graph. An incomplete path is a prefix of one or
several complete paths.

B. Sequential Circuits and Common Path Pessimism (CPP)

A sequential circuit is made up of computational nodes
and memory elements [7], which in general can be divided
into two parts, the clock network and the datapath. The clock
network distributes the clock signal to the clock input (CK
port) of each flip-flop (FF). In this study, we assume the clock
network to be a tree. The datapath is comprised of the rest of
the circuit.

As shown in Fig. 1, between two successive clock cycles a
data signal is transmitted from the launch FF to the capture FF
through the datapath. For the signal to be correctly latched into
FF2, setup time and hold time constraints need to be satisfied.

D Q

CK

Launch
FF D Q

CK

Capture
FF

CLOCK

Diverging
Point

Launch
Path

Capture
Path

Common Path

Datapath

Fig. 1. Illustration of a simple sequential circuit that shows how the signal
is latched into the capture FF from the launch FF.

In STA, a test checks whether or not a timing constraint
(setup time, hold time, etc.) is satisfied. The degree of satisfac-
tion can be quantified by the test slack, which is the difference
between the required arrival time and the earliest/latest arrival
time at a given node.

In dual-mode analysis, the CPP arises from the common
portion between the launch and the capture clock paths. Taking
the setup test as an example, when analyzing the worst-case
situation we implicitly assume the launch path and the data
path in late mode while the capture path in early mode. How-
ever, a signal cannot simultaneously experience two different
delay values on the common clock path. Therefore, the CPP
renders an underestimated slack value. The case of hold tests
can be analyzed in a similar way.

C. Block-based STA

In general, STA algorithms fall into two categories, path-
based and block-based approaches. Path-based approaches
search for the critical path in an exhaustive way. As a result,
they usually achieve better accuracy and less pessimism;
however, due to the exponential number of paths in the timing
graph, runtime will be an issue for path-based approaches.

Unlike path-based approaches, a block-based approach is
based on a technique known as the Critical Path Method
(CPM) [8] and only needs a linear topological traversal for
finding the critical path in the timing graph modeling a
combinational circuit. Let P be the set of paths in the graph,
and Pi be the set of paths ending at vi. If D(p) is used as the
metric to evaluate the criticality of each path p ∈ Pi, a partial
ordering relation can be defined on P , i.e.

∀i, p � p′ ⇔ D(p) ≤ D(p′) where p, p′ ∈ Pi (4)

The idea behind block-based approaches is to exclude sets
of paths that cannot be critical at early stages in the search,
by comparing their prefixes during the traversal. Let Πi denote
the index set of the parents of vi, and δj,i be the delay from vj
to vi, as illustrated in Fig. 2. We have the following recurrence
relation,

D(p∗i) = d(vsrc, vi) = max
j∈Πi

{d(vsrc, vj) + δj,i}

= max
j∈Πi

{D(p∗j) + δj,i}. (5)

As a result, we can find the critical path to vi by first finding
the critical path to each of its parent node vj . This provides us
with a way to construct p∗i incrementally through a topological
traversal over the timing graph.

Fig. 2. In a block-based approach, the critical path to vi can be constructed
using the information of the critical paths to its parents nodes vj where j ∈
Πi.

The above approach can be easily generalized to find the
top K critical paths in a graph, at the cost of increased memory
consumption. Instead of storing only the information of the
most critical path, we can keep track of the most critical
K paths by storing multiple delay values and backtracking
pointers at each node.

The block-based approach can also be extended to the
analysis of sequential circuits, when the CPP is not considered.
Using the case in Fig. 1 as an example, we can compute the
required arrival time at the D port of FF2 for setup tests

R(FF2.D) = T + d(vsrc, FF2.CK)− FF2.tsetup, (6)

where T is the minimum clock period to be tested and tsetup
is the setup time. Here, the “.” symbol is used to reference a
port or property of an FF. The block-based approach can then
be used to find the critical path p∗pre-CPPR to node FF2.D, and
the pre-CPPR setup test slack of FF2

slackpre-CPPR(FF2.D) = R(FF2.D)− d(vsrc, FF2.D)

= R(FF2.D)−D(p∗pre-CPPR). (7)

Because the pessimism arises from the common portion
between the launch and the capture paths and is thus path-
dependent, the original partial order relation (4) no longer
compares the true criticality between any two paths. Moreover,
the true critical path p∗post-CPPR after CPPR can differ from
p∗pre-CPPR. As a result, it is non-trivial to incorporate CPPR
techniques into a block-based approach. In Sec. IV, we will
provide a solution to that while keeping the conventional
block-based STA framework.

III. PROBLEM FORMULATION

The Common Path Pessimism Removal (CPPR) problem,
based on the problem setup in the TAU 2014 Contest [1], can
be formulated as follows: Given the topology as well as the
dual-mode delay information of a sequential circuit, and the
type of test to conduct, identify N capture FFs with the most
critical post-CPPR test slacks, and retrieve from each of these
FFs K paths that are most critical.

IV. OUR BLOCK-BASED CPPR APPROACH

To obtain the true slack value of a complete path p, a credit
should be added to its pre-CPPR slack value. In setup tests, the
launch and the capture paths are sensitized in two successive
clock cycles while in hold tests they are sensitized in the same
cycle, which results in two different ways of calculating the
credit.

credit(p) = slackpost-CPPR(p)− slackpre-CPPR(p)

=

{
d(vclk, vcp)− d(vclk, vcp) in setup tests,
d(vsrc, vcp)− d(vsrc, vcp) in hold tests,

(8)

where vcp is the diverging point of the launch and the capture
paths.

In a block-based approach, we rely on the below property
for constructing the critical path to vi

∀i, ∃j ∈ Πi s.t. p∗j ⊂ p∗i , (9)

where p∗j ⊂ p∗i means that p∗j is a prefix of p∗i . When the CPP
is not being considered, the criticality of a path is evaluated
by the path delay D, as in (4). To incorporate the effects of
CPP on the final slack value, we introduce an alternative delay
metric DCPPR for comparing paths,

DCPPR(pi) = D(pi) + credit(pi), (10)

where the credit of an incomplete path pi is decided by both
its launch FF and its capture FF. However, pi may have several
possible downstream capture FFs, and a different credit should
be given for each possible destination. As a result, for the
block-based approach to be applicable in the CPPR setting, it
is not enough to propagate only a single delay value (when
K = 1) at a node that has multiple downstream capture FFs.
In our implementation, the delay information at each node is
stored in a delay table, which is a collection of delay vectors
for each downstream capture FF, as shown in Fig. IV.

C
R

IT
IC

A
LI

TY

DOWNSTREAM FFS

FF1 FF2

Fig. 3. An illustration of the delay table of a node vi that has two downstream
FFs. Each downstream FF corresponds to a unique delay vector that has K
entries. In this case K = 3. Each entry corresponds to a critical path towards
the associated capture FF. The modified delay value DCPPR stored in each
entry is used to compare the criticality between different paths. A backtracking
pointer πi is also stored in each entry for reconstructing the corresponding
critical path.

The proposed block-based approach for delay propagation
over the datapath is given in Algorithm 1, where the DELAY-
PROPAGATION procedure processes the datapath nodes in a
topological order. During the traversal, the DELAYTABLEINIT
procedure is invoked to initialize the delay tables at the starting
points of the datapath, and the DELAYTABLEMAX procedure
propagates the DCPPR values over the datapath to trim away
the paths that cannot be the most critical ones.

After the traversal, the post-CPPR test slacks at each
capture FF can be directly computed in the same manner as in
(7); however, DCPPR instead of D is used here as the metric
for comparing paths.

Algorithm 1 Block-based Traversal Algorithm for CPPR
Precondition: D is the set of topo-sorted data path nodes
Precondition: vi.T is the delay table at vertex vi

1: function DELAYPROPAGATION
2: for all i ∈ D do
3: if Πi ∩ D = ∅ then
4: DELAYTABLEINIT(i)
5: else
6: DELAYTABLEMAX(i)
7: end if
8: end for
9: end function

10: function DELAYTABLEMAX(i)
11: F ← DownstreamFF (vi)
12: for all f ∈ F do
13: vi.T [f] ← K-max

j∈Πi

{vj .T [f] + δ(vj , vi)}
14: end for . T : the delay table
15: return δ
16: end function

17: function DELAYTABLEINIT(i)
18: F ← DownstreamFF (vi) . potential capture FFs
19: for all f ∈ F do
20: vi.T [f][0] ← credit(f0, f) . f0: the launch FF
21: end for
22: end function

Compared to the conventional block-based approach that
is able to find the pre-CPPR critical path using linear time
and space, our approach consumes more computational and
memory resources due to the increased number of delay
vectors stored at each node. In the worst case, we need to
store at each node as many delay vectors as the total number
of FFs in the circuit. However, this is unlikely to happen in
real-world circuits. Assuming that on average each datapath
node has m downstream FFs, the overhead on time and space
complexity induced by our CPPR algorithm will be a factor
of m compared to the pre-CPPR case.

V. EXPERIMENT RESULTS

To validate our proposed approach, we prototyped the
above algorithm in C++ and performed an experiment on the
seven benchmarks released by the TAU 2014 Contest [1]. Some
statistics of the benchmarks are given in Table I.

To improve the performance of our implementation, we
first apply a graph reduction algorithm to obtain a smaller

TABLE II. RUNTIME COMPARISON

Benchmarks Type Parameters UI-timer iTimerC Our Timer
#tests (N) #paths (K) Runtime (s) Normalized Runtime (s) Normalized Runtime (s) Normalized

Combo2v2
setup 10000 15 15.30 1.31 13.69 1.17 11.70 1.00

20000 1 8.95 1.51 6.44 1.09 5.93 1.00

hold 10000 15 12.50 1.27 11.71 1.19 9.81 1.00
20000 1 7.46 1.35 5.87 1.06 5.54 1.00

Combo3v2
setup 6000 20 6.89 1.02 7.73 1.14 6.78 1.00

8000 1 2.92 1.00 3.60 1.23 3.16 1.08

hold 6000 20 5.95 1.12 6.28 1.18 5.32 1.00
8000 1 2.18 1.00 3.41 1.56 2.99 1.37

Combo4v2
setup 15000 15 82.88 1.43 90.03 1.55 57.99 1.00

25000 1 43.55 1.52 43.71 1.53 28.66 1.00

hold 15000 15 67.52 1.79 37.79 1.00 44.86 1.19
25000 1 42.30 2.47 17.14 1.00 27.37 1.60

Combo5v2

setup 20000 15 222.87 1.85 169.23 1.40 120.56 1.00
35000 1 150.78 2.17 89.33 1.29 69.38 1.00

hold 20000 15 167.84 1.92 87.25 1.00 90.30 1.03
35000 1 134.84 2.75 48.97 1.00 64.64 1.32

Combo6v2
setup 35000 15 584.83 2.40 244.05 1.00 253.71 1.04

50000 1 433.90 3.73 116.48 1.00 165.49 1.42

hold 35000 15 500.47 2.89 173.08 1.00 208.93 1.21
50000 1 378.29 4.63 81.72 1.00 154.64 1.89

Combo7v2
setup 35000 20 484.15 2.04 364.20 1.54 237.26 1.00

50000 1 299.60 2.21 136.31 1.00 135.85 1.00

hold 35000 20 383.47 2.19 174.92 1.00 190.26 1.09
50000 1 260.65 3.90 66.81 1.00 126.61 1.90

GEOMEAN – – – 63.46 1.88 38.84 1.15 38.79 1.15

TABLE I. BENCHMARK PROFILES

Benchmark |V | |V ′| #FFs #Datapath Vertices
Combo2v2 260638 56991 14957 42079
Combo3v2 181833 42586 4500 36407
Combo4v2 778640 163991 27020 127954
Combo5v2 2051806 284018 39957 226447
Combo6v2 3577928 447551 64619 357219
Combo7v2 2817563 350456 55243 276147

timing graph G′ by eliminating the “single fan-in single fan-
out” nodes. As can be seen from Table I, after the reduction
the number of vertices has decreased by 86.1%.

UI-timer [6] and iTimerC [5] are two top timers in the TAU
2014 Contest. We ran the benchmarks on a Linux platform
with dual Intel Xeon E5-2430 2.2GHz CPUs and 32GB RAM,
and compared the performance of our timer to theirs using
the results reported in [5]. The comparison in runtime is
shown in Table II. All three timers produced timing analysis
results with 100% accuracy. Although this is not a direct
comparison on the same platform, the machine used in [5]
has similar specifications to ours. It is worthy to note that our
implementation is single-threaded, while UI-timer is reported
to be multi-threaded [6]. It can be seen from the results that
our timer is in overall as efficient as iTimerC, and outperforms
the two timers in some test cases.

VI. CONCLUSION

In this paper, we proposed a block-based algorithm for
removing Common Path Pessimism (CPP) during STA. We
have shown that, by using an alternative delay metric, CPP can
be removed under the block-based STA framework at a cost
of slightly increased runtime and memory consumption. Our
future work includes parallelization of the proposed algorithm
on platforms such as multi-core CPUs or GPUs for further

acceleration, and techniques for handling circuits with clock
reconvergence.

ACKNOWLEDGMENT

This work is partly supported by National Natural Science
Foundation of China (NSFC) Grant 61202073, Research Fund
for the Doctoral Program of Higher Education of China
(MoE/RFDP) Grant 20120001120124, and Beijing Natural
Science Foundation (BJNSF) Grant 4142022.

REFERENCES

[1] J. Hu, D. Sinha, and I. Keller, “TAU 2014 contest on removing common
path pessimism during timing analysis,” in Proceedings of the 2014 on
International symposium on physical design. ACM, 2014, pp. 153–160.

[2] D. Hathaway, J. Alvarez, and K. Belkhale, “Network timing analysis
method which eliminates timing variations between signals traversing a
common circuit path,” Jun. 3 1997, uS Patent 5,636,372.

[3] J. Zejda and P. Frain, “General framework for removal of clock network
pessimism,” in Computer Aided Design, 2002. ICCAD 2002. IEEE/ACM
International Conference on, Nov 2002, pp. 632–639.

[4] R. Chen, L. Zhang, V. Zolotov, C. Visweswariah, and J. Xiong, “Static
timing: back to our roots,” in Proceedings of the 2008 Asia and South
Pacific Design Automation Conference. IEEE Computer Society Press,
2008, pp. 310–315.

[5] Y.-M. Yang, Y.-W. Chang, and I. H.-R. Jiang, “iTimerC: Common path
pessimism removal using effective reduction methods,” in Proceedings
of the 2014 IEEE/ACM International Conference on Computer-Aided
Design, ser. ICCAD ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp.
600–605.

[6] T.-W. Huang, P.-C. Wu, and M. D. F. Wong, “UI-timer: An ultra-fast
clock network pessimism removal algorithm,” in Proceedings of the 2014
IEEE/ACM International Conference on Computer-Aided Design, ser.
ICCAD ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 758–765.

[7] S. Sapatnekar, Timing. Springer Science & Business Media, 2004.
[8] J. E. Kelley Jr and M. R. Walker, “Critical-path planning and scheduling,”

in Papers presented at the December 1-3, 1959, eastern joint IRE-AIEE-
ACM computer conference. ACM, 1959, pp. 160–173.

