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Abstract—Recent progress in high-level synthesis (HLS) has
helped raise the abstraction level of hardware design. HLS flows
reduce designer effort by allowing development in a high-level
language, which improves debugging, code reuse and ability
to explore different implementation options. However, although
the HLS process is fast, implementation and performance anal-
ysis still require lengthy logic synthesis and physical design.
For design optimization, HLS tools require design space explo-
ration to obtain parallelism at multiple levels of granularity
including parallelism within a single HLS-generated core and
parallelism between multiple instances of cores. Core intercon-
nect and external bandwidth limitations can significantly impact
feasible options in the design space. With many dimensions in
a design space exploration, it quickly becomes infeasible to per-
form full logic synthesis and physical design for each possible
design point. However, generation and evaluation of communi-
cations infrastructure as part of the exploration is critical to
determine the system performance. Thus, in this paper, we extend
the prior multilevel granularity parallelism exploration in the
FCUDA HLS flow, which takes CUDA code as design input
and generates a corresponding field programmable gate array
implementation. Our framework performs an initial characteri-
zation of the application design space, then analytically explores
the design space considering parallelism, core interconnect, and
external memory bandwidth, and selects a pareto-optimal set
of designs. Our flow is completely automated to perform the
exploration to characterize the analytical model, perform the
exploration, select a solution, and integrate multiple instanti-
ations of FCUDA cores via an advanced extensible interface
bus interconnect. Our results demonstrate that this new FCUDA
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flow efficiently identifies and generates implementations with up
to 5× improved system performance compared to single-level
granularity parallelism (core-level optimization).

Index Terms—Bus-generation, communication bus, high-level
synthesis (HLS), system generation.

I. INTRODUCTION

FAST, inexpensive, and energy efficient processing is crit-
ical throughout the wide variety of computing paradigms.

In order to meet performance and efficiency objectives,
multicore processors [1], [2], graphics processors [3], and field
programmable gate arrays (FPGAs) are all utilized. These
resources all exploit parallelism at multiple levels of granu-
larity including instruction-level, thread-level, core-level, and
memory-level parallelism.

Although these platforms have significant opportunity, there
remain challenges in developing for such parallel platforms.
Parallel programming languages including OpenCL [4] and
CUDA [5] are increasingly used for both CPU and gen-
eral public utility (GPU) development, but development for
FPGA platforms is challenging and time consuming. High-
level synthesis (HLS) specifically targets this issue—allowing
development in high level languages to reduce design and
debug effort. FCUDA [6] is one such design flow that enables
development in CUDA with subsequent mapping to an FPGA.
CUDA code describes parallelism at the array, thread, core,
and core–cluster level; multilevel granularity parallelism syn-
thesis (ML-GPS) exploration [7] assists in exploring design
tradeoffs, while optimizing parallelism through a multilevel
granularity approach.

Although the original ML-GPS can select the core design
considering analytical estimates for the total number of instan-
tiable cores, it does not consider the core interconnect,
generate multicore system designs, or evaluate performance
under external bandwidth limitations. These critical factors
can significantly impact system design and achievable system
performance; the balance of computation and communication
significantly impacts delivered performance [8].

In this paper, we design systems with many cores enabled by
FCUDA. Although a network-on-chip (NoC) is considered the
most scalable option, NoCs on FPGAs consume resources that
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could have been used for more computing cores, and further-
more the high amount of inter-router connections can affect
routability of the design [9]. Our prior work used NoCs with
the FCUDA infrastructure [10], but here we choose a bus-
based interconnect to allow more core instantiations. An FPGA
with hardened on-chip NoC routers [11] could make use of
an NoC more efficient.

Therefore, in this paper, we extend the ML-GPS framework
in the FCUDA to automatically generate advanced extensible
interface (AXI)-based bus interconnects between core instanti-
ations using one double data rate 3 (DDR3) external memory
interface, and extend the design space exploration and ana-
lytical evaluation to consider memory bandwidth demand and
the performance of candidate designs given total bandwidth
limitations. Our new contributions are as follows.

1) Automated design space exploration considering paral-
lelism at multiple levels of granularity as well as internal
and external bandwidth limitations.

2) Automated generation of AXI-bus interconnect for sys-
tems of up to 150 cores (256 core theoretical limit).

3) Demonstration of the automated framework on both
compute- and memory-bound application domains.

This new FCUDA flow, including the ML-GPS framework,
automated application characterization, analytical design space
exploration, and bus-based system generator is open-source.1

The rest of this paper is organized as follows. In Section II,
we discuss the original FCUDA framework and motivate
exploration of parallelism at multiple levels of granularity.
In Section III, we introduce system level design of multiple
FCUDA cores and AXI bus-based interconnect. In Section IV
we develop the analytical design space exploration models.
Finally, in Section V, we present experiments, and demonstrate
design space exploration, system design, and automation.

II. BACKGROUND AND MOTIVATION

FCUDA originally concentrated on parallelism with a single
core [6], while the follow-up ML-GPS work extended paral-
lelism with analytical models for multiple cores [7]. In this
section, we first introduce the prior framework in detail, then
motivate the need for extension of the prior work to include
automated generation of on-chip interconnect for system level
designs, new analytical models, and design space exploration
considering latency, memory bandwidth, and routability.

A. FCUDA HLS Flow

The initial FCUDA framework [6] maps core-level paral-
lelism of CUDA kernels onto spatial parallelism of a recon-
figurable fabric using MCUDA [12]. Using pragmas in the
CUDA kernel to specify transformations, FCUDA translates
the CUDA kernel to C-code with Xilinx Vivado HLS [13]
pragma annotations that guide the HLS process.

Single program multiple data CUDA kernels concisely
describe the behavior of groups of threads organized in thread-
blocks. An entire CUDA kernel is composed of one or more
thread-blocks, each of which has many threads, typically in

1Available at http://dchen.ece.illinois.edu/tools.html.

Fig. 1. Sequential task synchronization.

Fig. 2. Ping-pong task synchronization.

Fig. 3. FCUDA flow.

power of 2. In the CUDA computation model, thread-blocks
execute independently and only synchronize through off-chip
memory between kernel invocations.

Starting from a CUDA kernel, a programmer decomposes
the kernel into compute and data-transfer tasks [14]. The tasks
can be scheduled sequentially or overlapped using a ping-pong
buffer as shown in Figs. 1 and 2.

The programmer also adds pragma annotations to denote
loop unrolling, parallelization, and thread groupings. This
annotated CUDA code is translated to thread loops in C-
code with Xilinx Vivado HLS annotations. A thread block
in the CUDA implementation is computed by one FCUDA
core; parallelism can be explored through parallelisation opti-
mizations within a single core as well as through multiple
instantiations of FCUDA cores. After translation, the C-code
of the kernel core is synthesized with Vivado HLS to generate
a register transfer level (RTL) implementation of the kernel,
which can then be synthesized to an FPGA implementation
using Vivado [15] logic synthesis. An overview of the original
FCUDA flow is shown in Fig. 3.

Each FCUDA core executes threads in its thread loop
sequentially, and uses private on-chip block RAMs (BRAMS)
and registers for local memory, and external memory accesses
to fetch data into local buffers. Different combinations of fine-
grained optimizations produce cores with variation in core
area, latency (in cycles), achievable frequency, and power
consumption.

B. FCUDA Design Space Exploration

For each possible core design, the resource use impacts the
number of instantiable cores. However, the large number of
core designs (many combinations of FCUDA pragmas) have
sometimes significant variance in both core area and latency.
These nonlinear variations form a large design space that must
be explored to find the best combination of core design and
number of instantiable cores. Furthermore, evaluation of the
area and execution latency for each design requires expensive
logic synthesis and RTL simulation processes.
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Fig. 4. Thread, core, core–cluster, memory granularities [7].

In our original design space exploration ML-GPS frame-
work [7], we used profiling information to generate
application-specific core models to estimate core area and fre-
quency. Thus, we enabled analytical exploration of the large
design space with the cost of only a few logic syntheses
and RTL simulations in order to generate profile informa-
tion for the core model. This shows substantial performance
improvement compared to the original FCUDA framework,
but retained several weaknesses, specifically:

1) performance estimates for multicore designs idealize
parallelization between cores;

2) no modeling of the area or performance effects of core
interconnect or external memory access;

3) no multicore system design with interconnect.
In this paper, we address these issues to specifically con-

sider the core interconnect during design space exploration
with improved analytical models, exploration of both num-
ber of instantiable cores, and the total bandwidth demand
of cores, and automated generation of system level designs
with multiple cores and interconnect. In addition, we update
the analytical models to use Xilinx’s Virtex 7 series of
FPGAs.

In the ML-GPS framework [7], we cluster cores that share
a single data communication interface (DCI) and placement
constraints (Fig. 4). Multiple core–clusters are instantiated,
with the multiple DCIs connected with an additional shared
interconnect. The DCI module is responsible for arbitration
between cores for off-chip storage access. Sharing a single
DCI module among all cores may result in long intercom-
munication wires, affecting achievable frequency. The DCI is
required for communication, but we should minimize resource
use to reduce impact on the number of instantiable cores.
Thus, for this paper, we select a simple on-chip bus architec-
ture based on AXI which is hierarchical and scalable and we
explore the hierarchy of bus interconnects in order to minimize
resource use and impact on achievable frequency.

As examples of the size and variation in the potential sys-
tem design space, we show the entire design space for two
benchmarks, CP and FWT2, comparing total latency and area
(slices) in Figs. 5 and 6. Each application has more than 2000
unique combinations of core–cluster, core, thread, and array
parameters in the design space. If each of these design points
is fully evaluated with logic synthesis, place and route, and
RTL simulation, evaluation would require over two months of
execution time for each benchmark.

Fig. 5. Design space of CP.

Fig. 6. Design space of FWT2.

The design space contains many complex tradeoffs. Fig. 7
demonstrates that different configurations (C0 to C10) are
optimal in terms of cycles, clock frequency, total paral-
lel threads, and execution latency for the benchmark matrix
multiplication. With automatic multiple instantiation, all con-
figurations have high resource utilization (over 75% of device
slices). Configuration C0 corresponds to the FCUDA config-
uration without design space exploration. This simple demon-
stration shows the need for design space exploration due
to the variable impact of parallelism extraction on design
objectives.

III. AXI BUS-BASED FCUDA SYSTEM

This paper has two main extensions from prior work in
CUDA-based HlS: 1) automated generation of AXI-based
bus interconnect for multiple FCUDA core instantiations and
2) extension of the profiling and design space exploration
to improve accuracy and include communication hierarchy
limitations in the exploration.

First, we will discuss the design, implementation, and auto-
mated optimizations for the bus-based interconnect, followed
by the extension of the analytical models and design space
exploration in Section IV.

A. Bus Interconnection for FCUDA

On-chip interconnect is required for systems with multiple
cores sharing access to external memories. In the CUDA com-
putation model, it is not necessary to support communication
between cores, as no output of a core can be directly the
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Fig. 7. Performance attributes of MM design space configurations. (a) Execution cycles. (b) Clock frequency. (c) Hardware concurrency. (d) Execution
latency.

input of another core. Although input data can be shared
among cores for some data access patterns, more complex
interconnect will use FPGA resources, limiting the number
of instantiable cores. Our prior FCUDA-NoC work demon-
strated effective NoCs with support for data sharing, but with
limitations on total network size due to routability [10]; our
FCUDA-SoC work demonstrates use of bus-based interconnect
on SoC architectures, but without modeling and design space
exploration [16]. Thus, we concentrate on bus-based intercon-
nect to minimize resource use and effects on routability. Bus
interconnect size scales with the number of components con-
nected to the bus; thus, we decompose large networks into
a hierarchy of buses to decrease impact on area and achiev-
able frequency. This tree of buses can be considered a small
tree-based NoC, but we use only two-level hierarchies.

The FCUDA flow uses Xilinx Vivado HLS, targeting
Xilinx FPGAs (in our case, a Virtex-7), and the Vivado
HLS generated FCUDA cores implement AXI-compatible
communication interfaces. Therefore, we use the AMBA
AXI4 protocol. Although Vivado-generated interfaces are
AXI-compatible, we need to make several changes in the
CUDA to C compilation in the original FCUDA framework in
order to support a system level design with multiple FCUDA
cores.

1) Decentralized Control: With multiple core instantia-
tions, instead of a single core that represents the top-level
CUDA kernel, we must now have multiple cores that can
independently operate on portions of the kernels’ computa-
tion workload. Thus, we must add core and thread identifiers
(similar to CUDA thread and block identifiers) for each of the
synthesized hardware computing core. In addition, we must
add code that uses those identifiers to compute workload dis-
tribution; in CUDA, this is handled by the GPU driver and
hardware support for queues of thread-blocks. In FCUDA,
we must implement these workload distribution techniques in
order to decentralize workload distribution.

2) Memory Mapped Interface: In the original FCUDA core
interface, each input or output array or scalar parameter has
independent memory ports. Although this is possible in our
system, it would require bus connections for each interface of
the core, which would increase area overhead of the system as
well as effecting the achievable frequency. Thus, all function
arguments are mapped into a single external port with appro-
priate offsets, and Vivado HLS pragmas are used to direct
generation of AXI interfaces.

Fig. 8. Bus system designed for FCUDA.

B. FCUDA With AXI-Based Bus

Our AXI-based bus must efficiently share access to high
speed external memory interfaces, such as DDR3 on our target
Xilinx Virtex-7 FPGAs. In order to share these resources effi-
ciently, the bus-design must arbitrate between multiple cores.
The cores follow the AXI protocol and assume that a requested
transaction will eventually complete; thus, arbitration must
include sufficient buffering to prevent dropped transactions.

For an efficient bus design, we must consider buffering, arbi-
tration, area consumption, and achievable frequency in order
to ensure that the bus is not the limiting factor in system per-
formance. Fig. 8 shows an example bus-based system, with
four cores organized in two tiles of two cores each.

1) Bus Hierarchy: An AXI interconnect module can sup-
port up to 16 connected cores, but a single level interconnect
with 16 cores has significantly higher area and lower achiev-
able frequency than a two-level hierarchy decomposed into
four clusters of four cores each. Furthermore, many of our
benchmarks could fit significantly more than 16 cores, neces-
sitating at least one extra level of hierarchy. In our implementa-
tion, we explore potential two-level hierarchy decompositions
to find the best combination of first and second-level hierarchy
sizes for all particular system sizes. For a particular number of
cores, we explore possible options for cores per cluster (CR)
and total clusters (CL), where due to the port limitations of an
AXI-bus, neither CR nor CL can be greater than 16. For sim-
plicity, we only consider options where the cores are divided
evenly among clusters.
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Fig. 9. Bus system hierarchies of FCUDA.

Fig. 10. Buffers for master and slaves inside bus.

There is no benchmark which can instantiate more than
160 cores in a single design in our experiments due to either
exceeding board resources or limitations in place-and-route.
Furthermore, due to the effects of long routing paths, our ana-
lytical model will select designs with additional loop unrolling
and internal core parallelism instead of more cores once those
routing paths are too expensive. Thus, although we could con-
sider multilevel hierarchies (or a full binary tree), this paper
concentrates on two-level buses. The hierarchical bus system
is shown in Fig. 9.

2) Transaction Buffering: Ideally, all FCUDA cores will be
active at the same time, with each core generating a stream
of load and store requests. In most systems, a large num-
ber of cores are executing simultaneously for coarse-grained
parallelism. However, the shared bus can only process one
transaction at a time, and each core only process a single
(burst) request at a time. Thus, we can simply add first-in first
outs (FIFOs) at each bus port to buffer unprocessed requests
and responses as shown in Fig. 10.

In the example four-core system, each core has an associ-
ated request buffer, and arbitration logic shares access to the
memory controller. Similarly, a slave response buffer holds
memory controller responses that must arbitrate for bus access.
Total internal bandwidth can be computed with transaction
size, cycle time, and transactions per cycle.

Fig. 11. Clock domains in bus system.

3) Transaction Arbitration: We use round-robin transaction
arbitration for two main reasons. First, round-robin is a simple
arbitration algorithm and mechanism that can be implemented
with low area overhead and little effect on the achievable fre-
quency of the module. Next, in the FCUDA model, all the
cores will start execution at roughly the same time, and the
kernel is considered complete when the last core finishes exe-
cution. Furthermore, each core is only processing at most one
memory transaction at a time. Thus, a simple method to evenly
share access among cores will yield uniform core performance
with fair, low variation average access latency.

C. System Optimizations

After composing FCUDA cores and the AXI-based bus
interconnect, we perform additional system-level optimization
to improve performance and area of system implementations.

1) Placement Constraints: In a large system with many
components, adding placement constraints for core clusters can
effectively reduce long wires in the final placement and routing
and thus improve achievable frequency. Thus, we use Xilinx’s
Advanced Silicon Modular Block architecture [17], and assign
Pblock placement constraints for core clusters together with
their shared AXI Interconnect IP. These placement constraints
achieve improved clustering and result in improved achievable
frequency.

2) Multiclock Domain Setting: After placement constraints,
achievable frequency is improved, but the clock and reset
networks remain long wires. Furthermore, because the loca-
tion of the DDR3 memory controller is fixed, the connections
between the memory controller and the bus hierarchies may be
long. The memory controller generated by Vivado IP Integrator
provides a fixed clock output as application interface clock, but
the clock can only be used as a reference clock for commu-
nication between the memory controller and applications; it
cannot be used as the clock for the hierarchy of buses and
cores. In this paper, we always have a single core type, and
thus do not consider multiple cores with different clocks. We
divide the system level design into two clock domains, one
for the memory controller and one for the FCUDA cores as
shown in Fig. 11.

Asynchronous FIFOs handle cross-domain buffering
between the memory controller and FCUDA core clock
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domains. With separate clock domains, we operate the
memory controller at a higher frequency independent of the
cores’ achievable frequency, thus increasing total system
bandwidth.

D. System Automation

We automate FCUDA compilation, bus generation, and sys-
tem design generation into a unified tool chain. The tool chain
flow includes front-end CUDA to C compilation, Vivado HLS
synthesis, batch script mode system set up in Vivado, and
launching of synthesis (including P&R) or system simula-
tion. With a given number of FCUDA cores and core clusters
as input, the bus generation first instantiates cores within a
cluster and connect them to one shared AXI Interconnect IP
(bus level 2). The tool chain iterates this process for the given
number of core clusters. Then, all the AXI Interconnect IPs are
wiring to another AXI Interconnect IP (bus level 1). Finally,
the first-level AXI Interconnect is connected to the memory
controller, enabling the communication between FCUDA cores
and the memory. We also combine the design space explo-
ration into the tool chain which considers resource usage,
latency, and memory bandwidth of the bus system. The opti-
mal settings will be selected by the tool chain based on the
models and algorithms we present in Section IV.

IV. DESIGN SPACE EXPLORATION

Exploration of the multilevel granularity space is based on
analytical models to estimate resource consumption, achiev-
able frequency, and latency in cycles. The analytical models
are built by first performing synthesis and full implementa-
tion of selected test cases and then using linear regression to
estimate the relative importance of variables. In this paper,
since we have automated the system generation, we are able
to collect area and performance estimates based on full-
system implementation results rather than the linearly scaled
estimates of the prior design space exploration [7]. Finally,
using the analytical model, we perform a design space explo-
ration and select a set of candidate design points that form a
pareto-optimal set of system designs that the user can select
from.

In this section, we will first present the analytical models
for estimating system performance and resource usage, then
discuss the automated model training procedure. Finally, we
will present the analytical design space exploration algorithm.

A. Analytical Modeling

Accurate and efficient analytical modeling is critical to the
development of design space exploration [18]. Without ana-
lytical models, we would need to actually perform synthesis
(including P&R) and simulation to evaluate candidate core and
system designs. Thus, the best result is discovered based on
exhaustive enumeration or sampling, instead of understanding
the relation between parameters and system results.

The relation between HLS synthesis parameters and result-
ing system characteristics is application dependent; the effects
of loop unrolling, memory partitioning, and parallelism
(among others) all depend on the code being transformed.

Thus, for each application, we sample a set of designs and use
linear regression to determine the values of analytical model
coefficients. We will now present the analytical models we use
for resource consumption, frequency, and latency.

1) Resource Usage: The resource consumption of a system
design is the combination of: number of cores per cluster (CR),
threads per core (TH), array-partitioning per core (AP), and
number of core–clusters (CL), plus overheads for AXI bus
IPs (IP_BUS), bus hierarchy (Bus_Hierarchy), and a con-
stant overhead including the area of the memory controller
and asynchronous FIFOs. For this model, we use six fit
coefficients, R0–R5. The model and coefficients are shown
in (1) and (2). RCluster is the resource consumption of a
single core–cluster which depends on the number of cores
in one cluster (CR), unrolling (TH), and memory partition-
ing (AP) degrees as well as the bus resource, whereas R is
the total resource consumption of the design containing CL
core–clusters, the bus resource, and additional resource due
to memory controller, reset logic, system IPs, etc. (R5). Note
that each of the core–cluster has a bus IP that supports the
communication of the cores in a cluster with the memory con-
troller at the next hierarchy level. The size of a bus IP is a
function of the number of enabled AXI slave ports (from 1
to 16 ports) either connecting to FCUDA cores of a cluster
[IP_BUS(CR)] or connecting clusters of cores at the next hier-
archy level [IP_BUS(CL)]. In systems with only one level of
hierarchy, additional overhead for multiple levels of hierarchy
evaluates to 0. Together, the resource model includes variables
for the primary factors that can affect the area of a core, the
area of communications infrastructure, and the system area
(that includes multiple instantiation of cores and communi-
cations). This model currently only supports 1 or 2 levels of
hierarchy, but could easily be extended to multilevel

R = RCluster × CL + (Bus_Hierarchy − 1)

× IP_BUS(CL) + R5 (1)

RCluster = R0 + R1 × CR + R2 × CR × TH + R3 × CR

× AP + R4 × TH × AP + IP_BUS(CR). (2)

We construct an independent resource model for each type
of FPGA resource (lookup table, flip-flop, BRAM, and digital
signal processor) so that we can effectively estimate which
resource is the bottleneck with multiple instantiations. We
additionally verify routability using the existing routability
analytical model [9]. The resource model can be used to
determine a maximum number of instantiable cores, but later
analysis in memory latency may determine that a smaller num-
ber of cores fully utilizes memory bandwidth. In this case,
we may select either: 1) a core design with different memory
use or 2) fewer cores at the system level in order to improve
achievable frequency.

2) Achievable Frequency: The frequency (clock period)
model, aims to capture frequency degradation due to wire
routing within the core–cluster, as well as organization of
core–clusters. HLS-generated RTL is often pipelined for a
nominal clock period defined by the user. However, the actual
clock period of the placed netlist is often degraded (i.e., length-
ened) due to wire delays introduced during P&R. Thus, we
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Fig. 12. Physical tiles, virtual tiles, and model parameters.

also model the system level placement. First, we consider the
total number of core–clusters in the system-level design. The
number of core clusters is used to divide the entire FPGA
into a set of physical tiles. When there are multiple possible
options, we explore different options for dividing the FPGA
into equal tiles. Within those physical tiles, we find a virtual
tile: the minimum subregion of a tile with a valid placement
of the core–cluster. In Fig. 12, we show an example FPGA
with four physical tiles, and the virtual tile within a physical
tile that is the minimum placement region.

The clock period within a cluster is affected by wire-length,
which we model by the diagonal length of a virtual tile con-
taining the core cluster (Diag), and routability in the physical
tile modeled by the slice utilization of a cluster in the physi-
cal tile (Util). In addition, the amount of routing necessary is
affected by array partitioning (AP) and threads per core (TH).
The clock period estimation model and fit coefficients are
shown in (3). In this model we incorporate the effects of par-
allelism granularities (core-design) and layout information; we
assume that the design and interconnection on a cluster level
are the primary effect on frequency, and that wires between
clusters can be appropriately pipelined

Period = P0 + P1 × Diag + P2 × Util

+ P3 × AP + P4 × TH. (3)

To minimize Diag, we enforce that placement constraints
are minimal, given core–cluster area requirements and minimal
region perimeter. Thus, core clusters in a virtual tile are near-
square rectangular areas; Diag is computed as in (4), where
minDim is the minimum dimension of a physical tile in slices,
and Rslice is the slice counter of core–cluster logic

Diag2 =
{

2 × Rslice : if Rslice ≤ minDim2

minDim2 +
(

Rslice
minDim

)2
: if Rslice > minDim2.

(4)

Util in (3) represents the slice utilization rate of the phys-
ical tile by the core–cluster slices. Note that in general the
physical tile is larger than the virtual tile: this models that
when a placement region can be relaxed (reducing utilization),
routability improves and thus clock period also improves.
Parameters Rslice (hence Diag) and Util in (3) are calculated
using the resource model. Hence, parameter Diag incorpo-
rates the core–cluster resource area and layout information

Fig. 13. Computation-bound ping-pong.

Fig. 14. Memory transfer-bound ping-pong.

while Util incorporates the routing flexibility into the period
model, i.e., whether the core–cluster logic can be routed into
one physical tile.

3) System Latency Model: In the original FCUDA design
space exploration models, latency was computed simply as
core latency (per thread block) multiplied by the number
of thread blocks, divided by the number of cores in the
system. However, the original model idealizes paralleliza-
tion efficiency, ignores communication latency overheads, and
opportunity to overlap communication and computation.

As discussed in Section II, applications may overlap com-
pute and communication using ping-pong buffers to pipeline
processing of blocks of data. Fig. 2 depicts a perfectly over-
lapped system, where communication and computation latency
exactly match. However, in practice, either the computa-
tion or communication will be the dominant factor in total
latency, as shown in Figs. 13 and 14. Our FCUDA compiler
offers ping-pong double buffering option to overlap compu-
tation and communication for better performance. Therefore,
in this paper, we enable this option to study the impact of
communication as well as computation tasks on the overall
performance.

Thus, we refine the idealized computation latency model

Latency = max{cmp_latency, trn_latency} + overhead.

(5)

In (5), cmp_latency is the sum of computation latency for all
thread blocks. trn_latency is the sum of latency for all memory
transfer overlapped with computation. In this paper, we assume
that ping-pong buffers are always used. If ping-pong buffers
are not used, the latency is simply the sum of computation
and transfer latencies. overhead is the sum of latencies of ini-
tialization, nonoverlapped fetch or writeback, and any delays
between processing. In practice, overhead is a very small fac-
tor compared to computation and memory transfer, which can
be safely ignored.

a) Computation latency: Since all the blocks are exe-
cuted as a for loop and all cores execute the same code, total
computation latency can be estimated using

cmp_latency(TH, AP, CR, CL)=Cyc × Nblock

CR × CL
× Period.

(6)

In (6), Nblock represents the total number of kernel thread-
blocks, Cyc is the number of execution cycles required for
one thread-block and Period is the shortest clock period the
system can meet. As discussed earlier, Period is affected by all
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Fig. 15. Bus utilization of one core versus six cores.

the design space dimensions and is estimated through our esti-
mation model for achievable frequency. As shown earlier, CR
and CL are the pair of core number and core–cluster parame-
ters. However, Cyc is affected by the TH and AP parameters,
and is gathered from Vivado HLS reports. This means that
although other parameters will be fit as normal, we still require
an HLS invocation to determine the latency in cycles. For
this reason, even with the analytical model, it may still be
prohibitively expensive to try all combinations of parameters.
Thus, in Section IV-C1, we will discuss a binary search method
used with the analytical model.

b) Transfer latency: Transfer latency is the latency of
the data preparation stage for the next stage of computation in
FCUDA. For some benchmarks, this only contains data fetch-
ing from off-chip DDR3, while for some others, this may also
contain writing intermediate results back to DDR3.

Moving data between DDR3 and computation logic in
FCUDA cores via our bus communication architecture is a
pipeline with multiple stages, as shown in Fig. 10. Intermediate
stages are either buffers or arbitration logic, including FCUDA
AXI wrappers’ output buffer, BUS interfaces, BUS arbitration
logic, clock domain synchronization, the memory controller,
and buffers inside DDR3. The memory frequency for the
system depends on the longest stage in the pipeline.

Fig. 15 illustrates the bus utilization of a system with one
core versus a system with multiple cores. Stages in green
denote the start of a memory request, whereas orange stages
denote time-steps where the bus is not utilized (for that core).
With a single core, the bus is under-utilized, as the core spends
time waiting for a single request to return. In contrast, multiple
cores can initiate requests in subsequent cycles to fully uti-
lize the bus. However, with many cores, full utilization of
the bus with round-robin bus arbitration can increase average
access latency compared to the original under-utilized bus. The
overall utilization is related to both the number of cores and
workload per-core which is affected by core design. Therefore,
it is important to choose a number of cores that balances
average transfer latency and the total number of transfers.

Based on the previous analysis, the transfer latency is
affected by the total number of cores in the design, which in

turn depends on number of cores per cluster (CR) and num-
ber of core clusters (CL). Thus, it can be computed using (7).
trn_cycle is the latency in clock cycles of the transfer task
per thread block. It is estimated by using the model described
in (8). The coefficient R0 represents constant overhead dur-
ing memory transfer. R1 and R2 factor the impact of number
of cores per cluster (second-level hierarchy) and number of
clusters (first-level hierarchy), respectively, on data commu-
nication. Finally, the total number of cores in the design is
weighted by R3

trn_latency(CR, CL) = trn_cycle × Nblock

CR × CL
× Period (7)

trn_cycle(CR, CL) = R0 + R1 × CR + R2 × CL

+ R3 × CR × CL. (8)

B. Application Profiling

To determine the fit parameters for the analytical models
discussed in Section IV-A, we perform several sets of profil-
ing measurements. For each application, we perform synthesis,
place and route for 20 selected combinations of system level
designs including different parameter settings for unrolling,
pipelining, number of cores per cluster, and number of core–
clusters. In addition, we perform short simulations for 14
different number of cores per cluster and core–clusters to char-
acterize the scaling of transfer latency. For each combination,
we perform FCUDA HLS, Vivado HLS, Vivado logic syn-
thesis and implementation (for area and frequency results).
When collecting area data after implementation, we also count
the extra resources instantiated by Vivado to perform rout-
ing [19]. It ensures the routability of all the design candidates
produced by our analytical models. The results of all combi-
nations are used to perform linear regression to compute all
model coefficients for the subsequent design space exploration.

C. Analytical Design Space Exploration

Given trained analytical models, we perform design space
exploration of possible design points. However, because the
latency in cycles for any combination of parameters not orig-
inally profiled is determined by executing Vivado HLS, it is
still expensive to exhaustively try all possible combinations.
Thus, we will use a binary search technique to determine the
most attractive set of configurations to try, and then use Vivado
HLS to find the performance of those designs (in term of clock
cycles). In experiments, the binary search technique finds the
parameter setting that minimizes latency within 1% of the
optimal determined through exhaustive search.2

1) Efficient Design Space Search: Before we present our
design space search algorithm, we first discuss our observa-
tion of the impact of HLS parameters on the performance of an
input CUDA kernel. Fig. 16 depicts the MM kernel latency for
different unroll and array-partition pairs (TH, AP). For each
unroll and array-partition pair (TH, AP), we use CRTH

AP and
CLTH

AP to denote the core and core–cluster values that min-
imize system latency in (5). We can observe [Fig. 16(a)] that

2The exhaustive search runs Vivado HLS for all parameter combinations,
but uses the analytical model for area and frequency estimates.
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Fig. 16. Unroll and array partition effects on latency. (a) Array partition
degree. (b) Unroll factor.

the value of execution latency as a function of array partition
degree for a fixed unroll factor decreases monotonically until
a global optimal point, after which it increases monotonically.
With a certain unroll value, the core behaves like a multi-issue
core and computation is done in parallel. However, without
memory partitioning, limited memory ports would become the
bottleneck to support the level of parallelized computation, so
increasing array partitioning increases thread parallelism and
reduce computation latency. However, after significant array
partitioning, latency in cycles does not decrease anymore, yet
higher connectivity hurts achievable frequency.

Unroll factor [Fig. 16(b)] also has a similar impact on
latency. Intuitively, more unrolling exploits more computation
parallelism. However, after sufficient unrolling, it may not be
beneficial due to array access bottlenecks, reduced achievable
frequency, and additional area overhead. These observations
have been verified on other benchmarks as well.

Instead of using exhaustive exploration, we use a binary
search heuristic (Algorithm 1) leveraged by the two key obser-
vations as described above: 1) for a fixed unroll degree, latency
curve is convex with respect to array partitioning and 2) the
latency curve is convex with respect to unroll degree under the
best partitioning degree. For each point p in unroll-partition
space, the binary search estimates the latency of p and p + 1
by calling HLS to get the cycle values followed by latency
computation based on (5). Because the two main core-design
parameters are convex and can be determined independently,
we can perform a binary search on each dimension. First, we
perform a binary search on the array partitioning parameter to
determine the optimal partitioning degree AP between 1 and
an application-specific maximum in log|AP| steps. Then, at

Algorithm 1 Design Space Search
1: SEARCH(1);
2: � Search sequence: unroll followed by array partition
3: function SEARCH(dim)
4: if search all the dimensions then
5: Let (TH, AP) be unroll and array partition pair;
6: lat = Lat(TH, AP, CRTH

AP, CLTH
AP);

7: UPDATELATENCY(lat, TH, AP);
8: return lat;
9: end if

10: Let space[] be the design space of dimension dim;
11: BINARY_SEARCH(dim);
12: return curr_best;
13: end function

that array partitioning, we again perform a binary search on
the unrolling parameter to find its optimal value in log|TH|
steps. Thus, the overall complexity of our binary search is
log|TH| × log|AP|, where TH and AP represent the design
dimensions of unrolling and array partitioning, respectively.

V. EXPERIMENTS

In this section, we evaluate the resource consumption of
the AXI bus-based architecture, the accuracy and effective-
ness of analytical models and design space search algorithm
with enhanced memory latency model together with the
performance advantage of multilevel granularity parallelism
exploration.

We use our extended FCUDA system tool on a set of bench-
marks from the CUDA software development kit [20] and
Rodinia [21]. In this paper, we concentrate on integer bench-
marks due to smaller per-core resource use, and therefore
more system cores in the design space, and more complex
core interconnect. Thus, all benchmarks are either originally
integer benchmarks or converted to be integer benchmarks.
Table I summarizes the benchmarks including number of
thread blocks and number of processing data in the CUDA
implementation and description of the kernel functions. One
thread block is an execution unit of a single FCUDA core.
Therefore, the number of thread blocks represents the amount
of execution units that a design needs to process by evenly
distributing them to FCUDA cores.

For each application, we perform an initial set of exper-
iments for collecting profiling data to build the analytical
model. Then, based on the analytical model, we explore the
design space and select a design that maximizes performance.
The selected design is placed and routed using Xilinx Vivado
2014.4, targeting a Xilinx VC709 with Virtex-7 690T FPGA.
We report area, achievable frequency, and latency of designs.
We now present our experiments and results in detail.

A. Resource Utilization of Bus Back-End

First, we evaluate the resource usage of our AXI-bus based
interconnect. We measure the resource consumption of the
AXI Interconnect IP core with between 1 and 16 ports. Table II
shows the resource utilization of a single hierarchy of AXI-bus
IP as a percentage of the Virtex 7 690T device.
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TABLE I
BENCHMARKS DESCRIPTION

TABLE II
UTILIZATION OF AXI-BUS WITH

DIFFERENT PORT NUMBERS

Resource usage of the single hierarchy of the bus IP scales
linearly between 2 and 16 ports. Our design space exploration
will explore system designs with two levels of bus IP hierar-
chy, with modeling of interconnect within a core cluster and
between core clusters as in (1).

B. Analytical Model Accuracy

Next, we evaluate the accuracy of the analytical model as
well as the performance benefits of design space exploration
using our analytical model. For each benchmark, the design
space consists of roughly 2000 combinations of thread, array,
core, and core–cluster parameters. The analytical model is
generated by performing Vivado HLS followed by synthesis,
place and route for 20 selected combinations of HLS set-
tings to determine analytical model parameters as described
in Section IV-B.

Since most of the applications are either memory bound or
computation bound, we choose CP and FWT2 as represen-
tative cases because CP is a computation bound application
and FWT2 is a memory bound application. Fig. 17(a) and (c)
depicts the entire design space for CP and FWT2 kernels,
and Fig. 17(b) and (d) shows the subset of design points
close to the optimal configuration. The design point selected
by the analytical exploration is marked in red. We compare
the optimal solution selected by the analytical model using
our binary search algorithm to the best solution based on
exhaustive search and find that the two solutions differ by
only 1%. We then perform synthesis and place and route of
the selected optimal solution for the two benchmarks and com-
pare the actual implementation results with the estimations
reported by our analytical model. On an average, we find that
the resource estimation of our model is within 10%, and the
frequency estimation is within 20% when compared to the
results from the Vivado implementation. Although 10% and

TABLE III
NUM. CORES COMPARISON

20% seem relatively high error percentages, our analytical
model can accurately capture the different trends when we
explore different design parameters. That explains why our
analytical model-driven solution is only 1% away from the
optimal solution based on exhaustive search. This 1% shows
that our analytical model in tandem with the binary search
algorithm is able to search for the best solution in the design
space effectively and efficiently.

The analytical model explores different core design options,
the interconnect organization, and the total number of cores.
In Table III, we show the number of cores selected by our
analytical exploration, and the maximum number of cores of
the same core design. For several benchmarks, we can see a
gap between the number of cores selected and the maximum
number of cores of the same configuration. This demonstrates
that the analytical model determines that the memory band-
width saturates, and that the benefit of additional cores does
not justify the frequency degradation.

C. Improved ML-GPS Effectiveness

As mentioned earlier, we extend the original ML-GPS [7]
in this paper to include our bus system and an automated bus-
based system generation, improved analytical model, and a
model for external bandwidth. Since we demonstrated the low
area requirements for our bus-based system in Section V-A and
the accuracy of our analytical model in Section V-B, next we
demonstrate the effectiveness of the design space exploration
of our enhanced ML-GPS. Additionally, we will also compare
the performances between ML-GPS and SL-GPS [6]3; we

3Single-level granularity parallelism synthesis.
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Fig. 17. Multigranularity parallelism design spaces. (a) CP design space. (b) CP design subspace. (c) FWT2 design space. (d) FWT2 design subspace.

Fig. 18. ML-GPS versus SL-GPS: computation performance. Computation performance of (a) ML-GPS single core versus SL-GPS single core and (b) ML-GPS
full system versus SL-GPS single core.

remind that SL-GPS only explored core and core–cluster
synthesis parameters.

1) Design Space Exploration Latency: The profiling pro-
cess for building the analytical model requires a few hours
per benchmark; in comparison, assuming the average synthesis
time per HLS setting remains the same, exhaustive explo-
ration of all settings would take approximately two months
for a single benchmark. The analytical design space explo-
ration requires 10 min per benchmark on average, primarily for
Vivado HLS invocations. The analytical exploration together
with the profiling represents a substantial acceleration over
evaluation of all implementation options.

2) Computation Latency: First, we evaluate the ML-
GPS design space exploration core selection. Our analytical

models are used to explore core implementation options
and determine the best core design to use in a multi-
core system implementation. In Fig. 18(a), we compare
the performance of the SL-GPS core implementation to a
single core of the best system-level implementation cho-
sen by ML-GPS. Note that ML-GPS chooses a system-
level design, so there may be better single-core designs
not selected by ML-GPS. In several cases, the best core
design achieves significant speedup over the SL-GPS design,
although the selected core design is sometimes simple either
because the application has little benefit from unrolling
or partitioning or the benchmark is memory bound and
so there is greater benefit through increased memory-level
parallelism.
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Fig. 19. ML-GPS versus SL-GPS: system performance. System performance of (a) ML-GPS single core versus SL-GPS single core and (b) ML-GPS full
system versus SL-GPS single core.

In Fig. 18(b), we evaluate the computation latency of the
many-core system, also normalized to the performance of a
single FCUDA core. In each case, we instantiate many of
the best core design and integrate with the bus-based inter-
connect. The speedup of many-core designs scales well, with
speedup close to the product of per-core speedup and number
of cores (annotated above each bar) in all cases. In benchmark
FWT2, both 16-bit and 32-bit integer implementations achieve
less speedup due to memory bandwidth limitations, where the
16-bit version achieves greater overall speedup with fewer
cores due to improved bandwidth utilization compared to the
32-bit version. Similarly, in the cp benchmark, the 16-bit ver-
sion obtains significantly more speedup than the 32-bit version
due to bandwidth use.

3) System Performance: The design space exploration
improves computation latency effectively, but as seen in
several cases, the memory bandwidth utilization can still sig-
nificantly affect achieved speedup. For this reason, overlapping
computation and memory is particularly important. In this
paper, we implement ping-pong buffers in our system-level
implementation flow. We now evaluate how these ping-pong
buffers affect system performance through overlap of memory
and computation.

In Fig. 19(a), we compare the best ML-GPS single core
with the FCUDA single core. With only one core, as expected,
the overall speedup generally degrades compared to the eval-
uation of computation-only. A single core is insufficient to
utilize all the bandwidth, so even with overlap, the total per-
formance including memory latency is reduced. However, this
measurement is more representative of actual performance
expectations, whereas the computation-only comparison is less
predictive of expected full-system performance.

Fig. 19(b), again compares full-system performance includ-
ing memory latency. In many applications, we still see
significant speedup, with good performance scaling relative
to the number of cores. There are a few benchmarks with
particularly large benefit due to ping-pong buffers including
16-bit dwt. With a small data-size and effective compute-
memory overlap, dwt achieves highly efficient performance
scaling with 128 cores. Other benchmarks retain nearly the
same level of speedup as the compute-only evaluation despite
the addition of system memory latency. Hotspot and pathfinder

Fig. 20. Scalability of hierarchical bus versus NoC for Mat Mul(mm).

achieve particularly little overall speedup despite many cores;
although system-level performance is still 17× and 9×,
respectively, they are severely memory-bound and even the
maximum number of cores cannot sufficiently overlap mem-
ory accesses to achieve better speedup. Despite these examples
of memory-bound benchmarks, our system performance using
ping-pong buffers achieves good performance scaling across
the benchmarks.

D. Bus Scalability

In this paper, we select a bus-based architecture for com-
munications instead of an NoC. In prior work [10], we
implemented an NoC with FCUDA cores. However, the NoC
introduces two challenges: 1) the NoC routers take significant
area that could have been used for additional cores and 2) the
significant routing requirements of mesh-based interconnect
affects routability of the system design. In Fig. 20, we demon-
strate the scalability of the bus-based architecture for the
matrix multiplication application, which heavily shares data on
the NoC. Although the NoC out-performs the bus with small
network sizes, the bus-based communications both scales to
larger total number of cores and better performance at the
same number of cores due to improved achievable frequency.
An NoC-based system can only instantiate up to 64-cores;
larger networks are not routable despite available area. In con-
trast, the bus-based system scalably improves performance up
to the maximum number of implemented cores. As stated ear-
lier, the NoC results could be improved substantially through
a hard-NoC [11].
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VI. FUTURE WORK

In the future we plan to extend this paper to consider
automated computation and communication scheduling for dif-
ferent cores on the bus for global optimization. For streaming
applications with point-to-point connections, an efficient solu-
tion was presented in [22]. It is interesting to see how to
generate such an approach to our architecture with hierarchi-
cal buses. Also, we shall consider bus topology design with
physical planning as proposed in [23].

VII. CONCLUSION

In this paper, we present ML-GPS for automated design
space exploration considering parallelism at multiple levels of
granularity including internal and external memory bandwidth
limitations. We created a framework to automatically gener-
ate a hierarchical and scalable AXI-based bus interconnect for
FCUDA multicore designs of up to 150 cores.

We demonstrated the scalability of our bus-based inter-
connect compared to our prior NoC-based work, and the
effectiveness of our design space exploration and auto-
mated system-level generation to create custom CUDA-to-RTL
implementations. Our experimental results show that ML-
GPS achieves significant, scalable system speedup with up
to 150 cores, and effective memory and computation overlap
through automated implementation of ping-pong buffers for
all systems. The source code of our framework is available at
http://dchen.ece.illinois.edu/tools.html.
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