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Abstract—Heterogeneous computing nodes are now pervasive throughout computing, and GPUs have emerged as a leading

computing device for application acceleration. GPUs have tremendous computing potential for data-parallel applications, and

the emergence of GPUs has led to proliferation of GPU-accelerated applications. This proliferation has also led to systems in

which many applications are competing for access to GPU resources, and efficient utilization of the GPU resources is critical to

system performance. Prior techniques of temporal multitasking can be employed with GPU resources as well, but not all GPU

kernels make full use of the GPU resources. There is, therefore, an unmet need for spatial multitasking in GPUs. Resources

used inefficiently by one kernel can be instead assigned to another kernel that can more effectively use the resources. In this

paper we propose a software-hardware solution for efficient spatial-temporal multitasking and a software based emulation

framework for our system. We pair an efficient heuristic in software with hardware leaky-bucket based thread-block interleaving

to implement spatial-temporal multitasking. We demonstrate our techniques on various GPU architecture using nine

representative benchmarks from CUDA SDK. Our experiments on Fermi GTX480 demonstrate performance improvement by up

to 46% (average 26%) over sequential GPU task execution and 37% (average 18%) over default concurrent multitasking.

Compared with the state-of-the-art Kepler K20 using Hyper-Q technology, our technique achieves up to 40% (average 17%)

performance improvement over default concurrent multitasking.

Index Terms—GPU, spatial, temporal, multitasking, resource allocation
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1 INTRODUCTION

THE continuous demand for increased performance in
latency, throughput, and power/energy efficiency has

been a driving factor in the adoption of GPUs for computa-
tion acceleration. This rapid adoption of GPUs has led to a
corresponding proliferation of applications that employ
them—a single machine may have many applications
competing for access to GPU resources, and the rise of data-
center and cloud-computing environments with resources
shared bymany simultaneous users has led to an even larger
scale of many applications competing for access to resources.

Using NVIDIA’s terminology, a GPU is composed of
multiple streaming multiprocessors (SMs), each of which
has multiple streaming processor (SP) cores. The SP cores
within an SM share large amounts of registers and memory
resources; in total a GPU architecture with some SMs may
support tens of thousands of simultaneously executing
threads. Due to this computational power, GPUs have been
widely used for acceleration [1], [2], [3].

Programming models such as CUDA and OpenCL have
made GPUs widely accessible for general purpose comput-
ing. Programmers write data-level parallel tasks (kernels)
that will execute on the GPU—for performance optimiza-
tion, programmers assume exclusive access to GPU resour-
ces. With time-shared access to GPUs, this assumption is
reasonable: each application gets exclusive access while exe-
cuting a kernel, and GPU access is time-shared at the granu-
larity of kernel execution latency. However, not all GPU
applications require full use of GPU resources [4]. Depend-
ing on the architecture’s achievable memory bandwidth,
GPU applications may saturate performance with only a
fraction of SM resources. Thus, for such applications the
GPU’s resources may also be shared spatially. Concurrent
execution of more than one kernel at a time may improve
resource utilization and overall performance.

Spatial multitasking (concurrent kernel execution) is not
a new idea: NVIDIA’s architecture has rudimentary con-
currency support in hardware since the Fermi architecture
[5]. NVIDIA’s implementation allows a user to specify that
certain kernels are independent and can execute simulta-
neously, but does not allow the user to specify the relative
resource allocation between concurrently executing kernels.
The Kepler architecture [6] improves Fermi model some-
what by introducing multiple independent kernel queues.
If the executing kernel from one queue does not consume
all resources, other queues can use the remaining resources.
Still, such a system does not have the scheduling and allo-
cation flexibility to consider the relative importance of ker-
nels or differences in the bandwidth consumption and
resource requirement. Indeed, we will demonstrate that
even with the most promising Hyper-Q feature, the default
concurrent multitasking on Kepler can not efficiently utilize
the resource and improve the performance.
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We present the case for an improved spatial-temporal
multitasking model. In our proposed model many simul-
taneous applications can submit kernels to independent
queues (similar to the Kepler architecture). However, in
our model the device scheduler would make the spatial-
temporal multitasking decisions based on the kernel
behavior properties, and leaky-bucket based management
[7] of the thread-block execution queues would imple-
ment the scheduling decision. Thus, we propose modest
changes to three portions of the GPU execution hierarchy:

� Compile-time profiling of each kernel’s computation
latency and bandwidth use properties.

� Software implementation of concurrency modeling
and exploration in GPU device scheduler.

� Hardware implementation of leaky-bucket based
Quality of Service (QoS) management of thread-
block execution queues.

Profiling of kernel properties and concurrency modeling and

exploration are all software-based so we can directly imple-

ment them. However, current GPU hardware does not allow

us to make our proposed hardware changes—therefore, we

use a software framework to emulate the GPU execution

behavior. Our emulation system can effectively interleave mul-

tiple kernels’ execution in the same manner that leaky-bucket

based queue management would. The kernels are transformed

by the emulation framework but still executed and measured

on real GPU hardware. Emulation system requires additional

(offline) code modifications that would not be necessary if the

proposed hardware were available. Although we do not imple-

ment the leaky-bucket algorithm in hardware for this paper, it

has been widely employed in prior hardware implementations

in network processing [7], and we assume that this functional-

ity is also feasible for implementation in the GPU.

In this paper we present an efficient spatial-temporal
multitasking model for a single GPU. Tasks submitted to
the GPU are from multiple independent applications,
with one application per queue. Kernel dependencies
within an application are handled implicitly by queue
ordering. Thus, the first kernels from multiple application
queues constitute a set of independent kernels. Within
this set, a kernel may execute concurrently with other
kernels or sequentially. Temporal multitasking deter-
mines the number of execution phases, where kernels in
the same phase execute concurrently. Spatial multitasking
determines the relative SM resource allocation for the ker-
nels in a phase. Because there are many possible spatial-
temporal schedules, we develop fast and accurate perfor-
mance estimation and an efficient heuristic for exploring
options; this portion of the solution would be in the GPU
device scheduler. To enforce the driver’s spatial and tem-
poral schedule decisions, we use leaky-bucket based
thread block interleaving.

This paper contributes to the state-of-the-art in GPU opti-
mization with

� A software-hardware solution for efficient GPU mul-
titasking, which allows kernels from multiple appli-
cations to share the GPU spatially and temporally.

� A software heuristic paired with fast and accurate
performance estimation metric for exploring possible
spatial-temporal multitasking schedules which is

within 6% of the optimal (in the cases where the opti-
mal are feasible to compute).

� A hardware leaky-bucket based thread-block inter-
leaving method to implement the spatial-temporal
multitasking.

� A software emulation framework that can imple-
ment leaky-bucket based thread-block interleaving
on any GPU platform whether natively supported
or not.

We demonstrate our technique using nine representative bench-

marks from CUDA SDK. Our technique achieves performance

improvement of up to 46% (average 26%) over sequential

GPU task execution and 37% (average 18%) over the default

Fermi GTX480 concurrent multitasking implementation.

Compared with the state-of-the-art Kepler K20 using Hyper-Q

technology, our technique achieves up to 40% (average 17%)

performance improvement over default concurrent

multitasking.

2 MOTIVATION

Intuitively, multitasking is useful when a GPU kernel’s per-
formance saturates while some GPU resources remain
unused. This happens in two situations: the first, and less
common case is when a compute-bound kernel has fewer
thread blocks than SM resources—it cannot use the entire
GPU simply because there is not enough work to do. The
second case is the common case: a kernel has sufficiently
high memory bandwidth use that the achievable bandwidth
is saturated with a subset of SMs.

Fig. 1 shows how the performance and memory band-
width scale with the number of SMs for nine applications
on NVIDIA GTX480. The details on how the profile data is
collected are described in Section 3. As shown, the memory-
bound kernels (e.g., VectorAdd, FastWalshTransform, etc.) fail
to scale linearly with the number of SMs. Thus, when one
kernel cannot fully utilize the GPU’s resources, spatial mul-
titasking can improve system performance by allocating the
un-utilized or under-utilized resources to other kernels.

In Fig. 2, we illustrate the potential benefit of spatial-
temporal multitasking by showing the execution latency
for each possible spatial-temporal schedule, and NVIDIA’s
concurrent interface for the example of BlackScholes and
VectorAdd. For a set of two kernels, there are two possible
temporal schedules: (1) two kernels execute sequentially,
or (2) two kernels execute concurrently. For concurrent exe-
cution, there are different possible spatial SM allocations
between the two kernels. NVIDIA Fermi GTX480 architec-
ture [5] contains 15 SMs. Thus, there are 14 different spatial
SM allocations for two kernels. The execution time of
spatial-temporal multitasking solutions are collected using
the emulation framework to be described in Section 4.

We observe that the performance of the two kernels
depends significantly on the SM allocation between the two
kernels. Both our spatial multitasking and the default con-
current multitasking improve on the sequential GPU task
execution through improved resource utilization. However,
our spatial multitasking supports flexible SM allocation to
better fulfill different kernel needs. In comparison, the
default Fermi multitasking only provides an interface to
specify the simultaneous running kernels, but does not
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allow users to specify the SM allocation. Similarly, Kepler
architecture allows multiple CPU cores to launch work on
the GPU simultaneously, but again doest not provide SM
allocation flexibility. By exploring various SM allocations,
the chosen optimal SM allocation achieves higher perfor-
mance than the default multitasking. Note that the exact
multitasking implementation details (e.g., temporal and
spatial scheduling/SM allocation algorithms) are not dis-
closed by NVIDIA. It is possible that NVIDIA’s default con-
current multitasking is not equivalent to any of the spatial-
temporal multitasking solution in our search space.

Given a large number of kernels, as we will demonstrate
in the experiments section, temporal multitasking will also
affect the performance. As the number of kernels in the
set of independent kernels grows, the number of possible
spatial-temporal multitasking solutions grows rapidly. This
leads to both opportunities for improved performance and
challenges in quickly and accurately choosing the appropri-
ate spatial-temporal multitasking.

3 SPATIAL AND TEMPORAL MULTITASKING

In our model, kernels from multiple independent applica-
tions are submitted to the GPU for execution as shown in
Fig. 3. This is analogous to Kepler’s Hyper-Q that uses mul-
tiple task queues and allow concurrent kernel execution
from multiple applications. Note that Kepler’s Hyper-Q
indeed increases kernel level parallelism compared to
Fermi, but does not improve scheduling and allocation

flexibility or consider bandwidth, computation and resource
use as what we do in our solution. Our technique is comple-
mentary to existing GPUs, but is a proposed solution for
future GPUs.

Different spatial allocations can have very different per-
formance (see Fig. 2). Thus, a critical requirement for spa-
tial-temporal multitasking is to understand the behavior of
kernels under different resource allocation. Such behaviors
can be understood via profiling during compilation; we will
discuss our profiling technique later in this section. The first
kernels from multiple application queues constitute a set of
independent kernels ready for spatial-temporal scheduling.
In practice, applications may start and finish at different
times. Thus, the set of kernels changes dynamically depend-
ing on the applications and system behavior. There are
many possible spatial-temporal schedules and we must
quickly identify a good spatial-temporal schedule at run-
time. The determined spatial-temporal multitasking is
enforced by the hardware leaky-bucket based thread block
interleaving (described in Section 4).

Now, we discuss the challenges related to spatial-
temporal multitasking. We consider the set of independent
kernels K that consists of N kernels K ¼ fk1; . . . ; kNg, and
we assume there are M homogeneous SMs in the GPU.

Temporal multitasking. Given the kernel set K, we must
schedule all the kernels in it. We define a set of one or more
concurrently executing kernels as a phase, and all of the ker-
nels in K must be divided into N or fewer phases. Each ker-
nel has different computation and memory requirements,
and thread structures. The number of temporal multitasking

Fig. 2. Impact of different spatial-temporal multitasking. a:b on the x-axis
represents the allocated SMs to the two kernels, respectively. The
default concurrent bar represents the default NVIDIA’s concurrent multi-
tasking supported by GTX480.

Fig. 1. Speedup and global memory bandwidth versus number of SMs. For speedup, the results are normalized to one SM.

Fig. 3. Spatial-temporal multitasking system overview.
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solutions for N kernels is Bell number, which is asymptotic
bounded by OðeNðlnðNÞÞÞ [8]. See Appendix A for the details
of the problem complexity.

Spatial multitasking. Given a set of concurrently executing
kernels (e.g., the kernels in the same phase), find the SM
allocation (distribution of GPU resources among the ker-
nels) that performs the best. The number of possible solu-
tions of allocating M SMs to n kernels is M�1

n�1

� �
. For

example, in a GTX480 (15 SMs), with two kernels executing
concurrently there are 14 ways of allocating SMs in which
each kernel is allocated at least one SM. See Appendix A for
the details of the problem complexity.

Performance estimation. To select a good spatial-temporal
multitasking schedule, it is neither feasible nor desirable to
exhaustively test all the solutions within an online sched-
uler. Therefore, it is also important to have performance
estimation that can quickly estimate performance of candi-
date solutions to obviate the need to empirically measure
the performance on GPU hardware.

To target these problems, we develop a performance
model-guided heuristic approach with low overhead. In
order to determine the efficiency of our heuristic, we also
implement an optimal (exhaustive) solution that compiles
and measures actual runtime of each possible spatial-
temporal schedule. In the experiments, we demonstrate
that our heuristic is close to the optimal in terms of per-
formance improvement, but it is important to emphasize
that the exhaustive solution is not suggested or desirable
for integration into the scheduler.

3.1 Optimal Solution

For the set of independent kernels as defined above, there
are many possible temporal schedules; with different
resource requirements and scaling properties, each combi-
nation of kernels performs differently. Thus, the optimal
solution must examine all possible temporal schedules, and
for each phase of each schedule, examine all possible spatial
schedules/SM allocations. The result of the exhaustive eval-
uation is a spatial-temporal schedule of K and the corre-
sponding SM allocation for the kernels in each of the
schedule’s phases.

Spatial multitasking. Given a set of kernels in a phase, the
optimal solution needs to enumerate and measure each
possible SM allocation, and select the allocation that yields
the minimum execution latency. For each candidate solu-
tion, we use the leaky-bucket framework (Section 4) to mea-
sure its performance. See Algorithm 2 in Appendix B for
the details.

Temporal multitasking. With the optimal Spatial Multi-
tasking (SM allocation) algorithm, we can find the best
SM allocation for any kernel set in a phase; now, we must
explore all the possible temporal schedules. For example,
with three independent kernels K ¼ fk1; k2; k3g, there are
five different ways to schedule the kernels into three or
fewer phases ðfk1; k2; k3g; fk1gjfk2; k3g; fk2gjfk1; k3g; fk3gj
fk1; k2g; fk1gjfk2gjfk3g), where kernels in brackets are
scheduled concurrently as a single phase, and j separates
two schedule phases. Phases cannot overlap execution,
therefore the phase ordering does not affect the temporal
schedule’s latency. Then, with the optimal latency of each

phase, the sum of phase latencies can be easily computed
to find the optimal latency of a given temporal schedule.
The optimal spatial-temporal schedule is then simply the
schedule that results in the minimum sum latency. The
optimal solution must enumerate all the temporal sched-
ules and selects the best schedule. Moreover, we only
consider the valid schedules that no phase have more
than M independent kernels as each kernel must be allo-
cated at least one SM. See Algorithm 3 in Appendix B for
the details.

3.2 Heuristic Approach

The optimal solution is infeasible for a system that makes
these scheduling decisions online. Thus, in this section we
develop an efficient heuristic approach that is suitable for
integration within a device scheduler. We name our efficient
spatial-temporal multitasking as STM.

The keys to an efficient heuristic are two-fold: first, we
develop a fast performance estimation technique to reduce
the cost of evaluating each solution; second, we develop an
efficient heuristic to reduce the number of solutions evalu-
ated by excluding sub-solutions previously proven to be
sub-optimal. Because the key reason for spatial multitasking
is that some kernels may saturate memory bandwidth with
fewer than the maximum available SMs, it is important that
our performance estimation must estimate memory band-
width use. As input to our performance estimation, we use
profile data of each kernel for both latency and memory
bandwidth as shown in Fig. 1. We also need to profile the
requested global memory size of each kernel as the sum of
global memory size for the kernels in the same phase must
fit in the GPU global memory.

For each kernel ki, we first use CUDA profiler [9] to
measure its requested global memory size, Gi. In this
work, we assume the global memory is statically allocated
for the entire kernel before kernel starts execution. Note
that the global memory size does not vary with the num-
ber of allocated SMs as all the thread blocks have to be
executed regardless how many SMs are used. But the
latency and memory bandwidth of a kernel vary with the
number of allocated SMs as shown in Fig. 1. To collect
them, we use a dummy kernel approach. More clearly, we
execute each kernel ki concurrently with a dummy kernel
di that has computation but does not progress ki’s compu-
tation or consume memory bandwidth. The dummy ker-
nel di has the same number of threads per thread block as
the kernel ki and the same thread block latency as the
thread blocks of ki, but the total number of thread blocks
varies in order to create the desired SM allocation for ki.
Let us use TBi to represent the number of thread blocks of
kernel ki. If we want to measure the latency and memory
bandwidth of kernel ki given m SMs, then we need to cre-
ate dTBi�ðM�mÞ

m e thread blocks for di, where M is the num-
ber of SMs in the GPU. Then, the thread blocks of ki and di
are interleaved similar to the mechanism employed to
emulate leaky-bucket (Section 4).

The profiling process is then a three step procedure as
follows:

1) Measure kernel ki with exclusive GPU access to com-
pute average thread block execution latency.
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2) Tune dummy kernel di’s thread block latency to the
average latency of ki as measured.

3) For each SM allocation (totally M � 1 allocations for
two kernels ki and di), profile with an appropriate
number of interleaved dummy thread blocks.

Each of the measurement uses the CUDA profiler in order

to measure the latency and memory bandwidth. Thus, for

each kernel ki, its latency profile Ri and bandwidth profile

Bi are gathered for each possible SM allocation. Ri½m� and
Bi½m� return the latency and achieved memory bandwidth of

kernel ki given an allocation of m SMs, respectively. This

profiling is performed only once per kernel, and is suitable

for inclusion in the compilation process, and a reasonable

prerequisite for spatial-temporal multitasking as shown in

Fig. 3. For the applications with control flow divergence

[10], thread block latency and memory bandwidth may be

dependent on the input data. For such cases, a more detailed

profiling may be necessary. For this work, we use the same

input for profiling and evaluation.
We now use the profile data to estimate the latency of

concurrently executing kernels. First, we will consider
only the latency profile data: the latency of a phase
depends on the kernels in the phase, their SM allocation,
and the total number of thread blocks for each kernel. For
kernel ki, we compute its per-thread-block latency given
an allocation of m SMs as Ri ½m��m

TBi
. The behavior of

NVIDIA’s thread block scheduler is unknown, but previ-
ous studies show that a dynamic round robin schedule
that assigns thread blocks in order of their thread block id
correlates well to actual kernel performance [11], [12].
Therefore, after the initial thread block assignment to fill
the SMs, remaining thread blocks are inserted into a queue
and dispatched to SMs as they become available. Fig. 4
shows an example of dynamic round robin with equal and
varied thread block latency. Thread blocks of kernel A and
B are interleaved to enforce the SM allocation (details
described in Section 4). The estimated total latency is the
finishing time of the last thread block. In the following, we
use DRRðÞ to represent the estimated latency using the
dynamic round robin schedule.

For our heuristic approach, we use a constructive
approach. Thus, some of the sub-solutions that we explore
will use fewer SMs than the total available SMs. Our perfor-
mance estimation is used to estimate the performance of
both sub-solutions and final solutions. First, we define the
set of kernels for concurrent execution:

Definition 1 (Concurrent Kernel Set Configuration). A con-
current kernel set configuration C is a set of 2-tuples:

fhk1; sm1i; . . . ; hkn; smnig, where the set of kernels
fk1; . . . ; kng 2 2K. smi is the number of SMs allocated to
kernel ki and smi < M.

Based on the definition, the concurrent kernel set may
use only a portion of the total available SMs (e.g., the sum of
smi may be less than M), or use all available SMs. In both
cases, we need to evaluate the performance improvement of
concurrent execution given a particular set of kernels and
their SM allocation. Given a concurrent kernel set configura-
tion C, we compute its execution latency improvement com-
pared to sequential execution as follows:

impðCÞ ¼ seq latðCÞ � con latðCÞ; (1)

where seq latðCÞ is the sequential execution latency of the
kernels in C given the total number of SMs used by the con-
figuration C and con latðCÞ is the concurrent execution
latency of the kernels in C.

Let C ¼ fhk1; sm1i; . . . ; hkn; smnig. The total used SMs of C
is SMC ¼

P
i¼1...n smi. We compute seq latðCÞ as follows:

seq latðCÞ ¼
Xi¼n

i¼1

Ri½SMC�: (2)

For con latðCÞ, we use dynamic round robin as shown in
Fig. 4 to estimate the performance, but we also need to con-
sider the effects of memory bandwidth which might affect
the performance. When concurrently executing a set of ker-
nels in C, their requested memory bandwidth may be higher
than the maximum bandwidth of the GPU device. Thus, we
define a penalty factor penaltyðCÞ as follows:

penaltyðCÞ ¼
P

i¼1...n
Bi½smi�

Pb ; if
P

i¼1...n Bi½smi� > Pb;
1; otherwise,

(
(3)

where Pb is the peak memory bandwidth of the GPU device.
That is, if the requested bandwidth use of C is greater than
the achievable bandwidth, all kernels are uniformly slowed
down in proportion to the excess demand.

Then, the final latency is estimated as

con latðCÞ ¼ 1;
P

i¼1...n Gi > Gb;
DRRðCÞ � penaltyðCÞ; otherwise.

�
(4)

If the requested global memory size of the kernels in C
exceeds the GPU global memory limit (Gb), such execution
will be aborted in CUDA. For this case, we set the concur-
rent execution latency of C to 1; this gives worse improve-
ment compared to sequential execution according to
Equation (1). Otherwise, the latency of concurrent execution
is estimated as the product of the DRRðÞ-computed latency
and the penalty factor.

Using performance estimation metric con latðCÞ, we can
efficiently estimate performance of sub-solutions or final
solutions. Now, we need to reduce the number of solutions
evaluated. Our heuristic approach based on dynamic pro-
gramming uses a constructive approach for generating solu-
tions that can exclude sub-solutions previously proven to be
sub-optimal. Note that the improvement is calculated based
on the number of SMs used by this configuration, not the

Fig. 4. Dynamic round robin with equal and varied thread block latency.
There are four SMs in this example.
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total SMs; this important detail is the key to allow construc-
tive building of configurations.

Algorithm 1 describes our heuristic approach. Overall,
it iteratively selects the set of kernels for concurrent execu-
tion in a phase and their corresponding SM allocation. In
each iteration, the dp select subroutine selects a concurrent
kernel set configuration C with the maximum execution
latency improvement and the kernels in C forms a phase.
Then, the set of kernels in C are removed from the set of
kernels to be scheduled and we proceed to the next itera-
tion. This process continues until all the kernels are cho-
sen. Algorithm 1 uses the metric defined in Equation (1) to
compare different solutions.

Given a set of kernels K ¼ fk1; . . . ; kng, we use dynamic
programming to return a concurrent kernel set configura-
tion C with maximum execution latency improvement
(impðCÞ Equation (1)). This dynamic programming imple-
mentation is based on tables for possible configurations
(Config½�½�) and improvements (Improve½�½�) that are popu-
lated constructively. The tables are built from top to down
and left to right. Thus, Config½i�½j� returns the kernel concur-
rent set configuration that achieves the maximum execution
latency improvement given j SMs for the first i kernels and
Improve½i�½j� is the corresponding execution latency
improvement. By definition,

Improve½i�½j� ¼ max
0�m<j

impðConfig½i� 1�½j�m� [ fki;mgÞ:

Note that although we reuse the allocation decision from
prior “best” configurations, the improvement estimate is
recomputed using impðCÞ sub-routine because the band-
width requirements and latency variations can affect the
overall latency and thus improvement. The resulting solu-
tion from dp select may select a subset of the kernels from
K and the remaining unselected kernels will be evaluated
again on the next iteration of the dp select algorithm. As we
will demonstrate in the experiments, the runtime of our

heuristic approach is very small. In practice, this small over-
head can be completely hidden by performing the spatial-
temporal multitasking analysis while the GPU processing is
taking place for a prior set of kernels.

4 EMULATION FRAMEWORK

After the spatial-temporal multitasking analysis deter-
mines the kernel scheduling phases and the SM allocation
for each phase, we need to implement those decisions for
the kernel execution. In our proposed system, we use
hardware leaky-bucket based thread block interleaving to
implement the scheduling decisions (Section 4.1). To emu-
late the leaky-bucket based hardware, we use software
emulation (Section 4.2). However, the software emulation
is executed and measured on the real GPU hardware.

4.1 Thread Block Interleaving via Leaky-Bucket

To implement the temporal schedule, we can schedule all
the thread blocks based on their phase number (e.g., sched-
ule the thread blocks of the kernels in phase i before the
thread blocks of the kernels in phase iþ 1).

To implement the spatial schedule, we use the leaky-
bucket algorithm. Historically, the leaky-bucket algorithm
[7] has been used for supporting quality of service of multi-
ple streams of network data competing for access to the
physical network. This network model can be applied to
our situation: each independent kernel has an ordered
queue of thread blocks (analog to independent queues of
network stream packets), and for quality of service we want
to enforce an allocation decision (number of SMs allocated
versus total SMs available). We implement the desired SM
allocation via thread block interleaving done by a leaky-
bucket based thread block interleaving.

The thread block interleaving order determines the rela-
tive allocation of SMs. For example, given two kernels A
and B, if we wish to allocate nine SMs to A and six SMs to B,
we can enqueue nine of A’s thread blocks followed by six of
B’s thread blocks. However, this thread block ordering pat-
tern may have sequences of allocated thread blocks that sig-
nificantly deviate from the desired allocation, especially if
the thread block execution latencies of kernels A and B do
not match. The leaky-bucket algorithm performs fine-
grained interleaving of the thread-blocks, and can provide a
stronger guarantee that any interval of successive alloca-
tions (after a startup period) will not vary from the desired
allocation proportion by more than a single SM. In the
leaky-bucket algorithm, each kernel to be executed concur-
rently has an independent bucket filling with tokens at a
rate of one token per cycle. Each bucket’s maximum capac-
ity is computed to correspond to the desired relative alloca-
tion rate, where larger capacities mean less frequent
allocations. When a bucket reaches its capacity, one thread
block is placed in the queue, and the bucket is emptied. The
concept of “cycles” for this leaky-bucket algorithm does not
denote time; they are used only to determine the interleave
order for arbitrary desired allocation.

Fig. 5 shows an example of thread block interleaving
via leaky-bucket algorithm for a system with three SMs.
In this example, there are two kernels: kernel A has four
thread blocks and kernel B has six thread blocks. One
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possible SM allocation is to allocate one SM to kernel A
and two SM to kernel B. Based on this SM allocation, the
leaky-bucket algorithm interleaves the thread blocks as
shown in Fig. 5. In this example, we assume equal thread
block latency for all the kernels. If the thread blocks have
varied latency, the dynamic round robin algorithm will
perform a simple runtime load balancing between SMs,
as shown in Fig. 4b. Thus, the average number of SMs it
actually occupies is different from the desired SM alloca-
tion. To solve the varied latency problem, we can com-
pensate the leaky-bucket filling rate to ensure that the
actual allocation meets the desired allocation considering
latency variation. In prior networking implementations,
this ability allowed for compensation of different packet
sizes from different network streams.

4.2 Software Emulation: Code Transformation

For each temporal schedule phase (e.g., a set of concur-
rently executing kernels), our emulation framework cre-
ates a monolithic scheduler that merges the thread blocks
of the kernels in the set. The exact behavior of scheduling
thread blocks to execute on SMs has not been disclosed by
NVIDIA, but as discussed previously a dynamic round
robin scheduling policy that assigns thread blocks in the
order of their thread block id correlates well to the kernel
performance. Thus, the scheduler effectively implements
an SM resource allocation corresponding to how the thread
blocks of the kernels are interleaved. To emulate the behav-
ior of the hardware leaky-bucket implementation, we use

leaky-bucket in advance to determine the thread block
interleaving order and the scheduler implements that
ordering of the kernels’ thread blocks.

The implementation of our software emulation for
spatial multitasking involves the creation of the scheduler
(e.g., a schedule kernel that invokes the original indepen-
dent kernels) and source code transformation to both the
CPU host and original GPU kernel code. The scheduler
merges the parameters of the kernels and assigns the work-
load based on two mappings—mapBlk and mapKernel.
These two mappings are created on the host (CPU) before
invocation of the scheduler on the GPU. The output of the
leaky-bucket algorithm is the mapKernel array. Given a
global thread block id bid in the scheduler, mapKernel½bid�
returns the kernel id (e.g., kernel A or B). The mapBlk
array can be derived from the mapKernel array by tracking
the number of thread-blocks already scheduled for each
kernel. Thus, mapBlk½bid� returns the corresponding local
thread block id in the original kernel. Fig. 5 shows an
example of mapKernel and mapBlk.

Fig. 6 shows a code example of our software emulation
framework using two kernels scheduled concurrently in a
phase. The scheduler combines the parameters of the two
kernels and requires extra parameters including the thread
block and kernel mappings (mapBlk and mapKernel), and
the original thread block and grid dimension. The sched-
uler uses an if-else statement to call different kernels based
on the kernel mappings. The thread block and kernel map-
ping step is executed on the CPU before the scheduler is
invoked. For the original GPU kernel, we need to replace
the current block/grid identifier with the original block/
grid identifier and guard the computation using if state-
ment threadId < blkDim to ensure that only the threads
in the right range are executed. Appendix C provides
more details on the thread structure of the scheduler ker-
nel and the source code transformation.

5 LIMITATIONS

In this section, we discuss the limitations of our spatial-
temporal multitasking technique for GPUs.

Software emulation framework. The proposed leaky-
bucket based thread block interleaving requires hardware

Fig. 5. Thread block interleave via leaky-bucket.mapKernel andmapBlk
are used in the software emulation framework.

Fig. 6. Software emulation framework.
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support. We cannot make the architectural changes to the
current GPUs. In order to test our idea, we develop a soft-
ware framework to emulate the thread block interleaving.
However, our software emulation framework suffers
from two performance issues. First, we have to use extra
variables and arrays (e.g., mapBlk, mapKernel, kernel id,
etc., as shown in Fig. 6) to store the thread block inter-
leaving results based on leaky-bucket algorithm. The
extra variables and arrays increase the register and global
memory usage, which may cause potential drop in
throughput as the number of simultaneous active threads
may reduce. With hardware implementation, dedicated
hardware tables and registers would solve this problem.

Second, by statically merging multiple kernels together,
we create a monolithic scheduler kernel with maximum
resource footprint (e.g., register, shared memory) among
any constituent kernel. For example, let us assume our
scheudler kernel K merges kernels A and B together; regis-
ter is the limiting resource for all the three kernels (A, B,K).
Let us also assume a thread block of kernel A and B requires
4K and 8K registers, respectively. Hence, a thread block of
kernel K requires 8K (max(4, 8)) registers if we ignore the
register increase due to the extra variables (e.g., kernel id)
usage. Given the 32K register file capacity on Fermi
(GTX480), we can either execute eight thread blocks of ker-
nel A or four thread blocks of kernel B simultaneously.
However, for the monolithic kernel K, we can execute only
four thread blocks simultaneously. This limitation may
cause potential drop in the throughput and overall perfor-
mance. This problem can be solved with hardware imple-
mentation as we do not need to create the monolithic kernel
statically; the hardware scheduler can interleave the thread
blocks from different kernels with diverse resource require-
ments at runtime. Note that the software emulation frame-
work would not be part of the proposed system if the
hardware implementation of leaky-bucket based queue
management is available. In the experiments, we will use
the software emulation framework to evaluate our tech-
nique and demonstrate performance speedup even with
these limitations.

Kernel behaviors. The proposed multitasking technique is
useful for a set of concurrent tasks with different behaviors
(e.g., memory-bound and compute-bound). Our spatial
multitasking technique does not benefit the set of kernels
with only one type of behavior as there is no opportunity to
improve the resource utilization. In our multitasking algo-
rithm (Algorithm 1), we use sequential execution as the
base line implementation. If multitasking does not provide
performance benefit, we will choose sequential kernel
execution.

Performance models. Our performance estimation in con-
junction with heuristic algorithm are used online to deter-
mine the multitasking execution. To minimize the runtime
overhead, we ignore the effects of performance variation
among thread blocks due to control flow divergence, L2
cache contention, etc., in our performance model.

6 EXPERIMENTAL RESULTS

We use nine benchmarks from CUDA SDK [9]: VectorAdd
(va), BinomialOptions (bo), BlackScholes (bs), Histogram256

(h256), MergeSort (mer), Scan (sh), Histogram64 (h64), Monte-
CarloSim (mci), FastWalshTransform (fwt2). These applica-
tions are representative workloads as they exhibit a variety
of behavior in memory bandwidth and compute latency.
Our proposed spatial-temporal multitasking technique can
exploit such variation among the kernels. But any other
applications or workloads with such variations can be used
for evaluation as well.

We propose two algorithms for spatial-temporal multi-
tasking: an optimal solution and an efficient heuristic
approach. The efficient heuristic approach is labeled STM in
the following. The optimal solution is only useful for a small
set of kernels offline, but our STM solution reduces the
search space and performance evaluation overhead signifi-
cantly that it can be integrated into the device scheduler.
Note that we use the emulation framework for our pro-
posed algorithms. The kernels are transformed by the emu-
lation framework but still executed and measured on real
GPU hardware. We evaluate our techniques using NVIDIA
Fermi GTX480. GTX480 provides interface for concurrent
multitasking using CUDA streams. We also test on other
GPU architectures including Fermi C2070, Kepler K20 and
Kepler GTX680.

In the following, we perform five sets of experiments to
evaluate our STM solution: first, we compare STM with
sequential GPU kernel execution (e.g., executes GPU ker-
nels sequentially without spatial multitasking) and NVI-
DIA default concurrent multitasking interface. Second, we
compare STM with Optimal. Third, we evaluate the accu-
racy of our performance estimation technique. Fourth, we
show the overhead and scalability of our approach using
a large number of kernels. Finally, we show the results of
our spatial-temporal multitasking on different GPU archi-
tectures—NVIDIA Fermi C2070, Kepler K20 and Kepler
GTX680.

Comparison with state-of-the-art solutions. Given kernels
with different behaviors (e.g., compute-bound and mem-
ory-bound), we create different kernel sets with sizes
varying from 2 to 5. We compare our STM solution with
sequential GPU kernel execution and the NVIDIA default
concurrent multitasking. Fig. 7 shows the performance
improvement (percentage) over sequential kernel execu-
tion for the optimal solution, STM solution, and default
concurrent multitasking on GTX480. The X-axis lists the
different combinations of kernel sets. Overall, compared
to sequential kernel execution, our STM solution achieves
up to 46% (on average 26%) performance improvement
while the default concurrent multitasking achieves up to
34% (on average 11%).

Compared to sequential kernel execution, both our STM
solution and the default concurrent multitasking improve
performance by allocating under-utilized resources to
other kernels. Furthermore, our STM solution achieves up
to 37% (average 18%) performance improvement over the
default concurrent multitasking. Our STM solution tempo-
rally schedules the kernels into phases and allows flexible
SM allocation to better meet different kernels’ needs for
each phase. Hence, we achieve more performance
improvement. The performance improvement varies for
different kernel sets. For the kernel sets that achieve high
performance improvement, their kernels tend to be

LIANG ET AL.: EFFICIENT GPU SPATIAL-TEMPORAL MULTITASKING 755



complementary in terms of compute and memory resource
utilization.

STM versus optimal. We compare our STM solution with
the optimal solution for the cases where the optimal is feasi-
ble. As shown in Fig. 7, our STM solution tends to be close
to the optimal solution; STM on average is 6% away from
the optimal solution.

Accuracy of performance metric. The accuracy and effi-
ciency of our STM solution is partially contributed by our
accurate performance metric (con latðCÞ in Section 3.2).
Here, we support this claim with concrete experimental
results. Fig. 8 compares our estimated performance with
actual performance for a three-kernel set. The Y-axis
shows the execution time while the X-axis shows different
SM allocations. As shown, our performance estimation
accurately predicts the trend well; for each SM allocation
our estimation is close to the actual performance, too.
For other test cases, the performance is similarly well
correlated.

Scalability. Table 1 shows the running time of the optimal
and STM solution with different size of kernel sets. The opti-
mal solution is based on exhaustive search and empirical
measurement, where we set an upper limit of 24 hours run-
time before canceling evaluation. The runtime of optimal
solution increases exponentially as the size of kernel sets
increases. It takes almost one day for a five-kernel set while
our STM solution returns the results within seconds. To
prove further the scalability of our STM solution, we
increase the size of kernel sets up to 50 by replicating the
kernels. Our STM solution still returns results in the order
of tens of seconds. This overhead is very low compared to

the long runtime of the GPU kernels, representing only an
average of 1% of the execution time of the kernels. In prac-
tice, this low overhead can be completely hidden by per-
forming the spatial-temporal multitasking analysis while
the GPU processing is taking place for a prior set of kernels.
Table 1 also shows the average performance improvement
of our STM solution over sequential GPU execution. Our
STM solution consistently achieves speedup throughout
different sizes of kernel sets. As seen by the data in Fig. 7,
the speedup can vary depending on the sets of kernels to
be scheduled, but these results demonstrate that our STM
solution can efficiently divide kernels into spatial-tempo-
ral schedules even for large number of kernels. Unfortu-
nately due to the size of the sets it was not feasible to
exhaustively determine the optimal schedule for larger
problem sets.

Portability. Our spatial-temporal multitasking can be
used with any existing GPU architecture. Here, we first
evaluate our technique using another NVIDIA Fermi archi-
tecture: Fermi C2070. Our STM solution improves perfor-
mance by up to 46% (average 25%) compared to sequential
GPU kernel execution while the default concurrent multi-
tasking achieves up to 26% (on average 13%) improvement.
NVIDIA Kepler architecture improves the concurrency
model of Fermi by using multiple independent kernel
queues called Hyper-Q. We also evaluate our technique by
comparing with two different Kepler architectures: Kepler
K20 and Kepler GTX680. K20 architecture is featured with
Hyper-Q technology. The default concurrent multitasking is
implemented using CUDA stream. Compared to default
concurrent multitasking, our STM solution achieves by up
to 33% (average 18%) and 40% (average 17%) improvement
on Kepler GTX680 and Kepler K20, respectively. See

Fig. 7. Performance comparison of different multitasking techniques on GTX480.

Fig. 8. Accuracy of our performance metrics.

TABLE 1
Optimal versus STM Running Time (Seconds)
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Appendix D for the details of experiments on Fermi C2070,
Kepler K20 and Kepler GTX680.

7 RELATED WORK

Although GPUs promise high performance, tuning GPU
for high performance is not a trivial task [13]. The state-
of-the-art of GPU performance modeling and tuning
techniques focus on analytic performance models [14],
[15], computation optimization [10], [16], [17] and mem-
ory access patterns optimizations [18], [19] for a single
kernel/task.

There exist very limited studies on multitasking for
GPUs. Traditionally, GPUs are time-shared only at the
granularity of kernels. Recently, Adriaens et al. demon-
strate that not all GPU applications fully use GPU resour-
ces [4]. They propose a few heuristics for the spatial
multitasking and demonstrate performance improvement
compared to sequential kernel execution using GPGPU-
sim [20]. In contrast, our multitasking solution allows dif-
ferent kernels to share the GPU resources both spatially
and temporally. For spatial multitasking, our solution
supports flexible SM allocation through leaky-bucket
thread block interleaving. Finally, we evaluate our techni-
ques using a software emulation framework on the real
GPU architecture.

Guevara et al. developed a compile time concurrency
model [21]. However, in their mechanism, the programmer
can not control the SM allocation. Thus, it is only suitable
for the small kernels which do not have enough parallelism
to fully utilize the GPU. Cederman and Tsigas evaluated
different scheduling and load balancing implementations
on GPUs [22], [23]. Their implementation provides coarse-
grained control over GPU kernels. However, their work did
not consider the resource waste of a kernel due to memory
bandwidth saturation. In contrast, our technique provides
fine-grained thread block interleaving to improve the
resource utilization and overall performance. We compare
our technique with the state-of-the-art multitasking solution
on NVIDIA Fermi and Kepler architectures.

8 CONCLUSION

GPUs are increasingly important for heterogenous comput-
ing due to their tremendous computing power for accelerat-
ing data-parallel applications. As more and more
applications are using GPUs, it is critical to support efficient
multitasking on GPUs. In this work, we propose a software-
hardware solution for efficient GPU multitasking, which
allows kernels from multiple applications to share the GPU
spatially and temporally. We demonstrate the performance
improvement of our technique on various GPU architec-
tures using nine representative applications. Our demon-
stration on the Fermi GTX480 architecture accelerates
performance by up to 46 percent (average 26 percent) over
sequential GPU kernel execution and 37 percent (average
18 percent) over default concurrent multitasking. Com-
pared with the state-of-the-art Kepler K20 using Hyper-Q
technology, our technique achieves up to 40 percent (aver-
age 17 percent) performance improvement over default
concurrent multitasking.

APPENDIX A

PROBLEM COMPLEXITY

A1. Temporal Multitasking

The number of potential temporal schedules is the sum of

the number of schedules for each possible schedule length.

For example, with four kernels, the number of schedules

would be the sum of the number of schedules of one phase,

two phases, three phases and four phases. This value is a

Bell number—the number of ways to partition a set of N

items into N or fewer sets. The Bell number is most simply

defined recursively, where Bnþ1 ¼
Pn

k¼0ðnkÞBn. The asymp-

totic bound of Bell numbers is OðeNðlnðNÞÞÞ. Note that there is

a restriction that no phase can have more than M indepen-

dent kernels because each kernel must be allocated at least

one SM.

A2. Spatial Multitasking

The number of possible SM allocations scales with the
number of kernels, but is limited by the restriction that
each kernel must receive at least one SM. If we number
the SMs, an SM allocation can be described by the index
of transition point between SMs allocated to one kernel
and SMs allocated to the next kernel in the phase. Thus,
given n (n � M) independent kernels in a phase, the
number of possible SM allocations is the number of
ways of selecting n� 1 transition points. Therefore, we
define the number of possible allocations of M SMs to n
kernels as M�1

n�1

� �
.

APPENDIX B

ALGORITHM DETAILS

Algorithm 2 presents the details of the optimal algorithm of
spatial multitasking. Given a set of kernels in a phase,
Algorithm 2 returns the optimal SM allocation. Algorithm 3
presents the details of the optimal algorithm of temporal
multitasking. Given a set of kernels, Algorithm 3 returns
the optimal spatial-temporal multitasking schedule.

APPENDIX C

EMULATION FRAMEWORK IMPLEMENTATION DETAILS

To launch the scheduler, two important parameters—block
and grid dimension need to be specified. The block dimen-
sion (blkDim) specifies the number of threads per thread
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block and the grid dimension (gridDim) specifies the num-
ber of thread blocks. The total number threads is just the
product of blkDim and gridDim. The scheduler merges the
independent kernels at thread block level. Thus, the number
of thread blocks of the scheduler is the sum of thread blocks
of all the merged kernels. The number of threads per thread
block of the scheduler is the maximum threads per thread
block among the kernels.

We need to perform two types of transformations to the
original kernel. First, we need to add extra parameters and
replace the current block/grid identifier with the previous
block/grid identifier. More clearly, three additional param-
eters including the thread block mapping (mapBlk), the
original grid ( gridDim) and block ( blkDim) dimension of
the kernel are required. Then the statement “ oldbid ¼
mapBlk½bid�” is inserted to map the scheduler’s thread block
id to the kernel’s thread block id’s. The transformation then
replaces all occurrences of bid in the kernel with oldbid.
Similarly, blkDim and gridDim are replaced with blkDim

and gridDim, if they are used.
Second, we surround the computation everywhere

except syncthreadsðÞ with if statement as shown in Fig. 9.
With the guarded if statement, only the threads in the
actual thread block range are executed if the kernel’s actual
block dimension is smaller than the merged kernel.
syncthreadsðÞ is not included in the if statement to ensure
the correct synchronization among threads.

APPENDIX D

PORTABILITY EXPERIMENTS

Fig. 10 shows the performance improvement compared to
the sequential GPU kernel execution for different kernel
sets for Fermi C2070. As shown, both our STM and the
default concurrent multitasking consistently improve the
performance. But our STM solution achieves more perfor-
mance improvement compared to the default concurrent
multitasking. More clearly, our STM solution improves per-
formance by up to 46% (average 25%) compared to sequen-
tial GPU kernel execution while the default concurrent
multitasking achieves up to 26% (on average 13%) improve-
ment. The performance improvement is a little different
from Fermi GTX480. The difference in improvement comes
from the different architecture parameters such as memory
clock speed, double-precision floating-point performance,
number of SMs and memory bandwidth. Finally, there are a
few kernel sets that the default concurrent multitasking
only achieves marginal performance improvement. Thus, if
the marginal improvement could not compensate the per-
formance overhead of the concurrent multitasking, it is

Fig. 9. Kernel transformations.

Fig. 10. Performance improvement compared to the sequential kernel execution on NVIDIA Fermi C2070.
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possible that the default concurrent multitasking slightly
degrades the performance as shown in Fig. 10.

Fig. 11 shows the performance improvement of our STM
solution compared to the default concurrent multitasking of
Kepler architecture for different kernel sets. As shown, our
solution still achieves substantial improvement compared to
the default concurrent multitasking of Kepler architecture.
More clearly, our solution achieves by up to 33% (average
18%) and 40% (average 17%) improvement on Kepler
GTX680 andKepler K20, respectively.

We also notice that for a few kernel sets, our STM solution
is slightly worse than the default concurrent multitasking as
shown in Figs. 10 and 11. This is due to the performance
overhead introduced by our software emulation framework
as discussed in Section 5. However, it is important to empha-
size that this is a limitation only for the emulation frame-
work. There will be no such limitation if the hardware
implementation is available. Overall, our emulation frame-
work demonstrates substantial speedup even with perfor-
mance overhead caused by the emulation framework.
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