
Lazy Precharge: An Overhead-free Method to Reduce

Precharge Overhead for Memory Parallelism Improvement of DRAM System

Tao Zhang, Cong Xu and Yuan Xie
Department of Computer Science and Engineering

The Pennsylvania State University, PA, USA 16802

Email: {zhangtao, czx102, yuanxie}@cse.psu.edu

Guangyu Sun
School of Electrical Engineering and Computer Science

Peking University, Beijing, China 100871

Email: gsun@pku.edu.cn

Abstract—As we enter the multi-core era, the main memory becomes

the bottleneck due to the exploded memory requests. In this work,

we propose a novel memory architecture–Lazy Precharge (LaPRE) that

enables aggressive activation schemes so that multiple rows in a bank

can be activated successively without the interrupt from precharges.

Therefore, LaPRE effectively reduces the precharge overhead and thus

improves memory parallelism. In addition, three memory scheduling

schemes are proposed correspondingly to fully make use of the improved

memory parallelism. The experimental results show that LaPRE can

achieve 14% performance improvement on average without hardware

overhead.

I. INTRODUCTION

As more and more transistors can be integrated into a single

chip, the rich transistor resource enables chip multi-processor (CMP)

architecture, which in turn produces heavy memory loads and there-

fore generates tremendous stress on the main memory (a.k.a.“memory

wall”). On the other hand, the memory requests from multiple cores

render high random behavior so that low row buffer locality can be

exploited [1], [2]. The poor spatial locality makes it more challenging

to design a memory controller with satisfied performance. Given the

low row buffer locality, the Close-Page policy that closes the entire

row buffer immediately after the data access is preferable in the CMP.

The memory access latency in a memory system with Close-Page

policy is mainly determined by the Row Cycle (tRC). Unfortunately,

the row cycle is almost constant through the JEDEC-DDR evolutions

(DDR-DDR4). Considering the memory clock frequency doubles in

each generation, the unchanged row cycle indicates the memory

becomes relatively slower (in cycle). For example, the row cycle

of DDR3-1600 is 41 cycles while it becomes 54 cycles in DDR4-

2400 [3], [4]. Intuitively, the larger memory latency suppresses the

memory level parallelism since a bank must spend more cycles to

deliver the data. To compensate the reduced memory parallelism,

sub-array level parallelism (SALP) [5] has been proposed to hide

the latency with fine-grained memory structure and tiered-latency

DRAM (TL-DRAM) [6] have been studied to shorten the row cycle

in the Near segment of a bank. Both prior arts, however, requires

additional logic in the memory chip, which leads to increasing cost

per bit ($/bit). Distinguished from those work, we propose a simple

but effective scheme, named Lazy Precharge (LaPRE), to smartly

leverage the legacy of existing sub-array infrastructure to reduce

the precharge overhead as well as the row cycle. In summary, our

contributions in this work are:

• We propose LaPRE as an effective solution to reduce the

precharge overhead and thus shorten the row cycle for performance

This work is supported in part by SRC grants, NSF 0903432 and
1017277, NSF China 61202072, National High-tech R&D Program of China
2013AA013201, and AMD Gift Grant.

improvement. LaPRE does not incurs any design overhead in the

memory chip. The zero overhead makes LaPRE promising to be

adopted by the industry.

• We propose three memory scheduling schemes in the memory

controller (MC) to leverage LaPRE to obtain performance improve-

ment. The impact of address mapping schemes and power constraint

are also evaluated as sensitivity study.

II. BACKGROUND

A. DRAM Hierarchy

To better understand the enabling techniques of LaPRE, we first

review the conventional DRAM architecture that is widely used in

commodity memory. Without loss of generality, the DRAM memory

structure has a pyramid-like hierarchy, which, as shown in Figure 1

(from top to bottom), consists of rank, chip, bank, sub-array, MAT,

and cell. A rank is composed of multiple memory chips (a.k.a. device)

that operate in lockstep to feed the data bus. Inside one chip, several

banks are employed as cell arrays and can be accessed independently.

Therefore, bank-level parallelism is extensively studied to improve

memory performance.

In fact, a bank can be further divided into many sub-arrays. All

sub-arrays share the output of global row address decoder so that only

one sub-array is allowed to be active at any time. In one sub-array,

there are many MATs and each of them has its own row decoder

and sense amplifier array as the local row buffer. Typically, a MAT

is sized of 512×512 storage cells in row (wordline) and column

(bitline) dimension. One storage cell is a Capacitor that is connected

to an access Transistor (so-called 1T1C structure). According to the

different voltage in the capacitor, the cell holds logic ‘1’ (Vdd) or

‘0’ (0V). As the example shown in the figure, eight chips compose

a rank to provide 64-bit data and each chip delivers 8-bit data (so-

called ×8 chip). Every chip contains eight banks and each bank has

16K rows and 8K columns. Therefore, one bank has 32 (= 16,384

512
)

sub-arrays and each sub-array consists of 16 (= 8,192

512
) MATs. In this

work, LaPRE falls into sub-array level parallelism (SALP), which

allows more than one sub-arrays to be active and those sub-arrays

share a common precharge.

B. Basic Operations in DRAM

The basic operations of a sub-array can be classified into four

types1: row activation (ACT or RAS), column read/write (CAS-R/W),

1In fact, more memory commands are available in JEDEC specification,
such as implicit auto precharge, post-CAS, and commands for low-power
mode. The PRE-ACT-CAS-PRE command order, however, is still applied.
As a result, we only show the basic flow in this paper.

978-1-4799-2987-0/13/$31.00 ©2013 IEEE 138

Fig. 1: DRAM hierarchy – a 1Gb-8bank×8 example

precharge (PRE), and refresh (REF). Only CAS has data transfer

between MC and memory modules while other three operations are

only used for either sub-array access preparation (ACT and PRE)

or data protection (REF). In this work, we focus on ACT and

PRE operations. As DRAM depends on electrical (dis-)charging, we

explain each operation with its unique electrical behavior as follows.

As shown in Figure 2(1), at the beginning all sub-arrays in

a bank are precharged as the signal EQ in the precharge logic

(equilibration logic) is asserted. Therefore, the voltage of bitline (BL)

is driven to Vdd/2 during idle. Once an ACT command is coming,

EQ becomes inactive to prevent the precharge logic from driving

the bitline (so not shown in Figure 2��). The sub-array then goes

through wordline opening, charge sharing, data sensing, and data

restoring in sequence. First of all, the row address decoder asserts

one wordline based on the row address as shown in Figure 2(2) (red

line). Correspondingly, all access transistors in the row are open.

Afterwards, the sub-array enters charge sharing. If the voltage of

storage cell is Vdd (0V), the cell (bitline) shares charges with the

bitline (cell). After the charge sharing, the bitline has a positive

(negative) voltage difference δV from the reference bitline that is still

under Vdd/2. Next, in the sensing logic signal ACT goes to Vdd and

NLAT goes to 0V for the data sensing. The sensing logic in the sense

amplifier (SA) can recognize the voltage difference and amplifies the

sensing result to ‘1’ (‘0’)(Figure 2(2)(3)). After the data sensing, the

data is locked in the SA for the following data burst by CAS-R/W.

Note that the original data in the cell has been destroyed due to the

charge sharing. As a result, SA needs to drive the bitline to restore

the data into the cell2.

It is obvious that the bitline voltage is no longer Vdd/2 after an

activation. As a consequence, no further ACTs are permitted in the

active sub-array since SA may not work correctly. To open another

row in the same sub-array, a PRE must be issued at first shown in

Figure 2(4). A PRE mainly does two things: wordline closing and

bitline/SA reset. Once there is a PRE command, the row address

decoder desserts the wordline so that the access transistors in the row

are completely closed. Then, signal EQ becomes active again so that

the precharge logic drives the bitline back to Vdd/2 for the next ACT.

In the commodity DRAM, all sub-arrays in a bank share signal EQ

so that one PRE precharges the whole bank even though in fact only

one sub-array is precharged. Note that a precharge can only be issued

2The reader can refer to [7] for more details of DRAM operations.

after the completion of data restoring since the wordline closing can

early terminate the restore and thus results in data loss. As no data

transfer occurs during a precharge, it inevitably induces performance

overhead in DRAM.

III. DESIGN OF LAZY PRECHARGE

In this section, we first define the overhead of percharge with

Close-Page policy as the motivation. The design of LaPRE is then

presented and the corresponding memory scheduling policies are

extended to Open-Page policy.

A. Overhead of Precharge

Figure 3 (top) shows the timeline of three requests to the same

bank in the baseline. Even though they refer to different sub-arrays,

all requests have to be serviced in sequence as we assume no SALP

is applied. In particular, every request has a dedicated precharge due

to the Close-Page policy. According to DRAM timing constraint, we

define overhead of precharge (OHPRE) as the ratio of precharge

time in a row cycle as shown in Eq.1 and 2, where the overhead for

read and write is calculated separately. Based on the values of timing

parameters in Table I, the overhead of precharge can be up to 30% and

25.6% for read and write, respectively. The large overhead indicates

an opportunity to improve the memory performance by reducing the

precharge overhead.

OH
read
PRE =

tRP

tRAS + tRP
=

tRP

tRC
(1)

OH
write
PRE =

tRP

tRCD + tCWD + tBURST + tWR+ tRP
(2)

In fact, SALP-1 has been proposed in [5] to reduce the precharge

overhead. As shown in the middle of Figure 3, SALP-1 relaxes

the precharge overhead by overlapping the precharge of one sub-

array with the activation of another sub-array. SALP-1, however,

incurs the conflict between activation and precharge in a bank for

two reasons. The first reason is the conflict of wordline opening

and closing in the sub-array that an activation is undergoing. As

mentioned in [5] (Section 5.2), “... a PRECHARGE is designed

to lower all wordlines within a bank to zero voltage...” while an

activation should assert one of the wordlines. The second reason is

that all sub-arrays are precharged simultaneously resulting from the

sharing of signal EQ. As a consequence, SALP-1 is in fact impractical

to be implemented without extra logics for selective sub-array-level

precharge, like SALP-2 or MASA in that paper.

TABLE I: Timing Parameters from Micron Data sheet [3]

Timing Params. Value Timing Params. Value

tRAS 36ns tRP 15ns

tRCD 15ns tCWD 7.5ns

tBURST 6ns tWR 15ns

Distinct from SALP-1, LaPRE eliminates both conflicts by re-

moving the overlap of activation and precharge. Instead, LaPRE

delays the precharge and allows multiple activations before a coa-

lesced precharge, which is named Lazy Precharge (LaPRE). Figure 3

(bottom) illustrates the basic idea behind LaPRE. As shown, the ACT

to sub-array 2 (3) is able to start immediately after the data has

been restored in the prior active sub-array 1 (2). At the end, a lazy

precharge is issued to precharge all three sub-arrays. In this way, only

one precharge is needed compared to the baseline that requires three

precharges.

139

Fig. 2: The circuit operation of activation and precharge

Fig. 3: Timing diagram of the three different memory access schemes

B. DRAM Chip Design

The commodity DRAM chip has provided the infrastructure for

LaPRE and thereby LaPRE does not incur any hardware overhead in

DRAM chip. As shown in Figure 2(2), once an ACT is received, the

wordline of the first sub-array is open for data burst. After the data

has been restored into the cell, the wordline can be closed without

data loss. At this time, the second ACT can be issued to open another

sub-array without a precharge, which is shown in Figure 2(3). Since

only one output of the row address decoder is asserted, the second

ACT automatically triggers the closing of the old wordline and the

opening of a new wordline. Note that no further request can be issued

to the first sub-array before a lazy precharge. As a consequence, the

row buffer of the first sub-array becomes invisible to MC. We name

such a sub-array as a dead sub-array.

The aggressive access scheme in LaPRE re-defines the timing

constraints on the activation sequence. From the perspective of the

first active sub-array, it requires the following ACT to be issued after

its wordline completely closes. Therefore, the second ACT should

fulfill the same timing constraint as a PRE should obey, which is

shown in Table II. In particular, the second ACT can only be issued

tRTP cycles after a read command CAS-R; or, tBURST+tWR cycles

after a write command CAS-W. Notice that the tRRD and tFAW

constraints are still applied to meet the power constraint.

TABLE II: New Timing Constraints on Activation

Prev. Cmd Curr. Cmd Timing Constraint Comments

CAS-R ACT tRTP same bank

CAS-W ACT tBURST + tWR same bank

ACT ACT Five-ACT-Window same rank

IACT 32.1mA IPRE 6.2mA

140

C. DRAM Controller Design

LaPRE should be exposed to the MC so that the MC can

make use of the enabled SALP. In particular, when to precharge

a bank is a critical question to answer when design an MC. In

commodity DRAM, Close-Page and Open-Page are two classic row

buffer management policies to address the question3. In Close-Page,

the percharge is initiated immediately after the desired data burst. No

benefit of row buffer locality can be exploited. Alternatively, Open-

Page policy requires a precharge if and only if 1) no request in the

queue that addresses the same row (row buffer hit) or four requests

have been serviced with row buffer hits; AND 2) there is a request

pointing to a different row (row buffer miss). Note that we adopt four

row-buffer-hit requests as the threshold to prioritize a row-buffer-miss

request based on the results of prior study [2], in which less than five

row-buffer-hit requests can be serviced before a precharge. This also

takes into account the concern of request starvation and fairness of

request scheduling.

Different from the traditional MC, LaPRE-MC has more flexi-

bility to close a bank because multiple sub-arrays can be activated

before it issues a lazy precharge. In this work, we propose three

memory scheduling schemes to leverage LaPRE for the performance

improvement. The three schemes are described as follows.

•LaPRE-Idle-First: Similar to the traditional Close-Page policy,

LaPRE-MC seeks a memory request in the queue that points to an

idle sub-array based on first-come-first-serve (FCFS) policy. A lazy

precharge is issued if and only if no such request can be found in the

queue.

•LaPRE-RBH-First: Similar to Open-Page policy, LaPRE-MC

prioritizes the requests that can explore row buffer hit (RBH). A

sub-array switching occurs if no such request can be found or the

number of requests that have been serviced reaches the threshold

to avoid remaining requests’ starvation. Finally, a lazy precharge is

issued when no request that has row buffer hit or accesses an idle

sub-array can be found in the queue.

•LaPRE-DS-First: As an extension of LaPRE-RBH-First,

LaPRE-MC issues a lazy precharge once it detects the head request

in the queue points to a dead sub-array (DS). In LaPRE-RBH-First

scheme, such head request may be delayed for a long time because

LaPRE-MC can continue to drain other requests in the queue. LaPRE-

DS-First eliminates the potential delay with more precharges as the

payment.

Figure 4 illustrates how the three scheduling schemes work. At

the beginning, there are nine requests in the queue (older request

has smaller number). The requests having the same color point to

the same sub-array and row while the requests with different colors

accesses different sub-arrays. For instance, Req-1/3/4/5/6 (light gray

blocks) access the same sub-array and same row so that row buffer

hit can be exploited. Req-2/7 (dark gray block) or Req-8/9 (black

block) access different sub-arrays so that LaPRE can be applied.

Since LaPRE-Idle-First only searches for the request to an idle

sub-array, a lazy precharge is needed after the completion of Req-

1/2/8. For the same reason, the second lazy precharge is inserted after

the completion of Req-3/7/9. Then, each of the remaining requests

3Throughout the paper, Close-Page and Open-Page are dedicated to the
row buffer management policies used in the commodity DRAM memory
controllers. The proposed policies are noted with prefix “LaPRE”.

(Req-4/5/6) needs a precharge because they go to the same sub-

array. Compared to the traditional Close-Page policy that needs eight

precharges (dashed blue line), LaPRE-Idle-First reduces the number

of precharge to four.

When it comes to LaPRE-RBH-First, Req-1/3/4/5 are prioritized

due to row buffer hit. Afterwards, Req-2/7 are selected since four

requests have been serviced for the previous sub-array. Req-8/9 are

then scheduled consecutively. Prior to Req-6, a lazy precharge must

be issued to reset the dead sub-array. Finally, Req-6 can be serviced

after the precharge. Compared to Open-Page policy, LaPRE-RBH-

First reduces the number of precharge from three to one. Also notice

that Req-6 is delayed until Req-7/8/9 finish. To avoid the long delay,

LaPRE-DS-First issues a precharge once it detects Req-6 comes to

the head of queue. After the percharge, the remaining requests are

scheduled accordingly. Obviously, LaPRE-DS-First may degrade the

performance since it can early terminate a series of requests that are

originally featured row buffer hit (e.g., Req-2/7). In addition, LaPRE-

DS-First sometimes induces more precharges than LaPRE-RBH-First.

For example, another precharge is introduced if the position of Req-6

and Req-8 are swapped in the queue.

Fig. 4: The proposed memory scheduling schemes

In addition to the row buffer management policy, LaPRE-MC has

to account for the power consumed by the simultaneous precharges of

multiple sub-arrays. We use the power analysis tool from Rambus [8]

to obtain the current dissipation of an activation (IACT) and a

precharge (IPRE), respectively. The result shown in Table II reveals

that the precharge current of one sub-array is around 1/5 of the

activation current. Therefore, a new Five-ACT-Window constraint is

introduced to limit the maximum current of a lazy precharge, where

at most five activations can be issued between two precharges.

IV. EVALUATION RESULTS

In this work, gem5 [9] (SE mode) is adopted as the simulation

platform. We integrate NVMain [10] into gem5, which is a cycle-

accurate memory simulator for both DRAM and non-volatile mem-

ories. Table III shows the setup of gem5 and NVMain, respectively.

All DRAM timing parameters are excerpted from Micron’s data

sheet [3]. Three memory controllers with the proposed memory

scheduling schemes are implemented in NVMain for the evaluation

(see Section III-C). Since both Close-Page and Open-Page policies

are used in the baseline, these three models are further divided into

two classes, where LaPRE-Idle-First is compared to the baseline that

employs Close-Page policy while LaPRE-RBH-First and LaPRE-DS-

First are compared to the baseline with Open-Page policy.

The selected SPEC2006 CPU benchmark with reference input

size [11] and STREAM with all functions [12] are evaluated as

multi-programmed testbench. We classify the benchmarks into three

categories and select four benchmarks as the representatives for each

141

category, which are symbolized as H, M, and L for high (¿10),

medium ([1,10]), and low (¡1) miss per kilo instructions (MPKI)

of last level cache (LLC). We simply duplicate four copies of each

benchmark for the four-core simulation. We run all benchmarks

for 500 million instructions for the cache warmup and then the

following 100 million instructions for the performance statistics. The

weighted instructions-per-cycle (IPC) defined in Eq. 3 is used as the

performance criteria throughout the simulation.

WeightedSpeedup =

4∑

i=1

IPCi
multi−core

IPCi
standalone

(3)

TABLE III: Simulation Configuration

System Configuration

Cores 4, ALPHA, out-of-order

CPU Clock Freq. 3 GHz

LDQ/STQ/ROB Size 32 / 32 / 128 entries

Issue/Commit Width 8 / 8

L1-D/L1-I Cache
32kB / 32kB 4-way

2-cycle latency

D-TLB/I-TLB Size 64 / 48 entries

L2 Cache
Shared, Snooping, 4MB, LRU

8-way, 10-cycle latency

Memory

JEDEC-DDR3-1333, 8GB, 64bit channel,
2 ranks, 4Gb chip(×8), 8 banks(64K×8K),

tRCD-tCAS-tRP-tWR 10-10-10-10,
FR-FCFS, 32-entry queue

Benchmark Classification (MPKI)

H
STREAM(34.96), mcf(16.26)

lbm(31.92) gobmk(38.35)

M
bwaves(6.07), milc(5.13),

leslie3d(4.30), libquantum(6.95)

L
gamess(0.02), namd(0.12),
sphnix3(0.09), soplex(0.3)

A. Performance Analysis

The performance comparison between LaPRE-Idle-First and the

traditional Close-Page policy is shown in Figure 6a. All H bench-

marks and two L benchmarks have more than 15% performance

improvement. On average 14% performance improvement is observed

and the improvement is up to 21% among H and M benchmarks.

In contrast, little performance gain is observed in L benchmarks.

In particular, gobmk and libquantum achieve 65.1% and 39%

performance gain, respectively. To figure out the source of perfor-

mance gain, we collect the average number of requests per precharge.

Baseline requires one request per precharge due to the Close-Page pol-

icy. Alternatively, LaPRE-Idle-First can effectively reduce the overall

amount of precharge so that one precharge can service more than one

request. For example, STREAM has 1.73 requests per precharge while

namd still has 1 request per precharge. Specifically, 4.19 and 2.43

requests per precharge are observed in gobmk and libquantum,

respectively. The larger request number reflects that more requests

share the precharge and thus the precharge overhead is significantly

reduced. Even though soplex produces 1.43 requests per precharge,

the improvement is modest due to low memory intensity.

On the other hand, the performance results of LaPRE-DS-

First and LaPRE-RBH-First are shown in Figure 6b. Compared

to Figure 6a, LaPRE-DS-First and LaPRE-RBH-First provide less

performance improvement, where the overall improvement is only

6.9% (5.7%) for LaPRE-RBH-First (LaPRE-DS-First) and the H and

M benchmarks can obtain 9.8% (6.2%) improvement on average.

The reason of less performance gain is two-fold. Firstly, the baseline

already leverages Open-Page policy that can service multiple requests

for one precharge. Therefore, Open-Page policy effectively offsets

the benefit of LaPRE. In addition, the address mapping scheme also

affects the effectiveness of LaPRE (see Section IV-B). Therefore,

only Close-Page and LaPRE-Idle-First are employed in the following

sensitivity study.

B. Sensitivity Study

a) Impact of Number of Sub-arrays: We first sweep the

number of sub-arrays in a bank from 1 to 128. Figure 6c shows

the results. It is clear that better performance can be obtained if

more sub-arrays are employed. It is straightforward that more sub-

arrays can reduce the possibility of sub-array conflict that occurs

when two requests try to access the same sub-array. LaPRE is always

beneficial to gobmk as more sub-arrays are deployed. In contrast,

the performance improvement is little for libquantum beyond 32

sub-arrays. As LaPRE does not induce any extra logics, it can simply

leverage the maximum number of sub-arrays to help the performance.

Note that this is different from the prior work [5] in which more sub-

arrays introduce larger area overhead.

b) Impact of Power Constraint: To examine the impact of

power constraint, LaPRE without Five-ACT-Window constraint is

simulated and compared to the counterpart where the Five-ACT-

Window constraint is applied. As shown in Figure 6d, only STREAM,

gobmk and libquantum obtain 4.6%, 8.6% and 6.7% performance

improvement, respectively. The additional improvement stems from

higher request/precharge rate, which implies these benchmarks fit

LaPRE well. The performance gain for other benchmarks, how-

ever, are negligible due to little change of request/precharge. As

a consequence, the power constraint does not severely degrade the

performance.

c) Impact of Address Mapping Scheme: Figure 5 presents the

address mapping schemes used in this paper. Baseline scheme is ap-

plied to Close-Page, Open-Page, LaPRE-RBH-First, and LaPRE-DS-

First to maximize the row buffer hit while LaPRE scheme is employed

in LaPRE-Idle-First to maximize the sub-array level parallelism. To

eliminate the interference of rank-/bank-level parallelism, the position

of bank and rank segment in baseline scheme is aligned with the bank

and rank segment in LaPRE scheme. The baseline address mapping

scheme can help explain the less performance gain in Figure 6b. As

shown, the least significant bits (LSBs) are assigned to the column bits

while the sub-array bits are placed in the relatively higher position.

As a result, less sub-array level parallelism can be exploited for the

performance improvement.

Among rank-/bank-/sub-array-level parallelism, two experiments

are designed to figure out which one is the most important factor for

the performance. The rank/bank/sub-array bit segments are alternately

placed in the LSB of physical address. The corresponding address

mapping schemes are shown in the last three lines of Figure 5,

which are labeled SA:RK:BK, RK:BK:SA, and RK:SA:BK. Figure 6e

shows the evaluation results. In sum, SA:RK:BK and RK:SA:BK

outperforms RK:BK:SA so that bank-level parallelism is most im-

portant for the memory performance because banks can completely

be accessed in parallel. Furthermore, the sub-array-level parallelism

142

Fig. 5: The address mapping schemes in this work

in LaPRE can at least work as well as rank-level-parallelism when

we compare RK:SA:BK with SA:RK:BK and sometimes it even gets

better results (milc and leslie3d). Moreover, under SA:RK:BK

scheme, we compare SA:RK:BK to the baseline without LaPRE

(labeled as RK:BK). The results show that LaPRE achieves 4.4%

and 3.6% performance gain, which indicates LaPRE is still useful

even if the sub-array-parallelism is minimized.

To verify the conclusion, we further conduct another experiment

by sweeping the number of sub-arrays with RK:BK:SA scheme. As

shown in Figure 6f, the result is distinct from Figure 6c: more sub-

arrays lead to significant performance degradation. Once more sub-

arrays are deployed, the width of sub-array segment in the physical

address becomes larger. As a consequence, the bank-level parallelism

is weakened due to the left shift of its segments. Even though

the performance of libquantum is improved as the number of

sub-arrays increases from 16 to 64, the overall performance still

drops. Therefore, it demonstrates that bank-level parallelism is more

important for the performance. More banks, however, requires more

peripheral logics and thus reduces area efficiency of the cell and

increases the corresponding cost ($/bit). As the clock frequency keeps

scaling up, less ranks can be populated in a single channel [13].

Therefore, considering the zero cost, our LaPRE is still meaningful

for the performance improvement.

V. RELATED WORKS

Several works have been done to leverage the fine-grained mem-

ory architecture. In the industry, FCRAM [14] and RLDRAM [15]

make use of smaller banks for low-latency memory access. The

drawback of these memory modules is the significantly reduced area

efficiency, which in turn increases the total cost per bit. On the

other hand, fine-grained activation is proposed in [16] so that only

a portion of sub-array is activated to reduce activation power. The

performance overhead that results from the reduced data bandwidth,

however, is not evaluated in this work. Similarly, selective bitline

activation (SBA) and single sub-array access (SSA) are proposed

in [1]. Nonetheless, the performance results could be misleading

because the severe bandwidth reduction and the unaffordable layout

overhead are neglected while the problem has been pointed out in [8].

The sub-array level parallelism (SALP) has been explored in [5].

In addition to the SALP-1 that is impractical because of the conflict

between activation and precharge in a sub-array, SALP-2 and MASA

are also proposed in [5]. SALP-2 prevents the conflict by enabling

selective precharge. Extra logic is introduced so that the sub-arrays no

longer share the same EQ signal for the precharge. Instead, each sub-

array can have a dedicated EQ so that one sub-array can be precharged

safely while another sub-array is open. Furthermore, the selective

precharge is also applied to MASA with the enhanced isolation logic

of the global data path. Compared to LaPRE, both methods requires

additional logics and modification to the DRAM chip. As a result,

they are supposed to be more costly than LaPRE.

VI. CONCLUSION

As memory performance becomes the system bottleneck in a

CMP architecture, high memory parallelism is mandatory to improve

the overall memory performance. In this work, we propose the

Lazy Precharge (LaPRE) as a novel memory architecture that can

effectively reduce the precharge overhead and thus improve memory

parallelism. Compared to the previous works [5] that can cause the

conflict of activation and precharge, LaPRE eliminate the conflict by

allowing multiple sub-arrays to be activated without the intervention

of percharge. A lazy precharge is then shared by all active or dead

sub-arrays. In addition, three request scheduling policies are proposed

and evaluated to leverage the enhanced memory parallelism. The

experimental results show that LaPRE can achieve as much as 65%

performance improvement. On average it can obtain 14% and 6.9%

performance gain under different scheduling policies. Taking into

account the negligible hardware overhead, LaPRE can be favorably

adopted by the industry.

REFERENCES

[1] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian,
A. Davis, and N. P. Jouppi, “Rethinking DRAM Design and Organi-
zation for Energy-constrained Multi-cores,” in ISCA’37, Jun. 2010, pp.
175–186.

[2] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist Open-page:
A DRAM Page-mode Scheduling Policy for the Many-core Era,” in
MICRO’44, Feb. 2011, pp. 24–35.

[3] Micron, “MT41J512M8RA-15E Data Sheet,”
http://www.micron.com/products/dram/ddr3-sdram.

[4] JEDEC Solid State Technology Association, “JEDEC Standard:
DDR4 SDRAM,” http://www.jedec.org/sites/default/files/docs/JESD79-
4.pdf, Sep. 2012.

[5] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A Case for
Exploiting Subarray-Level Parallelism (SALP) in DRAM,” in ISCA’39,
Jun. 2012, pp. 368–379.

[6] D. Lee, Y. Kim, V. Seshadri, J. Liu, and O. Mutlu, “Tiered-Latency
DRAM: A Low Latency and Low Cost DRAM Architecture,” in
HPCA’19, Feb. 2013, pp. 615–626.

[7] B. Keeth, R. J. Baker, B. Johnson, and F. Lin, DRAM Circuit Design:

Fundamental and High-Speed Topics. Wiley-IEEE Press, 2007.

[8] T. Vogelsang, “Understanding the Energy Consumption of Dynamic
Random Access Memories,” in MICRO’43, Dec. 2010, pp. 363–374.

[9] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi et al.,
“The gem5 Simulator,” Computer Architecture News, vol. 39, no. 2, pp.
1–7, Aug. 2011.

[10] M. Poremba and Y. Xie, “NVMain: An Architectural-Level
Main Memory Simulator for Emerging Non-volatile Memories,”
in ISVLSI’12, Aug. 2012, pp. 392–397. [Online]. Available:
http://www.nvmain.org

[11] Standard Performance Evaluation Corporation, “SPEC2006 CPU,”
http://www.spec.org/cpu2006.

[12] J. D. McCalpin, “STREAM Benchmark,”
http://www.cs.virginia.edu/stream.

[13] B. Jacob, S. W. NG, and D. T. Wang, Memory Systems: Cache, DRAM,

Disk. Morgan Kaufmann, 2007.

[14] Fujitsu, “Memory Consumer FCRAM 512M Bit MB81EDS516445,”
2010.

[15] Micron, “MT44K64M18RCT-125 Data Sheet,”
http://www.micron.com/products/dram/rldram-memory.

[16] E. Cooper-Balis and B. Jacob, “Fine-Grained Activation for Power
Reduction in DRAM,” MICRO, vol. 30, no. 3, pp. 34–47, 2010.

143

(a) Class-1 (b) Class-2

(c) Impact of Number of Sub-arrays (d) Impact of Power Constraint

(e) Impact of Address Mapping (f) Evidence of the importance of bank-level parallelism

Fig. 6: Performance results. (a) Class-1: LaPRE-Idle-First vs. Close-Page; (b) Class-2: LaPRE-DS-First and LaPRE-RBH-First vs. Open-Page;

(c) Impact of Number of Sub-arrays; (d) Impact of Power Constraint; (e) Impact of Address Mapping; (f) Evidence of the importance of

bank-level parallelism.

144

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

