A STT-RAM-based Low-Power Hybrid Register File for
GPGPUs

Gushu Lit, Xiaoming Chen?, Guangyu Sun?, Henry Hoffmann*, Yongpan Liu!, Yu Wang?,
Huazhong Yang*

'Deparment of E.E., Tsinghua National Laboratory for Information Science and Technology (TNList),
Centre for Brain Inspired Computing Research (CBICR), Tsinghua University, Beijing China
2Electrical and Computer Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
3Center for Energy-efficient Computing and Applications, School of EECS, Peking University, Beijing, China
“Deparment of Computer Science, University of Chicago, Chicago, IL 60637, USA
lgs11@mails.tsinghua.edu.cn, yu-wang@tsinghua.edu.cn

ABSTRACT

Recently, general-purpose graphics processing units (GPG-
PUs) have been widely used to accelerate computing in var-
ious applications. To store the contexts of thousands of
concurrent threads on a GPU, a large static random-access
memory (SRAM)-based register file is employed. Due to
high leakage power of SRAM, the register file consumes 20%
to 40% of the total GPU power consumption. Thus, hybrid
memory system, which combines SRAM and the emerging
non-volatile memory (NVM), has been employed for register
file design on GPUs. Although it has shown strong potential
to alleviate the power issue of GPUs, existing hybrid mem-
ory solutions might not exploit the intrinsic feature of GPU
register file. By leveraging the warp schedule on GPU, this
paper proposes a hybrid register architecture which consists
of a NVM-based register file and mixed SRAM-based write
buffers with a warp-aware write back strategy. Simulation
results show that our design can eliminate 64% of write ac-
cesses to NVM and reduce power of register file by 66% on
average, with only 4.2% performance degradation. After we
apply the power gating technique, the register power is fur-
ther reduced to 25% of SRAM counterpart on average.

Categories and Subject Descriptors

EDA3.3 [Cross-Layer Power Analysis and Low-Power
Design]|: [Architectural low-power techniques: partitioning,
scheduling, and resource management]

General Terms

Power, Performance
Keywords

General-purpose graphics processing unit (GPGPU); Spin-
torque-transfer random-access memory (STT-RAM); Hybrid
register file;

1. INTRODUCTION

In recent years, general purpose graphics processing u-
nits (GPGPUs) have been widely used to accelerate appli-
cations from many areas, such as high-performance com-
puting [1], numeric algorithms [2], EDA [3], multimedia [4],
etc. Compared with traditional CPUs, modern GPGPUs
support massive thread-level parallelism with hundreds of
cores, large register files, and high memory bandwidth. For
example, NVIDIA K80 has 5760 CUDA cores, 256KB regis-
ter files on each streaming multiprocessor (SM), and 480G-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

DAC ’15 , June 07-11 2015, San Francisco, CA, USA

Copyright 2015 ACM 978-1-4503-3520-1/15/06$15.00.
http://dx.doi.org/10.1145/2744769.2744785.

B/s bandwidth, providing a peak computing capability of
1870/5600 GFlops (double/single precision) [5]. However,
such a high computing capability also results in a high pow-
er consumption. Modern high-performance GPGPUs usual-
ly have a peak power of more than 200W. For example, the
peak power of NVIDIA K80 is 375W [5].

It has been noticed that about 20% to 40% of the to-
tal GPU power consumption comes from the large register
file (6], which is employed to store the contexts of thousands
of threads launched by the programs. Current register files
are implemented with the traditional static random-access
memory (SRAM) technology that has high leakage power.
Thus, the SRAM-based register file has high energy con-
sumption even when supporting inactive threads.

Non-volatile memory (NVM) technology, which provides
fast random access, high storage, and non-volatility, is a po-
tential replacement for traditional SRAM technology. Sev-
eral types of emerging NVMs have been extensively investi-
gated recently. They include resistive random-access mem-
ory (ReRAM), spin-torque-transfer random-access memory
(STT-RAM or MRAM), and phase-change random-access
memory (PCRAM). However, due to their long write latency
and high write energy, they are usually employed in the hy-
brid memory system, which takes advantages of both NVM
and traditional memory. Hybrid memory system has shown
strong potential to alleviate the power issue of GPUs. Sever-
al studies have investigated hybrid memory architecture for
global memory on GPU [7, 8, 9, 10]. Satyamoorthy has s-
tudied STT-RAM-based and MRAM-based shared memory
for GPUs [11, 12]. Goswami has proposed STT-RAM-based
register file with write buffer on GPU [6].

However, previous studies do not exploit the intrinsic fea-
ture of a GPU register file. In fact, threads in NVIDIA
GPUs are scheduled in a smallest unit called warp (the cor-
responding terminology for AMD GPUs is wavefront). Each
warp contains 32 threads executed in parallel in a single-
instruction-multiple-data (SIMD) mode. Because of the long
latency of main memory accesses, not all the warps are ac-
tive all the time. When a warp invokes a main memory
access, this warp switches to pending (waiting for the main
memory data) and another warp is selected to execute. The
large register file enables such context switch with trivial
overhead. For an SRAM based register file, when a warp
is inactive, its registers have to be powered on to store the
contexts.

Based on this observation, instead of employing only one
block of write buffer for one STT-RAM bank [6], which
could not utilize the spatial locality on register file access, we
propose a hybrid register file with two SRAM-based write
buffers for one STT-RAM block. A new write back strategy
is proposed to control when data write back happens follow-
ing the warp schedule, an intrinsic feature of GPU. The two
SRAM-based write buffers take turns to write data back as
the warps take turns to execute on GPU, and hide the long
write time of STT-RAM in active period of next warp.

Two main contributions of this paper are summarized as
follows,

e Hybrid register file: We propose a hybrid regis-
ter file, which is a STT-RAM-based main register file
with two SRAM-based mixed write buffers. Different
from prior works which employ single buffer for each
bank or block, we use two SRAM write buffers for one
STT-RAM block. Such an architecture can help to
mitigate the problem of STT-RAM'’s long write laten-
cy and high write energy under the control of our write
back strategy.

o Warp-aware write back strategy: Traditional cache-
like write back strategies are not suitable for our write
buffer because GPU register file has its unique access
patterns. We propose warp-aware write back strate-
gy to leverage the intrinsic features of GPUs and hide
the long write latency of STT-RAM during the warp
context switch.

Simulation results show that our design can eliminate 64%
of write accesses to NVM and reduce power of register file
by 66% on average, with only 4.2% performance degrada-
tion. In addition, we observe that the utilization of the
write buffer varies a lot for different kernels. Thus, we apply
power gating on the write buffer and finally reduce 76% of
the register power consumption and 19% of the total GPU
power. This result is much better than Goswami’s work [6],
which reduces only about 32% of leakage power and 46% of
dynamic power from GPU register file on average.

2. RELATED WORK

Embedded DRAM. The efficiency of using embedded
DRAM (eDRAM) as the GPU register files has been investi-
gated recently [13, 14]. Compared with traditional SRAM,
eDRAM provides higher density and lower leakage power,
but it has limited data retention time. Thus, these two
works focus on the refresh strategies of eDRAM. However,
eDRAM is intrinsically slower than SRAM. It will inevitably
degrade the performance. These two publications have also
shown that the performance degradation can be larger than
20% at the 11nm technology node.

Non-Volatile Memory. A resistive memory-based reg-
ister file is implemented in [6], which uses a pure STT-RAM
to replace the original register file with a complex register
write back coalescing control strategy. Compared with this
design, our design employs two SRAM write buffers for one
STT-RAM block instead on only one buffer, and takes in-
to account the warp context switch, which is an intrinsic
feature of GPU, to overcome the long write latency of STT-
RAM. In addition, we observe the write buffer usage and
apply power gating to achieve more power reduction.

Power Gating. Prior research has pointed out that
the average inter-access distance to a register is 789 cycles.
Thus, aggressively power gating a register file when it is
idle can reduce the leakage power significantly with negligi-
ble performance degradation [15]. In addition, unallocated
register files can be turned off to reduce power too. This
approach achieves about 69% of register file power saving
with only about 1.02% performance degradation. However,
the area overhead for all added circuit is around 4% while
our design utilizes the high storage density of STT-RAM.
We achieve similar power saving with only 28% of original
silicon area.

Register File Cache. Gebhart has proposed register file
cache on GPU to achieve more energy-efficiency [16]. This
approach employs a small register file cache and a main reg-
ister file to reduce main register file accesses, the operand
delivery energy and the main register file bandwidth require-
ment. However, this design only saves 36% of the register
file access and wire energy, which is much smaller than our
76% power reduction of register file.

Arbitrator N Banked RF on SM

v ¥ Bank 0 Bank1l Bank2 -wee Bank 15
I Banked RF |
\ ' Crossb ' | g
N
v rossbar v g : : : :
I Collector Unit 2 : : :
¥ 5| — : : :
SIMID Execution Unit HEeHEeE B
AN N A\ g
7 7 7 7 Instruction decode

Figure 1: GPU Register File architecture [13]
3. BACKGROUND

3.1 GPGPU and Register File

A modern GPGPU consists of several SMs, and each SM
includes execution units, warp schedulers, instruction/data
caches, register file, and shared memory. Threads executing
on one SM are grouped into warps. A warp which contains
32 threads executing the same instruction on different data,
is the smallest schedule unit of NVIDIA GPGPUs. To im-
prove the resource utilization, dozens of warps are invoked
and alternated on each SM to hide the long latency of glob-
al memory accesses. When a warp is stalled due to a long
latency operation, another warp is switched to execute.

Register File: To support zero-cost warp switch, a large
SRAM-based register file is employed to maintain the con-
texts of all the concurrent threads. For example, NVIDIA
Kepler architecture employs an 256KB register file which
contains 65536 32-bit registers[17]. This size is far beyond
that on a traditional CPU. In the NVIDIA parallel thread
execution (PTX) standard [18], one instruction can read up
to 4 registers and write 1 register at the same time. To im-
plement a wide register file, NVIDIA employs a 16-banked
register architecture and each bank contains 1024 entries, as
shown in Figure 1. This register file has an 128-byte width
which contains 32 32-bit operands, so all the 32 threads in
the same warp could fetch one operand at the same time.
Each warp has its own register block and each thread insid-
e a warp has its local registers. Registers belonging to the
same warp are distributed to multiple banks. This design al-
lows multiple registers to be read or written in one cycle. We
propose a distributed hybrid register architecture (shown in
Figure 3) which utilizes the spatial locality of the register
allocation to support more bandwidth of the register file.

3.2 STT-RAM

Among all emerging non-volatile memory technologies,
STT-RAM is most competitive to replace SRAM because
of its low access latency, high storage density, and low pow-
er [19, 20, 21]. We compare SRAM-based and STT-RAM-
based memories of 128KB using NVSim [22], which is a
circuit-level memory simulator. The simulation results are
shown in Table 1. It can be observed that STT-RAM pro-
vides similar performance and very low leakage power with
a little more dynamic energy. The critical problem of STT-
RAM is that its write latency is 4 times of that of SRAM at
700MHz clock rate, which is a typical GPU core clock rate.
This problem may cause substantial performance degrada-
tion. In this paper, we propose a mixed write buffer and a
new write back strategy to overcome this problem.

Table 1: Parameters of SRAM-based and STT-
RAM-based 128KB memories, at 32nm technology
node and 700MHz clock rate

SRAM | STT-RAM

Cell Factor(F?) 146 57.5

Area(mm?) 0.194 0.038
Read latency(cycle) 1 1
Write latency(cycle) 1 4

Read energy (pJ/bit) 0.203 0.239

Write energy (pJ/bit) [0.191 0.300

Leakage power(mW) 248.7 16.2

4. HYBRID REGISTER FILE

4.1 Potential of Reducing the Register Power
Consumption

Our assumptions and experiments are based on Fermi ar-
chitecture [23]. To demonstrate the potential of reducing
register power, we present some simulation results about
the register behavior based on several GPGPU benchmark-
s. Our benchmarks are from NVIDIA Computing SDK [24]
and Rodinia Benchmark suite [25]. It has to be mentioned
that Mohammad and Murali have investigated register be-
havior in [15]. They analyzed the GPU register usage and
the average register inter-access distance. It was found that
on average 46% of the register file is never allocated and the
average register inter-access distance is 789 clock cycles.

Warp inter-active distance: We define the warp inter-
active distance as the number of idle cycles between two ad-
jacent active periods of one warp. Different from Moham-
mad’s work, our experiments focus on the warp behavior
instead of register accesses. In fact, it is more convenient to
track the warp behavior rather than the status of register ac-
cesses. Moreover, the warp switch mechanism is an intrinsic
feature of modern GPUs. Thus, our analysis and method are
dedicated to GPUs. The results in Figure 2 show that the
average warp inter-active distance for different workloads is
about 11000 cycles. It means that the average length of an
active period for one warp is about 234 cycles. For NVIDI-
A Kepler architecture [17], although there are 192 SPs on
one SM and one SM can handle 6 warps simultaneously, this
conclusion still holds for each individual set of 32 SPs.

These results have revealed that the number of active cy-
cles of a register is significantly fewer than its idle cycles.
During the idle cycles, if we store the contexts in NVM in-
stead of SRAM, the leakage power can be significantly re-
duced. Consequently, there is a huge potential to reduce
the register power of GPUs by employing NVM. However,
due to the long write latency of NVM (four cycles for STT-
RAM as shown in Table 1), directly replacing SRAM with
NVM will cause substantial performance degradation. To
overcome this challenge, we employ an SRAM-based write
buffer for STT-RAM based register file.

SRAM has been used as buffers [11] or caches [6] for NVM
to improve the performance. However, the case for register
files of GPUs is different. The performance gain obtained
from these two studies comes from the high density of NVM
and the larger size of NVM-based shared memory or caches.
Different from these two researches, the register size in our
design is not changed. In the following part of this section,
we will illustrate that our new STT-RAM-based register file
and its write buffer leverages the long warp inter-active dis-
tance and the warp switch mechanism to achieve power re-
duction with low performance degradation.

4.2 Distributed Hybrid Register File

Since there are no inter-thread register accesses, each SM
can have its dedicated registers. Thus, we could distribute
the register file close to each core and divide the original
128KB register file into 32 pieces of 4KB small blocks, as
shown in Figure 3. Consequently, each core only needs to
access a small piece of register and each small register block
only needs to maintain the contexts of the thread with the
same thread ID from each warp. To deal with the long
write latency of STT-RAM, we propose a hybrid register

1.00E+07
1.00E+06
1.00E+05
oo H
.00E+03 I
Cycles Q2BEQNOEHOOZIOENDIIZO
SPEHETREC 3330862,
Figure 2: Warp inter-active distance

Bank 0 Bank 1

Thread 3 Thread 3

Thread 3 Thread 3

Core][Core][Core |[Core Thread 3 | || | Thread 3
1 s E

Warp 46 | || [Warp 47
e

Distributed Hybrid Register File for

Reg Control
Module

Core || Core || Core || Core

Warp Scheduler

S9111UD 9G7

Figure 3:
GPGPU

file (HRF) architecture instead of a pure STT-RAM based
register file. This hybrid design, with one piece of STT-RAM
as the main register file and two small blocks of SRAM as
write buffers (WB), could reduce the power consumption
without significant performance degradation under our pro-
posed warp-aware write back strategy.

4.3 Warp-aware Write Back Strategy

This strategy leverages the intrinsic feature of GPU warp
scheduling, which is explained as follows. When warp N
is active, we use one block of SRAM to maintain the write
back registers. The next active warp, warp NV + 1, should
save its write back registers to the other block of SRAM.
During the active period of warp N + 1, the SRAM block
that keeps the write back registers of warp N writes back
all the data to the STT-RAM block. After that, when warp
N + 1 switches to pending and warp N + 2 becomes active,
it should store the write back data from warp N + 2. To
support the data read and write at the same time, the STT-
RAM block is designed with two banks. We re-map the
registers of the warps with an even warp ID to bank 0, and
those with an odd warp ID to bank 1, to avoid bank conflicts
during read and write operation. When a bank is serving
write accesses, the other bank will always handle read access
requests from another warp. It is also possible that, due to
the data transmission rate limitation, the active period of
one warp is not long enough for the WB to write back all
the data of the last warp. In this case, the whole pipeline
needs to stall. Actually, our strategy hides the long write
back time of STT-RAM of one warp in the active period of
its next warp.

4.4 Implementation

Since the original banked register file on Fermi architec-
ture is 128KB, 16 banks with 1024 entries in each bank,
one HRF should maintain 4KB STT-RAM to keep the same
register size in total. One STT-RAM block has two banks.
Each of them contains 256 entries.

Our design employs two cache-style data WBs. Each S-
RAM block has 64 entries with 38 bits in each entry. 32 bits
are used to save the data in one register and the other 6 bits
are used to record the address (register number) of this reg-
ister. To control the data flow and guarantee the program
accuracy, we add a Reg Control Module (RCM) based on
SRAM in each SM, as shown in Figure 5. This RCM shares

Store data for currently active warp

Data write back to NVM

SRAM
Write Buffer STTRAM
Warp N-1

19p1Q uonndaxy diep

Figuré 4: Warp-aware Write Back Strategy

Reg Control Module

Valid [Index | Valid [Index Valid [Index Read
0 1 2 | eeceee T 0
LT Lt | i)
N [1 [5 [aceas [0] | N
Write IsInBuffer

Index Write Buffer Hybrid Register File(HRF)

Write Back

\;- STT-RAM
%’r Read

x) Data

Figure 5: Write Buffer Details
a very similar structure with random access memory(RAM).

There are 64 entries and their physical positions represent
64 register addresses. Each entry has one valid bit to show
whether the register of the corresponding address is stored
in the WB. Another 6 bits are needed to record the index of
the entry, which stores the data content in the WB.

When a warp is activated, RCM and one SRAM block are
reset. The mechanism of this design is explained as follows:

(1) If a write access comes, RCM will directly access the
entry corresponding to the write address, and check the valid
bit to decide if the register have already been stored in the
WB. If so, RCM will send the index to the WB so that it
could overwrite the same entry. Otherwise, the WB will
store the data and its address in a new entry, then let RCM
record a new index and set the valid bit.

(2) If a read access comes, RCM will check the valid bit of
the read address to determine if register in the read address
is stored in the WB. At the same time, the STT-RAM block
will also receive the read address and send data out. If the
register is not in the WB, the core should receive data from
the STT-RAM. Otherwise, RCM will send the entry index
to WB and the WB would read the entry of that index and
send data back to the execution units.

(3) When the active warp becomes waiting for a long glob-
al memory access operation, another warp will be activated.
One of the SRAM blocks which maintain the register data
of this warp begins to write all entries with valid data back
to the STT-RAM. The other SRAM block should reset and
become the WB of the next active warp.

When the WB is holding data for an active warp, our
HRF checks an entry in RCM with the read/write address
to decide whether the operand is in the WB. When the WB
writes data back to STT-RAM block, as the cache-style WB
stores data in the first few successive entries, we do not need
to traverse the whole WB. We just read the data and its
address entry by entry from the WB and write back to the
STT-RAM block. Since the read and write latency of SRAM
is fairly small, the access to RCM and the access to WB are
directly based on the register address and the index without
any search operation. For the read operation, our HRF will
access WB and STT-RAM at the same time and determine
the output data with a multiplexer. RCM access could be
triggered by the rising edge of the GPU core clock signal
and WB access could be trigged by the falling edge in the
same clock cycle.

5. POWER GATING ON WRITE BUFFER

The overall results of our design are in Section 6 and it
is shown that our HRF and warp-aware write back strategy
could significantly reduce the register power consumption.
However, there are still some opportunities to achieve more
power reduction. During the simulation, we record the WB
usage information and the components of HRF. In the orig-
inal HRF design, each WB contains 64 entries, which could
save 64 32-bit registers. Although 64 entries in the WB
would guarantee that all the registers of one thread could
be stored without overflow, the number of entries in use is
usually less than 16 in real cases. That means most of the

10 BSRAM static G STTRAM static dynamic

0.8
0.6
0.4
0.2
0.0

DD.I—D(/JU)I—l—O(DZOOI—U)(D;LLI

(@] ww=0uw = XL W< >

§m§m§Io§g888momxoz<

Figure 6: Normalized power components of HRF
0.25
0.2
0.15
0.1
0.05
0

1 2 4 8 16 32 64

X-axis: the number of entries used during one whole active

period

Y-axis: the frequency of different write buffer usages
Figure 7: Statistical Write Buffer Usage Distribu-
tion
entries would not be used most of the time. If we switch off
the latter entries, we could further reduce HRF power since
our simulation results shows that the static leakage power of
the SRAM blocks in HRF still contributes a lot to the whole
power consumption of RF.

5.1 WB Usage and HRF Power Components

Figure 6 shows power breakdown including dynamic and
static RF power consumption parts. The SRAM static pow-
er is about 39% of the whole HRF consumption on average.
Figure 7 shows the WB usage information for different work-
loads. It is interesting that in most cases, the number of used
entries is smaller than 16. This simulation result shows that
about three quarters of the WB is rarely used during the
kernel execution. That means about three quarters of the
SRAM static power is wasted.

Table 2: Normalized Power Gated WB Parameters

Non PG | PG

Power Gated area 0 0.75
Dynamic Power 1 1.04
Leakage Power 1 0.3
Silicon Area 1 1.16

5.2 Power Gated WB

Power Gating (PG) technology has been widely used to
save SRAM power consumption [26, 27]. In this specific
case of SRAM-based WB, we propose the following design
according to our previous simulation results. Each WB is
divided into two blocks, the first 16 entries, which always
have power, and the latter 48 entries power gated. Every
time a register not in the WB is written back, the WB will
use a new entry and increase the counter representing the
number of used lines in WB. In our power gated WB, the
power gating control circuit will check the counter at this
time. If the counter is over 16, then the latter 48 entries
will be switched on. After this WB write all data back to
the STT-RAM block, the latter entries will be switched off.
Table 2 shows the overhead for the PG circuit [28].

6. EVALUATION
6.1 Simulation Settings and Workloads

Our evaluation focuses on the RF power consumption,
overall GPU power, performance (IPC) and the STT-RAM
write times. We use a modified version of GPGPU-Sim [29],
a detailed GPGPU simulator which shows the warp and R-
F’s behavior accurately in cycle level. We configure the sim-
ulator similar to NVIDIA Fermi GTX480 GPU (shown in
Table 3). The warp schedule strategy is enforced that two

consecutively activated warps are from two different banks,
which may cause performance degradation. As there exist
many different warp scheduler oriented to different aspects,
such as memory access [16, 30, 31], branch divergence [30,
32|, cache efficiency [33, 31], etc, further research is neces-
sary for warp scheduling in our hybrid register file. Parame-
ters of the SRAM-based RF, STT-RAM based RF, and our
HRF, are simulated by NVSim [22].

The following 18 benchmarks which cover different scien-
tific and computation domains are from NVIDIA Comput-
ing SDK [24] and Rodinia Benchmark suite [25]: vectorad-

d (VAD), scalarProd (SCP), fastWalshTransformation (FWT),

reduction (RED), mergeSort(MES), histogram (HIS), dc-
t8x8 (DCT), MersenneTwister (MET), MonteCarlo (MOC),
quasirandomGenerator (QUG), sortingNetworks (SON), Sob
olQRNG (SOQ), binomialOption(BIO), dxtc (DXT), bfs (BF-
S), kmeans (KEA), gaussian (GAU), nw (NW). AVG repre-
sents the geometrical mean.

In our simulation, we observe the RF access inside each
SM, and simulate the RF behavior in our customized module
and send feedback to the simulator. The original SRAM-

based RF in Fermi GPU is the baseline in our comparison.
Table 3: GPGPU-Sim Configuration

GPU Architecture Fermi
Core (SM) Frequency (MHz) 700MHz
No. of SM 15
Cores per SM 32
RF size 128 KB
Register Width 128 Bytes
Number of Banks 16
Maximux Warps per SM 48
Warp Scheduler Round Robin
PTXPLUS Enabled

6.2 Reduction of Performance Degradation

Our experiments test three conditions for performance e-
valuation, which are SRAM baseline, pure STT-RAM, and
our HRF. For the pure STT-RAM, the GPU pipeline would
stall for every RF write access. For the HRF design, as the
warp-aware write back strategy has explained before, stalls
happen when the active period of the next warp is too short
to write data from the current warp back to STT-RAM. The
simulation result is shown in Figure 9. Our HRF causes on-
ly 4.2% performance degradation on average which is much
better than pure STT-RAM (33%) and very close to the o-
riginal SRAM-based RF. Such performance comes from our
warp-aware write back strategy which eliminates 64% of the
write operations on STT-RAM. (shown in Figure 8)

Potential Compiler Optimization: Warps are sched-
uled by hardware instead of the compiler. However, if we
consider warp inter-active distance during the compiling op-
timization, it is possible to control the warp inter-active dis-
tance in some way. The compiler could rearrange the mem-
ory access instructions and the register access instructions
to determine the number of instructions between two mem-
ory accesses. However, this would not have much side effect
on the performance or the power reduction. The shorter
the warp inter-active distance, the fewer the instructions
between the two memory accesses. That also means fewer
register access which will reduce the impact on our perfor-
mance. Although our power savings come from the long idle
period, it is actually the ratio between the idle time and the
total which determines the effect of our design.

6.3 Reduction of Power Consumption

For the power consumption evaluation, we compare three
conditions, SRAM baseline, HRF, and HRF+PG. Our pure
STT-RAM design significantly reduces the leakage power.
It is sure that employing WB and RCM will incur more
dynamic power. However, the additional dynamic power is
much smaller than the static power reduction. The analysis
in Section 5 shows that the static leakage power of SRAM-

0.8

0.0009 0.009
0.6 0.0 03
0.4 I I
o2 ikl -]
0.0 | I | |
DD.I—D(D(/)I—I—O(DZOOI—(D{D;LIJ
o=wwFzouw = XL >
§wEm21022888momx62<
Figure 8: Normalized Write Back Times of STT-

RAM
based WB is still the dominant component in the HRF, and
PG could reduce the leakage power in the WB further.

The normalized RF power is shown in Figure 10 and the
normalized total GPU power in shown in Figure 11. Our
final design HRF+PG, reduced 76% RF power and 19% total
GPU power on average.

Goswami’s work [6] mentioned in Section 2 is similar to
ours. Their proposal reduced 32% of leakage power, 46% of
dynamic power and 46% area on average. In comparision,
our hybrid register file with warp-aware write back strategy
reduces 76% of the register file power and 19% of the to-
tal GPU power on average, which is more significant than
Goswami’s work with only about 28.3% of the area of base-
line. Our design takes into account the warp context switch
of GPU and employs two buffers so we can achieve more
power reduction without significant performance loss, and
our method is more suitable for GPUs.

All our assumptions and experiments are based on Fermi
architecture [23]. In the later Kepler architecture [17], one
SM could handle 6 active warps at the same time. While
in Fermi, there is only one active warp. This would have
a side effect on our design. First, the dynamic power will
contribute more to the RF power while our HRF is to save
leakage power. More active warps mean more SRAM blocks
are required to maintain the context of more active threads
which will increase the leakage power.

6.4 Discussion About Extreme Cases

The total GPU power of the benchmark GAU is only re-
duced by 3.6%, the smallest result among all results. How-
ever, its RF power is reduced by 88%, the most among all
selected benchmarks. The reason for this case is that regis-
ter operation is comparatively infrequent in GAU such that
RF power only contributes a little in the total GPU power
and the RF power reduction is covered by other factors.

For some extreme cases, like QUG, SOQ and DXT, these
benchmarks showed very high STT-RAM write time reduc-
tion by keeping writing to a few registers so that most of the
RF write access is in the WB. Figure 2 shows that the aver-
age warp inter-active distance in these cases are apparently
longer than others and verifies that warp context switch is
relatively infrequent in these benchmark. The warp active
period of these benchmarks is also long enough for our WB
to write data back to the STT-RAM block such that the
performance is not impacted (in Figure 9)

The benchmark RED and BFS obtain the least two write
times reduction in Figure 8 and they both have compara-
tively low performance (shown in Figure 9). That is because
these two benchmarks write back to different registers with
frequent warp switch, and they have small warp-inter active
distances which could also be verified in Figure 2.

6.5 Reduction of Silicon Area

Additionally, our HRF could also save the silicon area on
chip, since STT-RAM provides high storage density. The
area of a 128KB STT-RAM-based RF is only 19.6% of that
occupied by a SRAM-based RF (shown in Table 1). Consid-
ering the HRF and the additional PG circuits, it takes about
28.3% of the area of the baseline. This result, which is es-
timated in circuit level, makes our HRF a more attractive
substitution of the traditional SRAM-based RF for GPU.

uSRAM = Pure STTRAM ®HRF

1.0

0.8

06 HH HHHHHHH HH

0.4 N N N
Figure 9: Normalized IPC

10 u SRAM HRF mHRF+PG

0.8

0.6

0.4

02 1 r tg

Figure 10: Normalized Power Consumption of RF
10 = SRAM HRF m HRF+PG

0.9

o 111 AT L
0.7 ||||Il.r|| I

Qn_l—owwl—l—oozool—m<3§m

<(O wwFouw = X w <=

$QzHELTRE233308a8Y5z
Figure 11: Normalized Power Consumption of Total

GPU

7. CONCLUSIONS

The large RF of GPUs are employed to support zero-
overhead warp context switch. Traditional SRAM-based RF
consumes high leakage power. STT-RAM is a potential sub-
stitution of SRAM for its latency, power and high density.
Pure STT-RAM-based RF suffers from significant perfor-
mance degradation for its long write latency. Thus, hybrid
memory system consisting of NVM and traditional memory,
has been employed on GPU RF. However, existing hybrid
memory solutions may not exploit the intrinsic feature of
GPU RF. In this paper, we propose a hybrid RF and a
warp-aware write back strategy to leverage the warp sched-
ule feature of GPU. Our simulation results show that our
hybrid RF could achieve 66% register file power reduction,
eliminate 64% write access to NVM with only 4.2% perfor-
mance degradation on average. Furthermore, by observing
the utilization of the WB, we apply PG technique on the W-
B and finally reduce 74% of register file power consumption
and 19% of total GPU power on average.

8. ACKNOWLEDGMENTS

This work was supported by 973 project 2013CB329000,
National Natural Science Foundation of China (61373026),
The Importation and Development of High-Caliber Talents
Project of Beijing Municipal Institutions, Brain Inspired
Computing Research, Tsinghua university (20141080934),
Tsinghua University Initiative Scientific Research Program,
National Natural Science Foundation of China (61202072),

National High-tech R&D Program of China (2013AA013201).

9 REFERENCES

[1] Volodymyr V Kindratenko et al. GPU clusters for
high-performance computing. In CLUSTR, pages 1-8, Aug
2009.

[2] Piyush Sao et al. A Distributed CPU-GPU Sparse Direct
Solver. In Euro-Par 2014 Parallel Processing, volume 8632
of Lecture Notes in Computer Science, pages 487-498, 2014.

[3] Xiaoming Chen et al. GPU-Accelerated Sparse LU
Factorization for Circuit Simulation with Performance
Modeling. TPDS, 26(3):786-795, 2015.

[4] Yun Liang et al. Real-time implementation and
performance optimization of 3D sound localization on

(5]
(6]

[7

B

[9

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]
(19]

(20]

(21]

(22]

(23]

(24]

25]

(26]

(27]
28]

(29]

(30]

(31]

(32]

(33]

GPUs. In DATE, pages 832-835, March 2012.

NVIDIA Corporation. NVIDIA Tesla K80.

Goswami Nilanjan et al. Power-performance
co-optimization of throughput core architecture using
resistive memory. In HPCA, pages 342-353, Feb 2013.
Jishen Zhao and Yuan Xie. Optimizing bandwidth and
power of graphics memory with hybrid memory
technologies and adaptive data migration. In JCCAD,
pages 81-87, Nov 2012.

Jishen Zhao et al. Energy-efficient GPU Design with
Reconfigurable In-package Graphics Memory. In ISLPED,
pages 403-408, 2012.

Bin Wang et al. Exploring hybrid memory for GPU energy
efficiency through software-hardware co-design. In PACT,
pages 93-102, Sept 2013.

Dongki Kim et al. Hybrid DRAM/PRAM-based main
memory for single-chip CPU/GPU. In DAC, pages
888-896, June 2012.

Prateeksha Satyamoorthy and Sonali Parthasarathy.
MRAM for Shared Memory in GPGPUs. Technical report,
University of Virginia, 2011.

Prateeksha Satyamoorthy. STT-RAM for Shared Memory
in GPUs. Master’s thesis, University of Virginia, 2011.
Naifeng Jing et al. An Energy-efficient and Scalable
eDRAM-based Register File Architecture for GPGPU. In
ISCA, pages 344-355, 2013.

Naifeng Jing et al. Compiler assisted dynamic register file
in GPGPU. In ISLPED, pages 3-8, Sept 2013.
Mohammad Abdel-Majeed et al. Warped Register File: A
Power Efficient Register File for GPGPUs. In HPCA, pages
412-423, 2013.

Mark Gebhart et al. Energy-efficient mechanisms for
managing thread context in throughput processors. In
ISCA, pages 235-246. IEEE, 2011.

NVIDIA Corporation. NVIDIA’s Next Generation CUDA
Compute Architecture: Kepler GK110 (White Paper),
2012.

NVIDIA Corporation. Parallel thread execution.

Cong Xu et al. Device-architecture co-optimization of
stt-ram based memory for low power embedded systems. In
ICCAD, pages 463-470. IEEE Press, 2011.

Clinton W Smullen et al. Relaxing non-volatility for fast
and energy-efficient stt-ram caches. In HPCA, pages 50-61.
IEEE, 2011.

Adwait Jog et al. Cache revive: architecting volatile
stt-ram caches for enhanced performance in cmps. In DAC,
pages 243-252. ACM, 2012.

Xiangyu Dong et al. Nvsim: A circuit-level performance,
energy, and area model for emerging nonvolatile memory.
TCAD, 31(7):994-1007, 2012.

NVIDIA Corporation. NVIDIA’s Fermi: The First
Complete GPU Computing Architecture, 2009.

NVIDIA. Computing sdk. Gpu computing sdk, Avaliable at:
hitps://developer.nvidia.com

/gpu-computing-sdk, 22(07):2013, 2013.

Shuai Che et al. A characterization of the rodinia
benchmark suite with comparison to contemporary cmp
workloads. In IISWC, pages 1-11. IEEE, 2010.

Yasuhisa Takeyama et al. A low leakage sram macro with
replica cell biasing scheme. Solid-State Circuits, IEEE
Journal of, 41(4):815-822, 2006.

Pradeep Nair et al. A quasi-power-gated low-leakage stable
sram cell. In MWSCAS, pages 761-764. IEEE, 2010.
Hailin Jiang et al. Benefits and costs of power-gating
technique. In ICCD, pages 559-566. IEEE, 2005.

Ali Bakhoda et al. Analyzing CUDA workloads using a
detailed GPU simulator. In ISPASS, pages 163-174, April
2009.

Veynu Narasiman et al. Improving gpu performance via
large warps and two-level warp scheduling. In MICRO,
pages 308-317. ACM, 2011.

Adwait Jog et al. Owl: cooperative thread array aware
scheduling techniques for improving gpgpu performance.
ACM SIGARCH, 41(1):395-406, 2013.

Wilson WL Fung et al. Dynamic warp formation and
scheduling for efficient gpu control flow. In MICRO, pages
407-420. IEEE Computer Society, 2007.

Timothy G Rogers et al. Cache-conscious wavefront
scheduling. In MICRO, pages 72-83. ACM, 2012.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150415144019
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Left
 7.2000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 25.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 25.2000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 16.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 16.2000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

